Evaluating Different Input
Representations for Timbre
Transfer
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Goal: Change the timbre of a music recording
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The current methods are still immature

TIMBRE TRANSFER USING IMAGE-TO-IMAGE DENOISING
DIFFUSION IMPLICIT MODELS

Musical timbre style transfer with diffusion
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This project attempts to organize the current approach

- Flow matching with DiT backbone
- Compare performance of mel-spec, CQT, and raw audio



Change of Scope

e There aren’t really any CQT to waveform vocoders
e The github for the CQT model is not available
e Training one seemed out of scope

=> | only investigated the mel spectrogram and raw waveform



The StarNet dataset is ideal for this project
Contains recordings of different instrument pairs playing the same piece

wow haaian e :
2. 001.1.wav: the clarinet track
3. 001.2.wav: the vibraphone track
0042 ; . ) :
5. 001.4.wav: the strings track
6. 001.5.wav: the piano track
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Model Architecture
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Mel Spectrogram Vocoder

BIGVGAN: A UNIVERSAL NEURAL YOCODER WITH
LARGE-SCALE TRAINING
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The mel spectrograms were
calculated at 24 kHz sampling rate

Reconstructed audio was resampled
to 16 kHz for FAD

The raw waveform model worked
with 16 kHz data to minimize
computational costs



Results

Mel Loss per Epoch
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Results

Mel FADs Through Training
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Results

FAD Comparison

Strings to Clarinet

Clarinet to Strings

Vibes to Piano

Piano to Vibes

Mel

4.06

4.49

9.47

3.31

TS

31.82

15.07

25.58

14.52

lable 5 Results of the ohjective evaluation contrasted with baseline models,

Model Task
Fianao o Guitar Piano to Vibraphone Vibraphone/Clarinet to Piano/Strings
FALY jix FAIY mn FAL¥ 18]
VAE-GAN B4l 0,54 A 056 12,52 a7
Music-Star 647 0.39 743 o4l 10,93 057
D Transfer M 031 4.56 028 673 LU
DiffTransfer {DAWavel K%} 0.3 431 028 6.3 A7
ours ilé 0.32 422 0.2%9 6.37 048




Examples

Input Type

Conditioning

Target

Model Output

Mel Spectrogram

Mel Spectrogram

Mel Spectrogram
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Future Work

- Latent diffusion for raw audio, and more computational resources

- Mix and match input/conditioning signals (i.e. audio input with mel
conditioning)

- Train a CQT vocoder to try a CQT-based model

- Unpaired timbre transfer
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