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ABSTRACT

Timbre transfer refers to changing the timbre of one recording to the timbre of another while
preserving all other musical characteristics. Recent developments have shown the potential of
diffusion models for this task, although there is no agreed upon best practice for other aspects such
as data representation. This work compares models using raw waveforms to models using mel
spectrograms under the same generative paradigm to determine which yields the highest performance.
Measured by Fréchet Audio Distance (FAD), the performance of the mel spectrogram models are
found to far surpass that of the raw waveform models.

1 Introduction

The task of timbre transfer refers to changing the timbre of a music recording to a different timbre while preserving all
other musical characteristics. This task is challenging because timbre is very hard to define and model. For this work, it
can generally be thought of as the perceived characteristics of a sound that are independent of pitch and dynamics. There
are many possible applications for timbre transfer, such as tools for music production or faster creation of educational
materials.

Recent work [5, 6, 4] has demonstrated the potential of using guided diffusion models for timbre transfer. However,
there is still no consensus on best practice for other aspects of the problem, such as input representation or model
architecture. For example, [5] generates mel spectrograms, [6] generates constant Q transforms (CQT), and [7] generates
raw waveforms.

This work will compare generating mel spectrograms with generating raw waveforms using the same generative
paradigm. Specifically, it will introduce a custom diffusion transformer [1] architecture into a flow matching generative
framework [2]. The mel spectrograms are converted to waveforms using the BigVGAN neural vocoder [3]. This work
does not investigate the CQT representation, as there are no high quality, public CQT vocoders available.

The models will be trained on the StarNet dataset [8], which contains recordings of instrument pairs playing the same
piece (Clarinet/Strings and Vibraphone/Piano). One model will be trained for each instrument pairing, and each data
representation, for a total of 8 models. Results will be evaluated by measuring the Fréchet Audio Distance (FAD) [9]
between the generated samples and the targets, a measure of the distance between two distributions. The FAD will be
measured separately for each pairing and representation.

2 Background

The key challenge for any generative model is learning and sampling from a distribution of observed data. One popular
generative paradigm, called Continuous Normalizing Flows [10], learns an ODE mapping from a simple distribution
such as N (0, I) to the data distribution as follows:

d

dt
ϕt(x) = vθt (ϕt(x)) (1)

ϕ0(x) = x, (2)



where vθt is a learnable time-dependent vector field parameterized by some neural network, and ϕt(x) is the trajectory
at a point x. To avoid expensive simulations of the ODE, the model can be trained to regress onto a target velocity field
conditional on the observed dataset, which is called flow matching [2]. Once the model is trained, new data can be
generated by sampling from the initial distribution and simulating the ODE with any method such as Euler’s method.

The generation process can be guided with some context signal c by amplifying the difference between an unconditional
model and a conditional model as follows:

ṽθt (x, c) = (1 + w)vθt (x, c)− wvθt (x, ∅), (3)

where w is the guidance strength, and ∅ represents no context signal. Since the vector field controls the transport
direction, amplifying the conditional–unconditional difference guides samples toward regions consistent with c. This
approach is called Classifier-Free Guidance [11]. It is worth noting that the same parameters can be used for both the
conditional and unconditional model by randomly zeroing the context signal during training.

3 Methods

Guided flow matching is used in this work with a DiT backbone. Specifically, the model is given one of the instruments
in a pair as guidance, and attempts to reconstruct the signal from the other instrument. The model is trained to match
the linear interpolation field described in [2].

The key addition to the DiT architecture from [1] is an extra cross-attention module with the conditioning signal to more
aggressively preserve musical context information. Additionally, due to computational constraints, the raw waveform
was passed through downsample blocks that halved the length a total of 5 times, and the block output was fed through
upsample blocks to restore the original waveform shape. Due to time constraints, the raw waveform models were
trained for only a quarter of the epochs of the mel spectrogram models, but the loss seems to reach near convergence
regardless so the comparison is still mostly valid.

4 Results

The loss throughout training is plotted in Figure 2. The raw waveform models were trained with less epochs due to
computational constraints, however they still clearly perform worse than their mel counterparts.

Plotting the FAD on the holdout set throughout training reveals that the raw waveform representation is very unstable.
While the models were not trained to minimize FAD, it is still expected to follow roughly the same curve as the loss.
This suggests that the model may be struggling with some aspect other than audio generation when given the raw
waveform, possibly a result of aggressive downsampling. Also worth noting is that the FAD drops to 0 at a single epoch
for the raw waveform strings model; this is simply a placeholder value that gets used if the FAD evaluation threw an
error from failing to load the VGGish model.

The final results are summarized in Table 1. While there is no standardized test set against which models are measured
these results suggest that the mel spectrogram model is performing near the state-of-the-art, while the raw waveform
model is lagging further behind.

Perceptually, all the raw waveform generated samples have residual noise at least equally as strong as the music. This
could suggest that the hyperparameters for model inference were not ideal, perhaps needing more steps. However, if the
noise is disregarded, the music quality was very good. The mel spectrogram samples might not have suffered from this
issue if the vocoder was able to reduce the residual noise, but this was unexplored.

FAD ↓
Strings to Clarinet Clarinet to Strings Vibes to Piano Piano to Vibes

Mel Spectrogram 4.06 4.49 9.47 3.31
Raw Waveform 31.82 15.07 25.58 14.52

Table 1: FAD Comparison

5 Conclusion

This work compared DiT based flow matching models using both raw waveforms and mel spectrograms for the task of
timbre transfer. The mel spectrogram models significantly outperformed the raw waveform models, although the latter
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Figure 1: Model architecture for raw waveforms. The mel spectrogram model is the same but without the downsam-
ple/upsample blocks

Figure 2: The losses for each pairing and representation seem to converge

does show promise. More work is needed to remove residual noise in raw waveform samples, but the baseline music
quality is acceptable. Additionally, future work should compare the CQT against these models, as they were out of
scope for this project.
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Figure 3: The FAD throughout training is far less stable than the loss
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