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ABSTRACT

We report on a pilot study for signal processing based detection
and analysis of motor symptoms associated with Parkinson’s and
Huntington’s diseases. In contrast with prior studies using proto-
type body-worn sensors, that are typically obtrusive, we use light-
weight, low-power sensors that can be affixed to the body like adhe-
sive temporary tattoos, allowing for unobtrusive attachment of mul-
tiple sensors for continuous motion measurement over durations of
up to 48 hours. Signal analysis of the accelerometer data from the
sensors highlights the benefit of the proposed approaches: clear sig-
natures are seen for different clinically observed motor symptoms
either in the signals recorded in a specific sensor, or in the inter-
relations across sensor signals.

Index Terms— Wearable sensors, Parkinson’s, Huntington’s,
accelerometer, health analytics

1. INTRODUCTION

Sensor technologies are currently undergoing development at a rapid
pace making available low-power, small-footprint, low-cost sensors
for measuring a number of physical quantities. Signal processing al-
gorithms that leverage the large amounts of data collected by such
sensors are enabling many new applications. In this paper, we report
on a pilot study that focuses on the analysis of data from multiple
light-weight body-affixed sensors to analyze motor symptoms asso-
ciated with motion irregularities in Parkinson’s disease (PD) [1] and
Huntington’s disease (HD) [2].

PD and HD are chronic neurological conditions that cause move-
ment disorders in affected individuals. PD is characterized by in-
voluntary tremors of the limbs, stiffness and slowness in movement
accompanied by episodes of gait freezing up and postural instability.
HD is an inherited disease characterized by erratic jerky movements
in the body, referred to as chorea, and uncoordinated movement of
the limbs that results in an unsteady gait. Additionally, cognitive
impairment is also commonly observed in HD. No cures are cur-
rently available for PD/HD. Although, medications are used to con-
trol symptoms their efficacy is neither universal nor complete and
quality of life is often severely degraded for PD/HD patients. It is
estimated that within the United States over a million individuals are
living with PD [3] and about 30,000 with HD [4]. Despite the rela-
tively smaller numbers, the greater debilitation caused by HD, makes
it also of very significant clinical concern.

Motor symptoms, either rhythmic or erratic, are inherent in both
PD and HD and these are primarily assessed via in-clinic obser-
vations through the Unified Parkinsons Disease Rating Scale (UP-
DRS) [5] and the Unified Huntingtons Disease Rating Scale (UH-
DRS) [6], respectively. While these tools are invaluable in clinical
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practice, they are limited by the short observation time available in
the clinic and by the subjective nature of manual assessment. The
use of wearable sensors and automated signal analysis is therefore
an attractive option for obtaining longer duration data and objective
quantitative metrics for tracking disease progression, medication ef-
ficacy, for categorizing subjects for personalized medicine, and for
early prognosis [7].

While several prior studies have used wearable sensors for anal-
ysis of motion disorders in PD/HD [8, 9, 10, 11], these prior sensors
have typically been quite obtrusive, which not only causes significant
discomfort to the subjects but also potentially influences subjects’
body movements, impacting the resulting analysis. In this paper,
we report on a pilot study conducted with a newly introduced com-
mercial sensor [12] that is light-weight and unobtrusive and can be
applied to the body, much like an adhesive bandage or a temporary
tattoo, allowing for ready attachment of multiple sensors to different
body parts of the subjects. Specifically, in this pilot study, we focus
on accelerometer data for analysis of motion and highlight how the
use of multiple sensors significantly simplifies and enhances the sig-
nal analysis: clear signatures of individual clinically identified motor
symptoms of interest in PD/HD can be seen either by analyzing data
from specific sensors or by using the data in coordination across the
Sensors.

This paper is organized as follows. In Section 2 we describe
the key specifications of the sensor and give a brief overview about
the clinical study set-up. In Section 3 we describe the analysis per-
formed on the data obtained from multiple body affixed accelerom-
eter sensors to detect signatures for the motor symptoms in PD and
HD subjects. We conclude the paper with a discussion and conclu-
sion in section 4.

2. SENSOR AND CLINICAL STUDY SET-UP

The study used MC10 Inc.’s BioStampRC sensors, which are shown
in Fig. 1. The sensors is a light weight (= 7 gms), multi-mode adhe-

Fig. 1: BioStampRC affixable sensor from MC10 Inc.

sive sensor capable of operating in different modes, varied sampling
rates and dynamic range with high power and long duration capabil-
ities. The key specifications of the sensor are shown in Table 1 [12].
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Fig. 2: (a) Graphics showing the body locations for applying sensors
in our study. (b) Participant wearing the sensors at five locations
shown in (a) for in-clinic assessment.

(b

For our study, we utilize the accelerometer mode with a sampling
rate of 31.25 Hz.

Sampling . Recording Time
Mode Rate Dynamic Range (Max)
Accelerometer 31.25, 50,
(Accel.) 100, 200 Hz 2,4,0r8G 8-35 hours
125,
ECG 250 Hz 02V 17-35 hours
EMG 250 Hz 02V 17 hours
50 Hz(accel)
Accel+ECG | 125,250Hz | > ‘B’ ‘2“\5 éggfel) 11-22 hours
(ECG) ’
50 Hz(accel) 2,4, or 8 G (accel)
Accel +EMG 250 Hz(EMG) 02V (EMG) 11 hours
25.50 2,4, 8,16 G (accel)
Gyro.+Accel 100 ’250’HZ Off, 250, 500, 1000, 2-4 hours
’ 2000 /sec (gyro)

Table 1: Key specifications of the BioStampRC sensor from MC10
Inc.

A clinical study was conducted where 16 PD (mean age=68.3
years), 10 HD (mean age=55.9 years) and 15 control (mean age=63.8
years) participants were enrolled and were asked to wear five ac-
celerometer based BioStampRC sensors on chest and limbs as shown
in Fig. 2 for the standardized in-clinic assessments and two days at
home. A participant survey was conducted to get a feedback on their
experience with the sensors. The survey revealed that about 85-90%
of participants were comfortable, with the sensors not interfering in
their daily activities. Participants were pleased with overall experi-
ence and showed willingness to reuse if required.

3. SIGNAL ANALYSIS FOR DETECTING PD AND HD
MOTOR SYMPTOMS

In this section we present results from selected analyses of the data
obtained from the sensors to detect the motor symptoms in PD/HD.
Specifically, we focus on analysis of gait to identify characteristics
that differentiate HD from controls and analysis of at rest tremors in
PD subjects to highlight the effect of medication on PD subjects.

A. Gait analysis for HD: For the analysis of gait, three 10 meter
walk tests were conducted in clinical settings for 10 HD subjects and
15 controls with the sensors on their body. If we observe the gait of
the HD subjects, a lack of co-ordination between the legs can be ob-
served when compared to the controls. Due to lack of co-ordination,
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Fig. 3: (a)Normalized vector auto-correlation of the data from chest
sensor as a function of time lags for HD and control. (b) Normalized
vector cross-correlation of the data from left leg and right leg sensors
as a function of time lags for HD and control with an annotation
indicating a 2-step cycle.

we can also observe variation in the step duration of the HD sub-
jects in comparison with controls. In order to characterize the step
duration and the lack of co-ordination between the legs, we look at
both, single and joint utilization of the sensors. To parameterize the
lack of co-ordination between legs, we use normalized vector cross
correlation of the data obtained from the sensors attached to the left
and right leg. To mitigate the effect of gravity, the cross-correlation
analysis is performed after mean subtraction. For a 10 meter walk
test instantiation, ar (n) and ag(n) forn = 1,2..., N represent the
N X 3 mean subtracted data from sensor in the left leg and right
leg, respectively, with each row representing three dimensional sam-
ple from the tri-axial accelerometer and N representing total number
of samples. The normalized vector cross-correlation R r(m) as a
function of time lag m between ar(n) and ar(n) is then given by,

RLR(m) = an_lm (aL (n)aR(n + m))

1/2 1/2°

lac()I?) " (SX2" lar(n +m))P)
Q)]
Plots of normalized vector cross-correlation for one 10 meter walk
test are shown in the Fig. 3b, for one individual with HD and for one
control. Typically, a peak with high magnitude occurs in the cross-
correlation at the time when the left foot matches the right foot which
happens for control at around 0.5 second and 1.5 second lag, whereas
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Fig. 4: Scatter plot showing the 1st peak and 2nd peak magnitude of
the left-leg to right-leg acceleration vector cross-correlations for all
10 meter walk tests for the individuals with HD and for the control
cohort.

for the HD we do not see clear peaks which is an indication for lack
of co-ordination between the legs. Using the the 1st peak and the
2nd peak magnitude as features we obtain the scatter plot shown in
Fig. 4. The plot shows two distinct clusters corresponding to the HD
and control individuals. While the clusters overlap, statistically, a
good separation can be seen between the HD and controls with mean
magnitude of 1st and 2nd peak being 0.258 and 0.225 for HD and
0.39 and 0.372 for the controls. Apart from the peak magnitudes,
another distinguishing feature is the average step duration. From
Fig. 3b we can observe that 2 step cycle for control takes about 1
second which indicates a step duration of about 0.5 seconds. For
the HD individuals, however, estimating step duration using cross-
correlation is challenging.

To analyze the step duration, we utilize the chest sensor which
captures movement from both legs and compute the normalized vec-
tor auto-correlation of the mean subtracted data. For a 10 meter
walk test instantiation, ac(n) forn = 1,2,..., N represent N X 3
mean subtracted data from sensor in the chest, with each row rep-
resenting three dimensional sample from the tri-axial accelerometer
and N representing total number of samples. The normalized vector
auto-correlation for ac(n) is given by,

S (ac(n)ac(n + m))

Reoco(m) = ~ 1/2 ~ 1
(N lac@)?) ™ (SN lac +m))1)
2
where Rcc(m) represents the normalized auto-correlation of the
chest sensor at the time lags m. Fig. 3a includes plots of normalized
vector auto-correlation for same walk tests for the HD and control
that were previously used for the cross-correlation analysis. Here
we can clearly observe the step cycles and obtain the step duration
as the difference between successive peaks in the auto-correlation.
The figure shows a consistent step duration with mean step duration
of about 0.5 seconds for the control whereas for the HD individual,
we observe that there is variation in the step duration with mean step
duration of 0.63 seconds. This variation can be attributed to lack
of co-ordination and varied velocity and cadence while walking that
HD subjects exhibit. The analyses is summarized in the box plot
in Fig. 5. We can observe higher variability in step duration with
the median value of 0.544 seconds for HD subjects whereas there is
limited variability in controls with median value of 0.512 seconds.
B. Analysis of at rest tremors in PD: The aim here is to char-
acterize the effects of medication on the motor symptoms for the PD

/2

trol based on the normalized vector auto-correlation of chest sensor
accelerometer recordings.

subjects with severe and mild tremors. Motor symptoms in PD can
been seen in the form of at rest tremors which have rhythmic nature
and a typical frequency [13]. For the analysis of at rest tremors, in-
clinic postural tremor and rest tremor tests were conducted over a du-
ration of 50 seconds each for 16 PD subjects with the sensors affixed
to their body. For 11 out of 16 PD subjects, the tests were conducted
in on/off medication phases. Based on the in-clinic UPDRS motor
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Fig. 6: Spectrogram showing energy distribution as a function of fre-
quency for a PD participant with severe tremor: (a) off medication
and (b) on medication. Strong energy peaks can be seen at the typ-
ical tremor frequency and its harmonics. On medication the relative
energy in these peaks is reduced.
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Fig. 7: Spectrogram showing typical tremor frequency and its har-
monics for a participant with mild tremor: (a) off medication and (b)
on medication.

assessment score, PD subjects were divided in mild tremor and se-
vere tremor categories. Since the at rest tremors are more prevalent
in hands, we look at data from the sensors attached to left and right
hand. For an instantiation of the rest/postural tremor test, ag(n) for
n = 1,2,..., N represent the N x 3 data (approximately N=1550
samples) from right/left hand sensor. We perform a moving average
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mean subtraction to counter the effect of gravity on the data to obtain 50 ‘ ‘ ‘

a$%(n) which is also a N x 3 matrix. Apart from moving average . + « off mild

mean subtraction we can also utilize the method of calibrating the R 40l + onmid

accelerometers using the quiescent gravity [14] to negate the effect. & o meanofimic

Instead of analyzing the tri-axial data, we perform principal compo- =l + bt |

nent analysis (PCA) [15] on a3'*(n) and choose the first principal EJ A

component given by a% (n) which is now a vector of length N. The =3

data a%y (n) is divided into segments of 5 second duration (segment A i

sample size=156) using a non-sliding window and we visualize each £

of these segments using the spectrogram [16] analysis. Given the fo- i s o ’

cus on at rest tremors that have a characteristic frequency, parameters ° _ X M .

of the spectrogram are chosen to optimize frequency resolution. If 0 18 20 30 40 8 ;0 60 70 SX‘O % 100

a%;(n) represents the [*"

(STFT) is given by,

segment, the short time Fourier transform
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Asi(k,w) = S ai(mywin — ke ",

n=-—oo
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where w(n) represents the window function of length M and k rep-
resents the amount of overlap. Discretizing the continuous frequency
space, we obtain,

27
Asi(k,p) = Asi(k,w) ,at w = 7p, @
The squared magnitude of the discretized STFT gives the spectro-
gram

S(k,p) = |Asi(k,p)[* . )

The window function w(n) is chosen as a Hamming window and
length is chosen to be 128 samples (for each segment sample size
of 156) to get a high frequency resolution. Fig. 6a and 6b shows
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Fig. 8: Scatter plot of relative power in the fundamental and first har-
monic bands of the characteristic tremor frequency for on/off medi-
cation assessments for PD participants with severe tremors.

the spectrogram of one of the segment from the data of a partici-
pant having severe tremor for off and on medications respectively
whereas Fig. 7a and 7b shows the spectrogram of participant having
mild tremor for off and on medications respectively. In the spectro-
gram we can clearly see that the tremor has a fundamental frequency
around 5Hz and its harmonics. Power in the fundamental frequency
and the harmonics for on medication is lower when compared to off
medication indicating the impact of medication on PD subjects with
severe tremor. It means that although the rate at which the hand
shakes remains the similar in off/on cases, the intensity of the shake
is reduced on medication. Similarly, in case of mild tremor, we can
observe a concentration of power in the typical tremor frequency
and harmonics with reduced strength for the on medication scenario

% Power in [4.5 6.5] Hz (g?)

Fig. 9: Scatter plot of relative power in the fundamental and first har-
monic bands of the characteristic tremor frequency for on/off medi-
cation assessments for PD participants with mild tremors.

though with smaller change than for the severe tremor individual.
We use, percentage power (fraction of total power) in fundamen-
tal frequency band of [4.5 6.5]Hz and percentage power in the first
harmonic band of [9.5 11.5]Hz as two features, obtaining the scat-
ter plots shown in Fig. 8 and Fig. 9, for severe tremor and mild
tremor respectively. The scatter plots shown in Fig. 8 for severe
tremor reveal that on medication, the mean power in the [4.5 6.5]Hz
and [9.5 11.5]Hz bands reduces from 25.61 % and 10.9% to 14.45%
and 10.35%. This significant reduction in power indicates a corre-
sponding reduction in the severity of the tremor. Similarly, in Fig.
9, on medication, the mean power in [4.5 6.5]Hz and [9.5 11.5]Hz
bands reduces from 14.2 % and 7.9% to 10.23% and 7.71%. Even in
mild tremor cases, the severity of the tremors is lower on medication,
though the effect is less-pronounced than the severe tremor cases.

4. CONCLUSION AND DISCUSSION

The data and analysis presented in this paper highlight that signal
analysis of light-weight body-affixed sensors can detect motor symp-
toms associated with PD and HD. While the results presented here
considered only limited analysis and were based on a relatively small
population of study participants, they serve to highlight the utility of
multiple sensors. The identification of particular clinically identi-
fied motor symptoms is simplified by using either targeted analysis
of data from a specific sensor or by investigating the inter-relation
of the data across different sensors. Specifically, in our case, the
analysis of: (a) step duration for HD was most effectively conducted
from the chest sensor data where the variation across steps was min-
imal, (b) limb coordination in HD was facilitated by considering the
cross-correlation between the left and right leg sensors, and (c) at
rest tremors for PD was most effective by using the sensor affixed to
the affected limb.

To allow for validation of the results, the analysis presented in
this paper focused only on the recorded data segments corresponding
to specific in-clinic tests. The methodologies can, however, be ex-
tended to analysis of data over the entire duration of the recordings,
providing useful information on the temporal prevalence of specific
motor symptoms in specific individuals and in characterizing indi-
vidual variations to medication and other interventions. Such anal-
ysis is key to providing personalized and responsive treatment regi-
mens for PD and HD, which is an objective of our ongoing research.
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