
Translation stage design: Procedure
ME 240: Fundamentals of Instrumentation & Measurement • D. H. Kelley and I. Mohammad

Introduction

Engineers often design and build machines that move in controlled ways. One example is a
translation stage, a programmable machine that moves a platform or other object to specified
locations in space, in one or more dimensions. Dot matrix printers and optical scanners use
1D translation stages to move their print heads or optical sensors back and forth. Most
3D printers use a combination of 2D translation stages to move their print heads and 1D
translation stages to raise or lower the printed object as it forms. CNC (computer numerical
control) mills and lathes, which are programmable machines for high-precision subtractive
(as opposed to additive) manufacturing, likewise use translation stages. In this exercise, you
will develop a microcontroller-based algorithm to control a simple 2D translation stage like
the one shown in Fig. 1a and use the apparatus to draw the picture shown in Fig. 1b.

Figure 1: a, A simple 2D translation stage. b, The picture you will draw by controlling the
stage.

To control the stage, you will need to measure its position and send corresponding com-
mands to the motors that move it. You will measure positions with linear variable differential
transformers (LVDTs), each of which has a pin that slides in one dimension and produces a
voltage that relates linearly to the position of the pin. The model you will use is the RDP
Electrosense DCTH2000A, whose specifications can be found here and are linked from the
QR code in Fig. 2. You will move the stage with 270◦ positional servo motors whose position
can be controlled with an input voltage. The model you will use is the DS3235SG, whose
specifications can be found here and are linked from the QR code in Fig. 2. To read from the
LVDTs and write to the servos, you will use an Arduino Uno microcontroller board, whose
specifications can be found here and are linked from the QR code in Fig. 2. A microcontroller
is programmable and has broad capabilities; we will interface with it via Matlab over USB,
making use of its analog inputs to read from LVDTs and its digital ports to read from and
write to servo motors. Do not connect any Arduino pin to voltage exceeding 5 V, or else you
will destroy the Arduino!

https://shop.elkome.com/en/mwdownloads/download/link/id/1328/
https://hajim.rochester.edu/me/sites/kelley/me240/DS3235-270_datasheet.pdf
https://docs.arduino.cc/hardware/uno-rev3


ME 240 Translation stage design: Procedure Page 2 of 5

Figure 2: QR codes linking to relevant documentation.

Learning goals

• Calibrate LVDTs and use them to measure 2D position.

• Control servomotors electronically, using a microcontroller board.

• Develop an algorithm and write Matlab code to move a 2D translation stage sequen-
tially to a series of positions, drawing a dot at each in order to produce a picture.

• Develop an algorithm and write Matlab code to move a 2D translation stage sequen-
tially to a series of positions, drawing a continuous line in order to produce a picture.

Materials

DC power supply, Arduino microcontroller board, PC with Matlab, translation stage, bread-
board wires, Philips screwdriver, calibration block, calipers, paper

Safety

Closed-toed shoes are required.

Determining coordinates for your drawing

For this exercise, your mission is to draw the image in Fig. 1b by placing a dot at each of its
vertices. To do it, you will attach a piece of paper to the translation stage, then use Matlab
and the Arduino to send the stage sequentially to the location of each vertex.

Start by determining the locations of the dots. The translation stage has a 70 mm throw
(distance from minimum location to maximum location) in each direction, and the image in
Fig. 1b is sized to fit, so one way to determine the vertex coordinates is simply to measure
Fig. 1b with a ruler. You may be able to measure more precisely by importing the image
file (also linked from a QR code in Fig. 2) into Matlab and using the Data Cursor tool to
determine the coordinates (in pixels) of each vertex. However you measure, you may need
to scale and/or offset your measurements to make them fit in the 70 mm × 70 mm region.
In your report, include a table listing your vertex coordinates (using real units, e.g. mm or
inches, not pixels) and explain how you got them.

http://hajim.rochester.edu/me/sites/kelley/me240/R.png
http://hajim.rochester.edu/me/sites/kelley/me240/R.png


ME 240 Translation stage design: Procedure Page 3 of 5

Controlling a servo motor via Arduino

All the components should already be connected. Start by verifying the wiring.

• The Arduino microcontroller board should be connected to a PC.

• The x-direction servomotor has an white signal wire that should be connected to Ar-
duino digital pin D3. The white signal wire of the y-direction servomotor should go to
pin D11. (Be sure to use pins capable of pulse width modulation.)

• Each servomotor power wire, which is red, should connect to +6 V via a fuse and
should not connect to the +5 V pin on the Arduino.

• Each servomotor ground wire, which is black, should connect to ground on the Arduino
board.

The control software uses a range from 0 to 1, where 0 corresponds to the minimum
servo rotation angle and 1 corresponds to the maximum servo rotation angle. Verify that
you are able to send the servomotor to a position between 0◦ and 270◦ and are able to read
its current value. Read and write to the x-direction servo motor using Matlab commands
like

a = arduino(); % initialize Arduino

servoX = servo(a,'D3') % initialize servo on Arduino pin D3

readPosition(servoX)

writePosition(servoX,1) % sends the servomotor to its 270◦ position

readPosition(servoX)

writePosition(servoX,0) % sends the servomotor to its 0◦ position

readPosition(servoX)

writePosition(servoX,0.52) % stop

Test the y-direction servo motor using similar commands.

Calibration: Relating LVDT voltage to position

An LVDT produces a voltage that relates linearly to the position of its pin. You will need to
quantify that relationship, for each of the LVDTs in the translation stage, in order to draw
a picture. First, verify the wiring of the LVDTs connected to the Arduino microcontroller
board.

• The x-direction LVDT has a white signal wire that should be connected to the Arduino
analog input port A0. The signal wire of the y-direction LVDT should go to port A5.

• LVDT ground wires are black and should be connected to the Arduino ground.

Note that we are using the LVDT output that produces a 0 to 10 V signal (see the
specifications), but since the range of an Arduino analog input is 0 to 5 V, we have added a
50% voltage divider.

https://shop.elkome.com/en/mwdownloads/download/link/id/1328/


ME 240 Translation stage design: Procedure Page 4 of 5

Define the position where the LVDT pins are maximally extended and the stage is in
contact with the motor mount as the origin. Read the voltage when the x-direction pin is
maximally extended using Matlab commands like

a = arduino(); % initialize Arduino

readVoltage(a,'A0') % read voltage on A0

Then, slide the pin out of the way, insert the calibration block between the pin and the
stage, and release the pin so its tip contacts the block. Record the voltage. Repeat twice
more, rotating the block so that you make one measurement for each of its three different
lateral dimensions (length, width, and height). Use calipers to measure those dimensions.
Plot the four data points, with voltage on the horizontal axis and displacement on the vertical
axis. Fit a line to the points, add the fit line to the plot, and note the slope and intercept.
You now have a calibration: the formula for this line can be used to translate voltages into
positions or vice versa. Repeat these steps for the other LVDT, producing a corresponding
plot, to calibrate it as well. Include these figures in your report.

Single-goal, one-dimensional translation stage control

Now, write a Matlab script to send the translation stage to a single “goal” position, in one
dimension. One possible algorithm: read a voltage from the x-direction LVDT, use that
voltage and your calibration to calculate the x component of the stage’s position, compare
that position to the goal (e.g., the x coordinate of one of the vertices you measured), and
spin the x servomotor a small amount to advance toward the goal. Repeat these steps in a
loop until the goal is reached (within some tolerance, of course). Whether the servomotor
angle is increased or decreased should be decided with each iteration of the loop, depend-
ing on whether the current stage position is greater or less than the goal. When you use
writePosition(servoX, value), be sure that 0 ≤ value ≤ 1, or else an error will result.

When reading from the LVDT using an analog input port on the Arduino, rise time must
be considered. Together, the LVDT and analog input circuitry constitute a measurement
system with a finite rise time. The Arduino, like most analog-to-digital conversion devices,
has multiple input channels but only a single analog-to-digital converter circuit. Channels
are measured one after the other, by switching the circuit from port to port. (Converter
circuits are expensive.) Every time the Arduino switches to a new analog input channel, some
time is required for the voltage to stabilize. That time is relatively long when an LVDT is
connected, because an LVDT is comprised of coils of wire that have large inductance. Your
script will not produce accurate measurements unless, after switching channels, it discards
the first measurement and pauses briefly before making another measurement. You can use
commands like

readVoltage(a,LVDT x pin); % initialize analog channel

pause(0.001); % wait 1 ms

Vx = readVoltage(a,LVDT x pin); % now keep the reading

Try your script with two or three different “goal” positions to make sure it works. Submit
the script with your lab report.



ME 240 Translation stage design: Procedure Page 5 of 5

One-dimensional translation stage control

Now, write a new script, based on the previous one, that does the same thing repeatedly, for
multiple “goal” positions. To do it, wrap another loop around the outside of the previous
algorithm, with each loop iteration pursuing a new goal. Make sure your script works with
a list of at least three goals. Change the goal values, perhaps requiring the servomotor to
reverse directions, and run the script again to be sure your code is correct. Submit the script
with your lab report.

Two-dimensional translation stage control

Now, write a new script, based on the previous one, that moves the stage to a series of
two-dimensional (x, y) “goal” positions. Probably the simplest algorithm involves moving
just one servomotor at a time, for example by first matching the x component of the goal
position, then matching the y component. Test your script with a list of at least three goals.
Once you are confident that the script is correct, provide all the vertex coordinates as goals,
attach a piece of paper to the translation stage, and use your script to draw the vertices of
image in Fig. 1b. Connect the vertices by hand afterward if you like. Submit the script and
drawing with your report.

Continuous drawing

Finally, write a script to draw the same picture continuously, keeping the pen always in
contact with the paper and moving the translation stage directly from vertex to vertex.
Diagonal lines will be the tricky part! Submit the script and drawing with your report.


