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Introduction

Considering the frequency content of a signal or measurement often brings powerful insights.
Though spectral analysis (as it is called) can be used with any signal that varies over time or
space, its use with sound is especially familiar. In this exercise, you will perform two tasks,
both using spectral analysis.

Your first task is to tune a ukulele and demonstrate that you have tuned it correctly
by plotting the spectrum produced by each of its strings. A musical instrument’s pitch
is synonymous with its fundamental frequency, and any instrument could be tuned using
a procedure similar to what you will do. Stringed instruments, including ukuleles, have
one-dimensional vibrational modes that can be visualized directly.

Your second task is to predict the frequency of the noise produced by a damaged ball
bearing and experimentally verify your prediction. Bearings are essential for machinery and
can be damaged by grit, corrosion, and impacts. Even in good conditions, bearings eventually
wear out. Because bearings are often located deep inside a machine, visual inspection is not
always possible, so determining a bearing’s health by the sounds it makes can save a lot of
time.

Learning goals

• Record and play sounds using Matlab.

• Calculate and analyze power spectra.

• Gain familiarity with Fourier transforms and methods for their calculation.

• Tune a ukulele using spectral analysis.

• Predict the frequency of the noise caused by a damaged bearing

• Experimentally verify the frequency of the noise caused by a damaged bearing

Materials

• Tuning a ukulele: ukulele, microphone

• Diagnosing a damaged bearing: motorized bearing assembly, power supply, mi-
crophone, tachometer, extra pulleys, calipers

Safety

Closed-toed shoes are required. Long hair must be pulled back and kept away from moving
machinery.
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Tuning a ukulele

With the microphone connected to the computer, audio can be recorded and played back in
Matlab with commands like these:

Fs = 44100; % sampling rate (samples per second)

Nbits = 16; % bits per sample

duration = 5; % record for 5 s

obj = audiorecorder(Fs,Nbits,1);

recordblocking(obj,duration);

y = getaudiodata(obj); % sound amplitude

sound(y,Fs) % play it back

Remember to use doc if you need more information about how to use a Matlab function.
Audio is typically sampled with frequency 44,100 Hz. In the Deliverables document, explain
why. Then, record the sound of the A string of your ukulele, as labeled in Fig. 1. Make
two plots of the amplitude of the sound as it varies over time, one above the other, using
commands like

figure; subplot(2,1,1); % create upper axes

plot(...); xlabel(...); ylabel(...); title(...);

subplot(2,1,2); % create lower axes

plot(...); xlabel(...); ylabel(...); title(...);

In the upper plot, show the entire duration of your recording. In the lower plot, reduce the
horizontal axis limits to a duration of 0.2 s, so that individual oscillations are visible. Ensure
that the time axes of both plots use seconds (not sample number) as the unit of measurement.
Label axes, add titles, and include your figure, with a caption, in the Deliverables document.
Also, consider saving your figure as a .fig file and saving your data in a .mat file.

Figure 1: The strings of a ukulele are typically tuned to the notes G, C, E, and A, as
shown.
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The spectral power of a digital signal can be calculated using the Fast Fourier Transform
algorithm, which is implemented in Matlab as fft.m. Calculate and plot the power spectrum
of the sound you recorded using commands like these:

Ny = numel(y); % number of samples

Y = abs(fft(y)).^2; % spectral power

Y = Y(1:floor(Ny/2)); % ignore power of negative frequencies

f = Fs/Ny*(0:Ny/2-1); % corresponding frequencies (Hz)

figure; semilogy(f,Y)

The Fourier transform of a real signal is typically complex, with its real and imaginary parts
representing components 90◦ out of phase (recall ejθ = cos θ + j sin θ, where j =

√
−1).

Spectral power is given by the square of its magnitude. The corresponding frequencies range
from zero to half the sampling frequency, as dictated by the Nyquist-Shannon sampling
theorem. Since a signal’s Fourier transform necessarily contains exactly as much information
as the signal itself, and since the Fourier transform has both a real and imaginary part, the
number of frequencies resolved must be half the number of samples recorded.

Identify the fundamental vibrational frequency of the A string — the frequency with
greatest spectral power — and write it in the Deliverables document. Label the plot axes,
add a title to indicate which string was recorded, and include your plot, with a caption,
in the Deliverables document. Then, record the C, E, and G strings, plot their spectra,
include those plots, with captions, in the Deliverables document, and write the fundamental
frequency of each string in the Deliverables document.

In music, the A note above middle C is defined by having 440 Hz as its fundamental
frequency. Adjust the tuning peg of your ukulele until its A string does indeed produce a
tone with fundamental frequency 440 Hz±1%. Once you have tuned the A string, include
a plot of its power spectrum in the Deliverables document, with a caption. Write down the
measured fundamental frequency.

A musical octave spans frequencies ranging over a factor of two, and notes separated by
an octave share the same name, so the next lower A note has frequency 220 Hz. Western
music names 12 notes per octave, for example like this:

A, A#, B, C, C#, D, D#, E, F, F#, G, G#, A.

With so-called even tuning, the ratio of the frequencies of one note to the next is the same
for all pairs, that is, the spacing is even on a logarithmic scale. Use that fact to calculate
the frequencies of the C, E, and G notes which lie between 220 Hz and 440 Hz. Record your
answers in the Deliverables. Then, adjust the tuning pegs of your ukulele until the G, C,
and E strings produce tones with fundamental frequencies matching the ones you calculated
within 1%. Include plots of all three power spectra, with captions, and write down the
measured fundamental frequencies in the Deliverables document. Congratulations, you have
now tuned a ukulele!

Diagnosing a damaged bearing

Figure 2 shows a ball bearing on a shaft driven by a motor. The ball bearing is damaged,
and your goal in this task is to predict and experimentally verify the vibrational signature
of the damage.
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Figure 2: A damaged ball bearing (at center) on a shaft driven by a motor. To the right
sits a tachometer, useful for measuring rotational frequencies.

The shaft rotation frequency fs depends on the motor rotation frequency fm because the
shaft is linked to the motor through a timing belt:

fs = γfm,

where γ is the gear ratio. Do you expect the shaft to spin faster or slower than the motor?
Record your answer in the Deliverables document. Examine and/or measure the pulleys on
the motor and shaft, or the duplicate pulleys, to determine the value of γ, recording it in
the Deliverables document.

Set the power supply’s voltage knob to zero, then connect it to the motor and switch it
on. Raise the voltage to increase the rotation rate, being sure that you never exceed the rated
voltage (written on the motor) so that you do not destroy the motor. Use the tachometer
to measure fm and fs, recording their values. Using those measured values, calculate fs/fm
and compare the value to γ as predicted.

The bearing was damaged by making a hole in its outer race (ring). As each ball rolls,
it makes a click when falling into the hole and another when climbing out. The clicking
frequency fc depends on the shaft rotation frequency fs and can be predicted because a ball
bearing is geometrically equivalent to a planetary gear train:

fc = 2nbfs
Ri

(Ri +Ro)
, (1)
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where Ri and Ro are the inner and outer radii, respectively (see Fig. 3), and nb is the number
of balls in the bearing. The factor of two arises because there are two clicks as each ball
passes the hole.

inner race

Ri

Ro

outer race

Figure 3: A ball bearing.

Measure the radii Ri and Ro. Determine the ball count nb. Then, turn on the motor
and use the tachometer to measure the shaft rotation frequency fs. Use Eq. 1 to predict fc.
Record your results in the Deliverables document.

Use the microphone to record the sound of the spinning apparatus for a few seconds. Plot
your recording, along with an enlargement 0.2 s long, as you did for the previous recordings.
Label axes, add titles, and include your figure, with a caption, in the Deliverables document.
Calculate and plot the power spectrum, which should have peaks at the shaft frequency
and click frequency. Mark those two peaks and determine their frequencies from the data.
Label axes, add titles, and include your figure, with a caption, in the Deliverables document.
Compare the measured value of fc to the predicted value, calculating the percent difference
between them and recording it in the Deliverables document.


