Homework 11

ME 240: Fundamentals of Instrumentation & Measurement D. H. Kelley and I. Mohammad • 24 points

- 1. The data listed below were obtained in order to calibrate a linear load cell with a digital output.
 - (a) (2 points) Determine the coefficients of linear regression.
 - (b) (2 points) Determine the coefficients of linear regression if the line is forced to pass through the origin.

True weight (lb)	Reading (lb)
0	-1.50
5	4.34
10	9.52
15	14.64
20	19.20
25	26.60
30	29.55

Show your code if you write any.

- 2. The following data points show the flow rate versus measured pressure drop of a liquid in a Venturi flow meter. It is expected that $Q = \alpha \sqrt{\Delta P}$, where α is a constant.
 - (a) (2 points) Plot $\log_{10} Q$ versus $\log_{10} \Delta P$ along with a best-fit line.
 - (b) (2 points) Determine the coefficients of linear regression.
 - (c) (2 points) Determine the standard error of estimate.
 - (d) (2 points) Determine the coefficient of determination.

Show your code if you write any.

$\Delta P \text{ (psi)}$	$Q (\mathrm{ft}^3/\mathrm{min})$
0.05	2.00
0.07	2.35
0.09	2.70
0.12	3.12
0.15	3.50
0.17	3.72
0.19	3.85
0.21	4.10
0.23	4.35
0.25	4.45

3. The independent variables x_1 , x_2 , and x_3 have known uncertainties w_{x1} , w_{x2} , and w_{x3} ,

respectively, and are related to the dependent variables R_1 , R_2 , R_3 , and R_4 according to

$$R_{1} = ax_{1} + bx_{2} + cx_{3},$$

$$R_{2} = dx_{1}x_{2}x_{3},$$

$$R_{3} = \frac{ex_{1}x_{2}}{x_{3}},$$

$$R_{4} = fx_{1}^{g}x_{2}^{h}x_{3}^{i},$$

where $a \dots i$ are known constants.

- (a) (2 points) Determine w_{R1} , the uncertainty of R_1 .
- (b) (2 points) Determine w_{R2} , the uncertainty of R_2 .
- (c) (2 points) Determine w_{R3} , the uncertainty of R_3 .
- (d) (2 points) Determine w_{R4} , the uncertainty of R_4 .
- 4. Young's modulus of elasticity, E, relates the strain, $\delta L/L$, in a solid to the applied stress, F/A, through the relationship $F/A = E(\delta L/L)$. To determine E, a tensile tester is used, and F, L, δL , and A are measured. The uncertainties in each of these quantities are 0.5%, 1%, 5%, and 1.5%, respectively, all with 95% confidence.
 - (a) (2 points) Calculate the uncertainty in E in percentage form.
 - (b) (2 points) Which of these measurements has the greatest effect on the uncertainty of E?