ME 240: Fundamentals of Instrumentation \& Measurement

ROMOMESTER

Eratosthenes of Cyrene

Alternate interior angles are equal

39,060 to $40,320 \mathrm{~km}$
Centre of the true value: $40,075 \mathrm{~km}$ error: -2.4 to 0.8%

Angle from lengths of the pole and its shadow: $1 / 50$ of a circle
($\sim 7^{\circ}$)
Pole's shadow

Parallel sun rays

Mívino Douglas H. Kelley

Copying homework and your grade

Copying homework and failure

Thermocouples

- Where two metals touch, a voltage is developed that is proportional to temperature (Peltier effect).
- Different proportionality for different metals.
- Lead wires of same (or compatible) metal

Radiation thermometers / thermal cameras

- All objects radiate always!

$$
\begin{aligned}
& \text { emissivity temperature } \\
& \underset{\substack{\text { radiation } \\
\text { power } \\
\text { Stefan-Boltzmann constant }} \underset{\epsilon}{\text { emity }} \underset{\mid}{\text { temperature }} T^{4}=\epsilon \int_{0}^{\infty} \frac{C_{1} \lambda^{-5}}{e^{\frac{C_{2}}{\lambda T}}-1} d \lambda C_{1}=3.743 \times 10^{8} \mathrm{~W}}{\text { wavelength }} \\
& \text { Stefan-Boltzmann constant } \\
& \sigma=5.669 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\
& C_{2}=1.4387 \times 10^{4} \mu \mathrm{~m} \cdot K
\end{aligned}
$$

- $\epsilon=1$ for ideal black body, $\epsilon=0.018$ for shiny metals
- Common to measure E at two or more wavelengths, estimate T from ratio. temperature (C)

Ex. 3.1: A force-measuring transducer has an open-circuit output voltage of 95 mV and an output impedance of 500Ω. To amplify the signal voltage, it is connected to an amplifier with a gain of 10 . Estimate the input loading error if the amplifier has an input impedance of (a) $4 \mathrm{k} \Omega$, or (b) $1 \mathrm{M} \Omega$.

UA741CP
Compare Product

Single-stage low-pass Butterworth filter

Low-pass Butterworth filters

Digital multimeter

\& TRIPLETT 4404

- High input impedance for voltage measurements
- Low input impedance for current measurements
- DC or AC
- Can measure resistance
- Some can measure capacitance, read thermocouples, ...
- Accuracy $<1 \%$ of reading
- Not working? Check leads, battery, and fuse!

Oscilloscope

- For measuring time-varying voltages, typically periodic
- High input impedance
- Accuracy $<1 \%$ of reading
- Multiple channels
- Up to 100 MHz
- Usually USB output
$\mathbf{t}=\mathbf{5 0 . 0 0}$

\cdot

FINATIONAL INSTRUMENTS

1

Computerized data acquisition

- Often connect via USB; sometimes internal
- Wires from sensors connect to screw terminals
- Range often -5 V to 5 V or 0 V to 10 V
- Special ports for thermocouples
- Analog inputs, digital input/output, occasionally analog outputs
- Varying channel count (1 to ~ 30), bit depth (8 ,
12,16), sampling rates $(\sim 100$ to $\sim 1000 \mathrm{kS} / \mathrm{s}$)
- Varying channel count (1 to ~ 30), bit depth (8,
12,16), sampling rates (100 to $\sim 1000 \mathrm{kS} / \mathrm{s}$)
- Software interface (LabView, Matlab, ...)
- National Instruments, Measurement Computing, Keyence, Arduino, ...

Ex. 4.5: A 4-bit analog-to-digital converter has an input range of 0 to 10 V . Compute the digital output for an analog input of 6.115 V .

There are 10 kinds of people in the world: those who understand binary numbers, and those who don't.

Aliasing when sampling rate fails the Nyquist criterion

10 Hz signal $-\mathrm{f}_{\mathrm{s}}=100 \mathrm{~Hz} \longrightarrow-\mathrm{f}_{\mathrm{s}}=27 \mathrm{~Hz}-\mathrm{f}_{\mathrm{s}}=12 \mathrm{~Hz}$

sample at fs $=100 \mathrm{~Hz}$

18 kHz tone $\quad 440 \mathrm{~Hz}$ tone

" A " note on ukelele

"A" note on ukelele

" A " note on piano

" A " note on piano

Ex. 5.2: Determine the amplitudes of the first, second, and third harmonic components of the signal plotted below.

Claude Debussy's "Rêverie"

Figure 1. Schematic of the experimental set-up (a) and the UDV Sensor positions for (b) the axial velocity and (c) the chord velocity measurements. (d) Photograph of the experimental set-up without sidewall insulation in place. Image credit: Y. Xu (UCLA).

FIGURE 7. Amplitude of the Fourier transforms of temperature and velocity signals versus normalized frequency $\tilde{f}=f / f_{\Omega}$. The Ekman number is $E k=5 \times 10^{-6}$ and the supercriticality $\widetilde{R a}$ is indicated by the line colour. All spectra are evaluated on the midplane, $z / H=1 / 2$. (a) Temperature spectra measured with a thermistor situated within the fluid bulk at $r / R=2 / 3$. (b) Temperature spectra measured on the cylindrical tank's outer sidewall at $r / R=1.05$. (c) Vertical velocity spectra measured at $r / R=2 / 3$. (d) Chord velocity spectra evaluated in the vicinity the the sidewall. Vertical dashed lines indicate the onset frequency for wall modes $\tilde{f}_{W}=0.024$ and bulk oscillations $\tilde{f}_{O}^{c y l}=0.274$.

A philosophy of captions

- Start with a brief and literal statement of what the figure shows (e.g., "Distributions of normalized resistance for different vascular arrangements.").
- Give the reader all information necessary to understand what you're plotting and how: colors, plot symbols, math symbols, acronyms, etc. But information that is self-evident in the plots, e.g. because it's on legends or labels, need not be repeated.
- End the caption with a brief statement of the take-home message (e.g., "Though all distributions overlap with the observed normalized resistance, the hexagonal pseudorandom perturbed arrangement gives the closest match").
- Don't write "A figure showing..." or "Plots of ..." because that's obvious.
- In the body text, avoid writing about colors or symbols; just write about the quantities.
- Keep details about the methods that produced the plots and the analysis of the results in the body text, not the caption...
- ... unless you're writing with a tight word limit on body text (e.g. Nature or Science) and must therefore pack words into captions.

HW2 \#1: The noninverting amplifier shown below is to be constructed with a $\mu \mathrm{A} 741 \mathrm{C}$ op-amp. It is to have a gain of 100 . Sketch the Bode plots for this amplifier using specific numerical values.

Abstract: Oscillatory thermal-inertial flows in liquid metal rotating convection

We present the first detailed thermal and velocity field characterization of convection in a rotating cylindrical tank of liquid gallium, which has thermophysical properties similar to those of planetary core fluids. Our laboratory experiments, and a closely associated direct numerical simulation, are all carried out in the regime prior to the onset of steady convective modes. This allows us to study the oscillatory convective modes, sidewall modes and broadband turbulent flow that develop in liquid metals before the advent of steady columnar modes. Our thermo-velocimetric measurements show that strongly inertial, thermal wind flows develop, with velocities reaching those of non-rotating cases. Oscillatory bulk convection and wall modes coexist across a wide range of our experiments, along with strong zonal flows that peak in the Stewartson layer, but that extend deep into the fluid bulk in the higher supercriticality cases. The flows contain significant time-mean helicity that is anti-symmetric across the midplane, demonstrating that oscillatory liquid metal convection contains the kinematic components to sustain system-scale dynamo generation.

Rochester's weather on 3 October

Rochester's weather on 3 October

Ex. 6.1: The life x of a given type of ball bearing can be characterized by a probability density function
$f(x)= \begin{cases}0, & x<10 \mathrm{~h} \\ \frac{200}{x^{3}}, & x \geq 10 \mathrm{~h}\end{cases}$
If we pick a random bearing from this batch, what is the probability that its life will exceed 20 h ? Be exactly 20 h ?

Ex. 6.1: The life x of a given type of ball bearing can be characterized by a probability density function $f(x)= \begin{cases}0, & x<10 \mathrm{~h} \\ \frac{200}{x^{3}}, & x \geq 10 \mathrm{~h}\end{cases}$
Calculate the expected life of a bearing.

Ex. 6.4: For a given batch of light bulbs, 10% are defective. You buy 4 . What are the probabilities that 4,1 , or 0 of them are defective?

Ex. 6.8: On average, welded pipes have 0.5 defects per linear meter. What is the probability of finding a single defect in a $0.5-\mathrm{m}$ section? What is the probability of finding more than one defect in a 0.5m section?

Normal (Gaussian) distribution

Rochester's weather on 3 October

Normal distribution (Wheeler \& Ganji Table 6.3)

TABLE 6.3 Area Under the Normal Distribution From $z=0$ to z

Second decimal point is in top row.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621

Normal distribution (Wheeler \& Ganji Table 6.3)

1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990

Writing an abstract

An abstract is a one-paragraph summary of your report.

- Basic introduction to the broad topic, readable by any colleague (1-2 sentences)
- Detailed motivation for solving the specific problem at hand, readable by engineers (2-3 sentences)
- Problem statement (1 sentence)
- Statement of your findings (e.g., "Here we show...") (1 sentence)
- Implications of the result for the specific problem at hand (1-2 sentences)
- Broader implications for possible future problems, readable by any colleague (1-2 sentences)

Ex. 6.9: A random variable has normal distribution with mean 10.0 and standard deviation 1.0. Find the probability that a single measurement falls between 8 and 9.55.

Strain gages

- Resistance of a wire

- Depends linearly on L - and therefore strain ϵ (and stress σ)
- Resistance of N wires side-by-side scales as $N \epsilon$ - stronger signal

- Glued to beam / strut / surface whose strain is to be measured (not easy)
- $R=120 \Omega$ resistance varying $\delta R \approx \pm 0.1 \Omega$ with strain; use Wheatstone bridge!
- Key parameter: gage factor $G F$:

$$
\frac{\delta R}{R}=G F \epsilon
$$

Ex. 6.14: From a batch of resistors, you measure 36 resistances, finding the average to be 25Ω and the standard deviation to be 0.5Ω. Determine the 90% confidence interval of the mean resistance of the batch.

Hallgrimskirkje, Reykjavík, Iceland

Student's t distribution

Student's distribution (Wheeler \& Ganji Table 6.6)

Student's distribution (Wheeler \& Ganji Table 6.6)

16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
∞	1.283	1.645	1.960	2.326	2.576

Ex. 6.15 (updated): A manufacturer of 3D printers would like to estimate the mean failure time of a competitor's product with 95% confidence. Six systems are tested, and their failure times (in hours) are $1250,1320,1542,1464,1275$, and 1383. Estimate the population mean and 95\% confidence interval of the mean.

χ^{2} distribution

degrees of freedom

Area (probability) Area of right hand tail $\quad 1-\alpha / 2$ and $\alpha / 2$

Ex. 6.17: To estimate the uniformity of the diameter of ball bearings in a production batch, a sample of 20 is chosen and carefully measured. The sample mean is 0.32500 inches, and the sample standard deviation is 0.00010 inches. Obtain a 95% confidence interval for the standard deviation of the production batch.

Thompson's τ (Wheeler \& Ganji Table 6.8)

TABLE 6.8 Values of Thompson's τ

Sample size		Sample size	
n	$\boldsymbol{\tau}$	n	τ
3	1.150	22	1.893
4	1.393	23	1.896
5	1.572	24	1.899
6	1.656	25	1.902
7	1.711	26	1.904
8	1.749	27	1.906
9	1.777	28	1.908
10	1.798	29	1.910
11	1.815	30	1.911
12	1.829	31	1.913
13	1.840	32	1.914
14	1.849	33	1.916
15	1.858	34	1.917
16	1.865	35	1.919
17	1.871	36	1.920
18	1.876	37	1.921
19	1.881	38	1.922
20	1.885	39	1.923
21	1.889	40	1.924

Ex. 6.18: Nine voltage measurements in a circuit have produced the following values: 12.02, 12.05, $11.96,11.99,12.10,12.03,12.00,11.95$, and 12.16 V . Determine whether any of the values can be rejected.

Ex. 6.20: A linear variable differential transformer (LVDT) is a transducer for measuring displacements, which outputs a voltage. Five displacements L_{i} and corresponding voltages V_{i} are listed below. Calculate the best linear fit and coefficient of determination.

$L_{i}(\mathrm{~cm}): 0.00,0.50,1.00,1.50,2.00,2.50$ $V_{i}(\mathrm{~V}): 0.05,0.52,1.03,1.50,2.00,2.56$

Linear variable differential transformers (LVDTs)

- Produces voltage linearly related to displacement
- Drive AC current through Coil A
- Resulting AC magnetic field induces AC currents in B and C
- Field and voltage drop concentrate near ferromagnetic core
- Voltages add; additional circuitry gives DC
- Range up to $\sim \mathrm{cm}$, resolution $<\mu \mathrm{m}$, linearity $<$ 0.5\%
- Core mass can cause mechanical loading

- High-frequency signal requires high-frequency excitation

Ex. 7.1: A circuit's power consumption is given by $P=I V$, where the measured current and voltage are $I=10 \pm 0.2 \mathrm{~A}$ and $V=100 \pm 2 \mathrm{~V}$, both at 95% confidence. Determine the 95% confidence interval for P.

Ex. 7.2: A manometer is a device in which pressure can be determined by measuring the height of a column of fluid. You are choosing the fluid for a manometer that has 0.1 mm uncertainty in reading the scale, and you need an accuracy of 0.1% of the maximum reading, 10 kPa . If the fluid has nominal density $2500 \mathrm{~kg} / \mathrm{m}^{3}$, what uncertainty in the density is acceptable?

Ex. 7.7: The manufacturer gives this data about a pressure transducer: range $\pm 3000 \mathrm{kPa}$, sensitivity $\pm 0.25 \%$ of full scale, linearity $\pm 0.15 \%$ of full scale, hysteresis $\pm 0.10 \%$ of full scale (all at 95% confidence level). To test the transducer, many measurements were made in a tank held at 1500 kPa ; the resulting standard deviation was 10.0 kPa . Many tests of the data transmission system resulted in a 5.0 kPa standard deviation. The A/D converter produces a 3.0 kPa random uncertainty. Calculate the random, systematic, and total uncertainty of the pressure measurement.

Ex. 7.10: The thermal efficiency of a natural gas internal combustion engine is $\eta=P m_{f}^{-1} H^{-1}$, where P is the power, m_{f} is the gas mass flow rate, H is heating value. To establish the mean efficiency, five engines were tested, yielding $0.30,0.305,0.308,0.306$, and 0.302 . The average values of P, m_{f}, and H are $50 \mathrm{~kW}, 0.2 \mathrm{~kg} /$ minute, and $49,180 \mathrm{~kJ} / \mathrm{kg}$, respectively. Their systematic uncertainties, with 95% confidence, are $0.2 \mathrm{~kW}, 0.003$ $\mathrm{kg} /$ minute, and $1500 \mathrm{~kJ} / \mathrm{kg}$, respectively. Calculate the mean value and uncertainty of the efficiency.

Procedure for uncertainty analysis

1. Define the measurement process: independent parameters, functional relationship
2. List all elemental error sources, considering calibration, data acquisition, data reduction, methods, etc.
3. Estimate elemental errors, including systematic uncertainties and standard deviations. Be consistent with confidence level.
4. Calculate systematic and random uncertainty for each measured variable.
5. Calculate systematic and random uncertainty for each result.
6. Calculate total uncertainty for each result.
