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Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain
waste clearance and nutrient delivery, as well as edema in pathological conditions
such as stroke. However, existing in vivo techniques are limited to sparse velocity
measurements in pial perivascular spaces (PVSs) or low-resolution measurements from
brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation
in PVSs are essentially impossible to measure in vivo. Here, we show that artificial
intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-
informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-
dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes
from training with 70% of PTV measurements and demonstrating close agreement
with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the
uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary
locations inherent to in vivo imaging is less than 30%, and the uncertainty from the
neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find
mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s,
axial pressure gradient (−2.75 ± 2.01) × 10−4 Pa/µm (−2.07 ± 1.51 mmHg/m),
and wall shear stress (3.00 ± 1.45) × 10−3 Pa (all mean ± SE). Pressure gradients,
flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows
in remarkable detail, which will improve fluid dynamic models and potentially clarify
how CSF flow changes with aging, Alzheimer’s disease, and small vessel disease.

deep learning | perivascular space | particle tracking velocimetry | cerebrospinal fluid flow

Waste removal and nutrient delivery in the brain rely on flow of cerebrospinal and
interstitial fluid (CSF and ISF) and play critical roles in brain health (1–7). Failures of
this transport system, which have been linked to aging, stroke, and neurodegenerative
diseases in mice (8–13) and humans (14–16), might be prevented and treated more
effectively with better understanding of the fundamental mechanisms that govern CSF
and solute transport (7). Failures of brain waste removal can allow formation of harmful
plaques whose aggregation might be explained by quantifying transport rates and shear
stresses. Analytic and computational models can enhance understanding but require
accurate in vivo measurements of pressure and flow rate as inputs. For example, basic
knowledge of pressure and flow rate has been used to validate simplified brain-wide
models (17, 18). Similarly, local models hypothesizing the fluid dynamical mechanisms
driving flow might also be validated or rejected if detailed, quantitative knowledge of
pressure gradients were available.

In vivo measurements are possible and have provided valuable data, but have limits.
CSF and ISF motion have been inferred brain-wide using optimal mass transport (19–21),
but MRI, upon which the approach has been built, is limited by low spatial and temporal
resolution. Fluid velocities in perivascular spaces (PVSs) surrounding arteries, which carry
CSF into the deep brain regions, according to the glymphatic model (22, 23), have been
measured with high resolution using particle tracking velocimetry (PTV) (12, 24–26),
but the measurements are sparse and restricted to a single plane. Crucially, no existing in
vivo methods have sufficient resolution to calculate accurate shear stresses, nor can they
measure shear stresses directly, nor can they quantify pressure variations in PVSs.

To address these challenges, we introduce artificial intelligence velocimetry (AIV) to
infer CSF flow fields in vivo. Recently, artificial intelligence has been applied extensively
in fluid dynamics (27, 28), bringing insight to topics such as modeling and identification
in computational fluid dynamics (29–32) and image processing in experiments (33, 34).

Significance

Diseases such as Alzheimer’s and
small vessel disease are linked to
alterations of flow in the
perivascular spaces that surround
cerebral blood vessels and
transport water-like fluids around
brain tissue. Understanding the
function, failure, and potential
rehabilitation of the system
depends on high-fidelity, in vivo
quantification of flow rates,
pressure, and shear stress, which
have previously been unavailable.
We show that artificial intelligence
velocimetry (AIV), which
integrates sparse
two-dimensional (2D) in vivo
velocity measurements with
physics-informed neural
networks, can accurately infer
high-resolution pressure and
shear stresses. AIV can also
infer high-resolution
three-dimensional (3D) velocities,
thereby quantifying volume flow
rates and resistances with high
accuracy. Its unique capabilities
make AIV a key tool for
understanding brain fluid flow,
toward improved clinical
outcomes.
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One artificial intelligence method, physics-informed neural
networks (PINNs) (31, 35), can integrate sparse data with known
equations of physics (36). Derived from PINNs, AIV (37) is
designed to determine flow fields — including velocity, pressure,
and shear stress — from sparse experimental measurements.
AIV combines those measurements with known equations of
motion to make inferences that match, as nearly as possible,
both experiments and theory. Unlike simulations, AIV does not
require that boundary conditions be fully known or that problems
be well posed. It has been applied in vitro to infer velocity and
stress fields of blood flow in a microchip (37). However, AIV has
not yet been applied in vivo.

Here, we use AIV to infer three-dimensional (3D) flow fields
in pial PVSs of mice with high temporal and spatial resolution.
Our inferences are drawn from two-dimensional (2D) velocity
measurements (u and v-velocity components only) from a single
plane made with two-photon microscopy and particle tracking
velocimetry (PTV). We train with 70% of the measurements and
validate our results with the remaining unseen measurements,
and we find good agreement. From the resulting 3D flow fields
(u, v, and w velocity components in 3D space), we calculate
pressure gradients, shear strain rates, shear stresses, volume flow
rates, and hydraulic resistances, quantities which have never
before been quantified with high fidelity from in vivo CSF flow
measurements. Access to these quantities will improve efforts to
model PVS flows and permit exploration of how these quantities
change under various conditions, including aging and disease.

Results

Quantifying 2D Velocity with Two-Photon Imaging of Fluores-
centMicrospheres. In order to visualize the PVS and quantify the
flow of cerebrospinal fluid in a mouse brain, we injected fluores-
cent tracers (66.5 kDa Alexa Fluor 647–conjugated bovine serum
albumin) and 1-micron microspheres into the cisterna magna of
live, adult, wild-type mice anesthetized with ketamine/xylazine
(100/10 mg/kg, intraperitoneally) (Fig. 1A), imaging with two-
photon microscopy. Using PTV (24), we measured particle
velocities, which track local fluid motion (Fig. 1B). Though two-
photon microscopes can produce 3D images, recording at the
speeds necessary for PTV is possible only in 2D, so we imaged on
a plane of approximately uniform cortical depth, which we refer
to as Plane A (Fig. 1C ). With fluorescent tracers of different colors
in blood and cerebrospinal fluid, we used 3D two-photon images
to reconstruct the PVS boundaries based on the tracer intensity,
as shown in Fig. 1 C and D. For subsequent AIV analysis, we
focus on a typical subdomain, as shown in Fig. 1E with particle
locations indicated. In this paper, we present results from N = 4
wild-type mice. More details can be found in Methods. In pial
PVSs, fluid pulses in tight synchrony with the cardiac cycle (24),
so we reduced the effective sparsity of particles by merging
PTV measurements from many cardiac cycles, according to the
instantaneous phase of each cycle, as illustrated in SI Appendix,
Fig. S1 and further described in Methods.

3DFlowFields. In AIV, a fully connected neural network takes the
time and space coordinates (t, x, y, z) as inputs and infers the three
velocity components (u, v, w) and pressure (p) as illustrated in
Fig. 2A. The parameters in the neural network (2) are trained by
minimizing the mismatch between the network predictions and
PTV data (Ldata), while simultaneously minimizing the residuals
of the Navier–Stokes equations (Lres) and the no-slip boundary
conditions on the PVS surfaces (Lbcs). More details about the
AIV algorithm can be found in Methods. For an initial validation,
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Fig. 1. Overview of two-photon imaging experiments and resulting data. (A)
Two-photon microscopy with injected fluorescent one-micron microspheres
and tracers enables visualization and quantification of the flow and perivas-
cular space shape in a mouse brain. (B) Microsphere motion is determined
using particle tracking velocimetry. Particle tracks in one plane at a single
instant (Top-Right) and all tracks from a 1-min acquisition (Bottom-Right) are
superimposed on a two-photon image. (C) A 3D image is reconstructed from a
volume scan, with the perivascular space (PVS) boundaries outlined in white.
The PVS and the vessel are visualized with different tracers, with the vessel
shown here in red and the PVS in green. The blue dashed line indicates the
location of the 2D imaging plane, labeled Plane A. The gray box indicates the
location of the subdomain in which artificial intelligence velocimetry (AIV) is
performed. (D) The PVS boundary is obtained by segmenting the image (C)
based on fluorescence intensity. (E) A PVS subdomain is extracted for AIV
analysis. Particle tracking locations are superimposed in blue.

we performed a direct numerical simulation of CSF flow in a
similar PVS domain, using a subset of simulation results (u and
v-velocity components from a single plane) to train an AIV
model, then compared its inferences to the remaining simulation
results. The relative errors of the inferred velocity and pressure
fields were approximately 5% (SI Appendix, Figs. S2 and S3).

For further validation, we trained the AIV model using 70% of
the PTV measurements from each mouse and validated the AIV-
inferred velocities on the remaining PTV measurements. The
results for mouse 1 are shown in Fig. 2 B and C : Velocity vectors
and distributions inferred by AIV are consistent with those of
PTV, indicating that the AIV is well trained and accurate. The
Rms error and the root-median-square error between PTV and
AIV for mouse 1 are 13.08 μm/s and 7.16 μm/s, respectively,
which correspond to percent errors of 25.63% and 25.24%,
respectively. For reference, we estimate the velocity measurement
error in PTV to be 1.9 µm/s (SI Appendix). Fig. 2D shows a
comparison between phase-merged PTV measurements, which
are made only at the disordered locations of particles, and AIV
inferences, which we show on a regular grid. From four snapshots
shown in the figure, it is clear that AIV accurately captures
the two flow reversals occurring during a cardiac cycle. The
spatial root-mean-square (RMS) velocity and spatially averaged
downstream velocity for PTV and AIV generally agree (Fig. 2E).
Comparing the time-averaged, normalized velocity for AIV and
PTV in Plane A, shown in SI Appendix, Fig. S11D demonstrates
that AIV accurately captures spatial variation. Because in vivo
PTV measurements, even after phase merging, are more sparse
than AIV inferences, we calculate mean speeds in larger regions
when considering PTV and when comparing it to AIV. The
velocity field in Plane A, where the PTV observations used for
training were made (SI Appendix, Fig. S11D), is smooth along
the length of the PVS subdomain and similar to that in Plane
B, a different plane from the location of the PTV observations
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A

B C

ED Fig. 2. AIV infers 3D high-resolution velocity from
boundaries and 2D particle tracks. (A) A schematic diagram
of artificial intelligence velocimetry (AIV), which can infer 3D
flow fields from 2D particle tracks. (B and C) Comparison
between particle tracking velocimetry (PTV) measurements
and AIV-inferred velocities of the validation data, where
(B) shows phase-merged vector fields and (C) shows his-
tograms of two velocity components, including data from
the entire duration analyzed. (D) Comparison between
time-series phase-merged PTV data and AIV-inferred
velocity fields in Plane A. Four snapshots are shown; T is
the cardiac cycle duration, typically about 30 ms. (E) Rms
velocity (Top) and downstream velocity (Bottom) from PTV
(blue) and AIV (red). ECG signals indicate cardiac activity.

used for training (SI Appendix, Fig. S11C), suggesting that AIV
is not overfitting the data. By combining the Navier–Stokes
equations, 3D boundary conditions, and 2D PTV measurements,
AIV infers the 3D velocity fields. SI Appendix, Fig. S11B shows
the time-averaged 3D speed (calculated from all three velocity
components) in three planes.

Volume Flow Rate. PTV from two-photon images provides
velocities in a single plane, but volume flow rate is the more
directly relevant quantity for mass transport. If the imaging
plane used for PTV is not close to the center of the PVS, or the
measurement locations are more dense in the center of the PVS
where the flow is faster, the measured velocities will not reflect
the average velocity in the entire PVS, whereas measuring the
volume flow rate directly avoids those challenges. Volume flow
rates have been estimated based on average velocity measurements
from a single plane and estimates of the 3D geometry previously
(17), but never directly measured. AIV infers the time-varying
volume flow rate in perivascular spaces with fewer assumptions
regarding the geometry. Fig. 3A shows the volume flow rate
through cross-sections we label as the inlet and outlet, over the
course of a cardiac cycle. The ratio of oscillatory-to-net flow for
mouse 1 is 3.7. Among N = 4 mice, the time-averaged volume
flow rate at the inlet ranged from 0.5 to 5 ×104 µm3/s, and the
difference between the time-averaged flow rates at inlet and outlet
ranged from −12 to 33%, as reported in Table 1. A negative
value indicates that more fluid passes the outlet than the inlet.
In principle, conservation of mass would lead us to expect the
inlet and outlet flow rates to match exactly. In practice, a small
mismatch is expected, because AIV enforces mass conservation
locally but not globally. We find a∼2% mismatch when applying
AIV to simulation results, as shown in SI Appendix, Fig. S2. There
are no penetrating vessels branching from the pial vessels in any of
the subdomains in which AIV is performed. Mouse 2 and mouse
4 had the largest difference between the inlet and outlet flow

rates, and in those mice we see evidence of flow outside of the
region defined as the PVS at the exact location along the length
of the PVS where the volume flow rate changes (SI Appendix,
Fig. S5). We describe possible implications of this finding more
in Discussion.

Plane A

BA

C

20
 

Fig. 3. AIV reveals volume flow rate and flow structures. (A) Volume flow
rates through the inlet and outlet over the course of one cardiac cycle.
Inferences from six different boundary shapes (all in mouse 1) are shown
as faint curves; their mean and deviation are indicated with bold curves and
shaded regions, respectively. (B) Inferred streamlines of the time-averaged
velocity field. A 2D projection on Plane A is shown with the streamlines
superimposed on the pressure field. A potential small vortex is observed from
the streamlines, as indicated with an arrow. (C) Inferred streamlines (yellow)
agree well with PTV measurements (cyan). Two snapshots immediately after
changes in flow direction are shown, and enlargements show the regions
marked with pink boxes.
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AIV-Inferred Streamlines Capture Flow Structures. Streamlines
are useful for visualizing flow structures that may arise from
irregularly shaped boundaries, such as large amyloid deposits.
Streamlines can be calculated with great accuracy from the
high-resolution flow fields inferred by AIV. Fig. 3B shows
streamlines of the mean velocity in mouse 1. The flow is mostly
unidirectional, but a small vortex can be observed near one
boundary. Plotting streamlines together with PTV measurements
(Fig. 3C ) shows good agreement: The particles in the Bottom-
Left region move differently from those in the main flow region.
However, because flow in PVSs is laminar (24), we would
not expect turbulent vortices. One possible reason for vortex
formation is the interaction of the downstream flow with the
oscillatory cross-stream flow induced by pulsing artery walls. As
shown in Fig. 3C , the streamlines close to the left wall (the
pulsing vessel) are nearly normal to the wall, not parallel to it, like
the streamlines of the mean flow (Fig. 3B). The two snapshots in
Fig. 3C were taken when the flow changes direction, so the cross-
stream motion may result from that reversal. However, because
the flow is laminar, we would expect short-lived flow structures
resulting from the downstream pulsatility to average out in the
time-averaged flow. Another possible explanation for the vortex
might be the upstream presence of aggregated microspheres or
the presence of native structures or cells, such as epipial cells
(38) or perivascular macrophages (39). Careful examination of
the original images did not reveal aggregated microspheres or
biological structures, but they may be located above or below
the imaging plane, and the biological structures may be invisible
because they do not interact with tracers or microspheres. If the
PTV measurements are not weighted heavily enough in the loss
function, or the particles on the left side of the image are excluded
during training, the vortex disappears from AIV inferences (SI
Appendix, Fig. S7), confirming that AIV is correctly incorporating
PTV measurements. Whatever the cause of vortices, they are
likely to promote transport in the PVS.

Pressure. In vivo imaging reveals anatomical structures and fluid
motion. Methods such as PTV and optimal mass transport
quantify that motion as it varies over space and time (19–21).
The forces and stresses driving that motion, however, have been
essentially impossible to measure in PVSs. AIV allows us to obtain
in vivo pressure fields in PVSs. The time-averaged pressure in
mouse 1, shown in Fig. 4A, decreases smoothly from inlet to
outlet, as expected for a flow subjected only to viscous and
pressure forces. Similarly, instantaneous pressure fields decrease
smoothly along the direction of flow (Fig. 4B).

Fig. 4C shows the spatially averaged pressure as it varies over
the course of the cardiac cycle. The ratio of oscillatory-to-net
pressure is 3.3 for mouse 1. Fig. 4D shows the temporally
averaged pressure and axial pressure gradient as they vary along
the length of the PVS. The pressure varies approximately linearly.
The pressure gradient ∂P/∂n is larger where the PVS narrows,
as would be expected since hydraulic resistance R scales with
the inverse square of the cross-sectional area (R ∝ A−2) for
purely axial flow, and off-axial flow components induced by the
changing cross-sectional shape and area increase R further. The
average pressure gradients in the axial direction n ranges from
0.7 to 5×10−4 Pa/µm for the N = 4 different mice, as shown
in Table 1.

Shear Stress. Wall shear stress is important in cardiovascular
flows (40–46), and has been hypothesized to be important
in lymph vessels (47, 48). Wall shear stress is a mechanical
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Fig. 4. AIV infers 3D high-resolution pressure. (A) Time-averaged pressure
(shown on two planes) in the PVS subdomain inferred by AIV. (B) Four
snapshots of the pressure in Plane A during a cardiac cycle. T is the
cardiac cycle duration. (C) Spatially averaged pressure at planes near the
inlet and outlet of the subdomain, as depicted in the inset, during one
cardiac cycle, along with the pressure difference. Inferences from six different
boundary shapes (all in mouse 1) are shown as faint curves; their mean and
deviation are indicated with bold curves and shaded regions, respectively. (D)
Temporally averaged pressure (black) and pressure gradient (green) along
the length of the PVS subdomain. Dots locate the inlet and outlet. Dashed
lines show a hypothetical uniform pressure gradient, for reference.

signal sensed by the tissue at PVS boundaries that may cause
cellular responses affecting flow and transport, as it does in blood
flow (40–46). It is unclear what role shear may play in PVS flows,
but AIV allows us to obtain in vivo shear stress fields in PVSs. To
validate that AIV can infer shear stress with reasonable accuracy,
we compared the shear stress calculated in the direct numerical
simulation of CSF flow in a PVS domain with that inferred by
AIV using a subset of the simulation results (SI Appendix, Figs. S2
and S3). The AIV-inferred shear stress agrees reasonably well with
shear stress in the simulation (L2-norm of error of 13.92%). The
time-averaged and fluctuating shear stress at the wall inferred
in mouse 1 are illustrated in Fig. 5 A and B, respectively. We
report shear stress magnitude at the wall, calculated from the
second invariant of the stress tensor (Methods), not the single
component of the tensor, which indicates streamwise stress on
the boundary surface and is often called “wall shear stress”. The
magnitude, not the single component, is likely to be the relevant
quantity for aggregation and mechanical signaling.

Fig. 5C shows the spatially averaged and spatially maximum
shear stress at the wall over the course of a cardiac cycle. The
ratio of oscillating to average shear stress is 1.3 for mouse 1.
Among all four mice, the mean shear stress varied from 1.48
to 4.95 × 10−3 Pa, as listed in Table 1. Fig. 5D shows how
the temporally averaged shear stress at the wall varies along the
length of the PVS. The axial variation approximately corresponds
to changes in the PVS cross-sectional area, with larger shear
stresses where the channel is narrower, as we would expect. In
fact, if we consider a reference location with cross-sectional area
A0 and shear stress at the wall τ0, the shear stress at the wall at
any other location, with cross-sectional area A, can be accurately
approximated as τ0(A0

A )
3
2 , as shown in Fig. 5D. Our reasoning

for this approximation is given in SI Appendix.
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Table 1. Quantities of interest for each mouse
PTV Shear stress

u · ûmean
Q
A Q ̇ ∂P

∂n
∂P
∂n R at walls

Mouse (µm/s) (µm/s) (µm3/s) Qin−Qout
Qout (1/s) (Pa/µm) mmHg/m (Pa·s/µm4) (Pa)

1 19.76 20.15 2.18×104
−0.12 4.53 −5.34×10−4

−4.02 2.49×10−8 4.95 ×10−3

2 14.76 29.98 5.02×104 0.33 2.12 −3.25×10−4
−2.44 6.47×10−9 3.16×10−3

3 7.78 10.38 1.13×104 0.00 1.69 −1.70×10−4
−1.23 1.51×10−8 2.30×10−3

4 6.38 4.80 5.57×103 0.33 1.00 −7.26×10−5
−0.546 1.30×10−8 1.58×10−3

mean 12.17 16.33 2.22×103 0.14 2.33 −2.75×10−4
−2.07 1.49×10−8 3.00×10−3

� 6.25 11.09 1.983×103 0.23 1.53 2.01×10−4 1.51 7.63×10−9 1.45×10−3

All values except the shear rate are temporally and spatially averaged. The shear rate is the median of all points in time and space. The values reported for mouse 1 are the average of
the predictions from G1 to G6.

Whereas shear stress is the force (per unit area) inducing
adjacent material elements to slide past each other, the rate at
which they slide past each other is the shear strain rate, and
we calculate it from spatial velocity derivatives inferred via AIV.
Large shear strain rates in bulk CSF flows have been hypothesized
to promote formation of harmful plaques in the brain (49–51).
Fig. 5E shows the inferred shear strain rate as it varies over space
and time.

Inertial Forces Are Negligible in Perivascular Flows. The
Reynolds number Re is a dimensionless measure of the ratio
between inertial and viscous forces in a flow and is defined as
Re ≡ UL

ν
where U is a typical flow velocity, L is a length

scale for spatial variations in the flow velocity, and ν is the
kinematic viscosity. For a pulsatile flow, an important parameter
is the dynamic Reynolds number Rd (related to the Womersley
number Wo), a dimensionless expression relating the pulsatile
flow frequencyω to viscous effects, defined as Rd ≡ Wo2

≡
ωL2

ν
.

If we take U = 20 µm/s average downstream CSF speed in pial
PVSs (24),ω = 5 Hz (approximate murine cardiac frequency), L =
40 µm (approximate PVS width), and ν = 7×10−7 m2/s (water at
37 °C), thenRe = 1.1×10−3 andRd = 1.1×10−2. In the Navier–
Stokes momentum equation (Eq. 2), we expect the nonlinear
inertial term to scale with Re and the unsteady acceleration term
to scale with Rd , as we show in SI Appendix. Thus, we predict
that the unsteady term (∂u/∂t) has small magnitude compared to
the viscous and pressure terms (ν∇2u and−∇p/ρ, respectively),
and that the nonlinear term (u · ∇u) is even smaller. With the
high-resolution velocity and pressure fields inferred by AIV, we
can calculate each term in vivo. The unsteady term, the inertial
term, and the sum of the viscous and pressure terms, all spatially
averaged and varying over one cardiac cycle, appear in Fig. 6A. As
predicted, the nonlinear inertial term is negligible, and the viscous
and pressure terms have individual amplitudes (not shown) much
larger than the unsteady term. Time variations in the flow velocity
are in phase with time variations in the pressure field. We also
note that the residual of the Navier–Stokes equation is not exactly
zero, as there exists minimization and approximation error in
AIV which cannot be totally avoided. The resulting flow field
is a trade-off between the experimental data and the governing
equations. In summary, we find that for the flow determined by
AIV, the nonlinear inertial term (u · ∇)u is indeed negligibly
small, a fact that simplifies modeling considerably and makes
reduced order network models (like those in refs. 18, 52 and 17)
reasonable.

Hydraulic Resistance. The hydraulic resistance (per unit length)
R ≡ ∂P/∂n

Q , where Q is the volume flow rate, is a convenient

parameter in modeling PVS fluid flow. Using AIV, inferences
of pressure gradient and flow rate to calculate the hydraulic
resistance directly, we found 0.6 ≤ R ≤ 2.5 × 10−8 Pa·s/µm4

for the different mice, as reported in Table 1. To validate, we
performed a direct numerical simulation of steady flow through
shape G1, shown in SI Appendix, Fig. S4. The hydraulic resistance
calculated using simulation data agrees within 0.5% with that
inferred by AIV.

Pressure gradients and flow rates have been unavailable
previously, so resistance has been estimated using assumptions
about the PVS shape and flow (17, 18, 52, 53). Specifically,
previous models estimated resistances by assuming Poiseuille flow
in idealized shapes with uniform cross-sections, which results in
unidirectional axial flow governed by Poisson’s equation. To
put the resistance inferred from AIV in context, we estimated
R for shape G1 using a similar approach but accounting for
spatial variation of PVS cross-section: We determined the cross-
sectional shape at many locations along the PVS, solving Poisson’s
equation to determine R for each. The results are labeled “exact”
in Fig. 6B. Because the shape and area vary along the PVS, we
obtain a distribution of resistances; the mean and deviation are
shown. We also calculated the resistance for circular and elliptical
half-annular segments with cross-sectional areas matching the
exact segments. We used the half-annular shape because the
subdomain included only one side of the PVS, as shown in
Fig. 1 C and D. Results were similar to the “exact” case. We
also report the resistance per unit length for the other geometries
from mouse 1 (G2–G6) in Fig. 6B. The hydraulic resistance is
very sensitive to uncertainties in the PVS geometry because it
scales inversely with the square of the area, or with the length
scale to the fourth power. The resistance inferred by AIV is 9.2%
larger than the median resistance and 10.9% larger than the
mean resistance in channels with uniform cross-section and the
exact shape. Solving Poisson’s equation probably yields artificially
small resistances because it neglects off-axial velocity components
induced by the varying cross-section. However, the discrepancy is
only∼10%, much less than changes to R caused by variations in
boundary shape associated with threshold choices (shapes G2–G6
in Fig. 6B) or the changes in R caused by variations in shape and
area along the length of the PVS. The uncertainty associated
with the PVS boundary is larger than the error that results
from neglecting off-axial flow components. Thus, assuming a
straight cross-section and idealizing it as an elliptical annulus are
reasonable approximations.

Sensitivity Analysis. AIV inferences depend on the governing
equations, the AI training parameters, and the experimental
measurements, including PTV velocities and 3D boundary
positions. Though AI parameters are refined iteratively in the
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Fig. 5. AIV infers 3D high-resolution
shear stress. (A) Time-averaged shear
stress at the wall in the PVS subdomain,
inferred by AIV. (B) Four snapshots of
shear stress at the wall in the PVS sub-
domain during a cardiac cycle; T is the
cardiac cycle duration. (C) Spatially aver-
aged and spatially maximal shear stress
at the wall in the PVS subdomain during
one cardiac cycle. Inferences from six
different boundary shapes (all in mouse
1) are shown as faint curves; their mean
and deviation are indicated with bold
curves and shaded regions, respectively.
(D) Temporally and spatially averaged
shear stress at the wall along the length
of the PVS. The dashed curve shows the
shear stress predicted by Eq. 2. (E) Distri-
butions of shear rates from every point
in the flow (red) and at the walls (blue).

training process, their initial values must be chosen manually
and might affect inferred quantities. Considering measured
quantities, the uncertainty associated with any single PTV
measurement is small because we typically record thousands and
because each has submicron accuracy in the transverse plane.
In contrast, location of the 3D PVS boundaries is based on a
single measurement and is weighted higher (twice as heavily as
the particle tracking measurements), in order to confine the flow
in a specific 3D domain and provide the boundary conditions.
This allows us to infer the 3D flow fields from 2D measurements
but affects the inferred quantities such as volume flow rate. We
performed a sensitivity analysis to determine the impact of the
PVS boundaries and AIV initialization on the inferred quantities.

We trained the neural network five times, each with slightly
different initial parameter values, and compared the independent
AIV inferences for pressure, flow rate, and shear, finding variation

A B

Fig. 6. AIV reveals inertial contribution and hydraulic resistance in glym-
phatic flow. (A) Spatial averages of terms in the Navier–Stokes equation,
computed from the inferred flow field. The nonlinear term (u · ∇)u is much
smaller than the others and can be accurately neglected. (B) Hydraulic
resistance determined by AIV for the six different shapes G1–G6 (SI Appendix,
Fig. S4), and hydraulic resistance for geometry G1 determined in four different
ways: direct simulation (CFD), Poiseuille flow through straight channels with
exact cross-sectional shapes (exact), Poiseuille flow through circular channels
with matching cross-sectional areas (circle), and Poiseuille flow through half-
annuli with matching cross-sectional areas (1/2 annulus). The cross-sectional
shapes vary along the PVS; error bars indicate± 1 SD. The normalized (by the
maximum velocity) velocity profile in one-sample cross-section is shown for
each of the straight-channel scenarios.

less than 1% in most cases (SI Appendix, Fig. S6), showing
that the inference is largely independent of the neural network
initialization.

Though we can determine the PVS boundary location with
good accuracy based on the tracer injected into the PVS,
challenges inherent in segmentation introduce some uncertainty.
We vary the parameters used to determine the PVS boundary
to produce six different PVS shapes, referred to as G1–G6, that
are intended to bracket the real location of the boundary. This
process is described further in Methods and SI Appendix, Fig. S4.

The dependence of pressure, pressure gradient, volume flow
rate, shear rate, and hydraulic resistance on uncertainty in the PVS
boundaries is shown in Figs. 3A, 4 C and D, 5 C–E , and 6B.
The inferred quantities are similar for all of the shapes except G3,
where they differ by more than a SD. The uncertainty in pressure,
volume flow rate, and shear stemming from the uncertainty in
the PVS boundaries is generally less than 30%. These quantities
of interest are considerably more sensitive to the 3D boundaries
than to the AI initialization parameters, as shown in SI Appendix,
Fig. S6, highlighting the robustness of the AIV training. An
uncertainty less than 30% is reasonable and considerably better
than existing approaches for measuring or estimating pressure,
flow rates, and wall shear stress. Furthermore, the uncertainty in
3D boundary locations could be reduced with different imaging.
In this work, boundary locations are determined from tracer
fluorescence in the PVS. However, fluorescent intensity depends
on tracer concentration, which varies over space and time.
Boundary uncertainty might be reduced by visualizing the PVS
walls, rather than the lumen as indicated by tracer, by imaging
transgenic mice where the collagen in the PVS walls are labeled
with green fluorescent protein.

Discussion

We demonstrate that AIV can infer 3D velocity fields of
cerebrospinal fluid in perivascular spaces, in vivo, at resolu-
tion previously possible only in simulations, from 2D particle
tracks. AIV also provides in vivo time-varying pressure, pressure
gradients, volume flow rate, and wall shear stress —quantities
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which have previously been practically inaccessible, except in
simulations. Unlike simulations, AIV does not require that
problems be well posed or that inlet and outlet boundary
conditions be known (as is difficult or impossible in vivo).
Sensitivity analysis shows that AIV inferences vary less than 1%
with different neural net initial conditions and less than 30%
with different PVS boundary segmentations. We confirm that
the inertial term in the momentum equation can accurately be
neglected, simplifying modeling efforts. The hydraulic resistances
we infer by AIV and validate by computational fluid dynamics
are larger than for unidirectional Poiseuille flow; off-axial flow
arising from variations in PVS cross-section increases resistance
by about 10%, less than does uncertainty of boundary shape, a
fact useful for modeling.

AIV-inferred velocities agree with PTV and previous measure-
ments. Comparing AIV inferences to PTV measurements, Rms
and root-median-square velocity errors ranged from 5 to 13 and
3 to 7 µm/s, respectively, for the different mice —less than 1
pixel/frame (≈19 µm/s). The good agreement suggests that the
pial PVSs we measure are open, not porous, as has been shown
previously (25), since the Navier–Stokes equations we enforce
apply to open domains. The average downstream velocities we
measured with PTV and inferred with AIV are comparable to
measurements reported previously (24, 54, 55).

In contrast to particle tracking, AIV provides the average
velocity in the entire 3D PVS. Particle tracking velocimetry has
provided invaluable insight into the presence and rates of flows
in PVSs, but it provides only velocity information in a single
plane. In Table 1, we report the average downstream velocity
calculated based on the particle tracks (in a single plane) and the
average velocity in the entire 3D PVS, inferred via AIV. For three
of the four cases, the average velocity in the 3D PVS is within
∼25% of the average from PTV. However, the average velocity
in the 3D PVS is more than twice the average from PTV in the
case of mouse 2, in which the PTV plane was far from the PVS
centerline (SI Appendix). The discrepancy is explained by the fact
that in a viscous flow, fluid far from the centerline moves slowly.
Estimating average velocities using uniformly distributed AIV
inferences avoids sampling bias. Being able to more accurately
estimate the mean velocity in the 3D PVS, rather than the mean
velocity in a single plane, may clarify the existence of differences
in CSF flow with aging, Alzhiemer’s disease, and hypertension.

AIV-inferred total PVS volume flow rates agree with previous
estimates. Using AIV, we infer a volume flow rate of around
2.25×104 µm3/s (or 1.35×10−3 µL/min) in one side of the pial
PVS in the territory of the middle cerebral artery of mouse 1.
(Each of the subdomains we considered included only one side
of the PVS, as illustrated in Fig. 1D). This half of the PVS has
a cross-sectional area of 1.1×103 µm2. Ray et al. estimate that
the total periarterial cross-sectional area in the murine brain is
0.2 mm2, or approximately 182 times larger than the section
we measured (5). If we assume that the flow rate in the section
we measure is typical, we can approximate a total PVS flow rate
of 0.25 µL/min, or 0.625 µL/(g-min) for a 0.4-g mouse brain,
which agrees well with the estimates of 0.5µL/(g-min) inflow in
mice from Ray et al. (5). A total flow rate of 0.625 µL/(g-min)
also agrees with an estimate of the upper limit of lymph flow in
rat heart muscle (0.45-0.48 µL/(g-min) (56), suggesting that this
estimate is reasonable for metabolically active tissue. This work
measures volume flow rates in PVSs in vivo, and the measurement
is consistent with estimates of total CSF flow in these spaces.

Conservation of mass implies that for a bounded PVS, the
volume flow rateQ through every cross-section must be identical,

but we observed variation of Q along PVSs. Among the possible
causes of variation are uncertainty in PTV measurements and the
PVS boundary, including the assumption of stationary bound-
aries, imperfect AIV optimization, numerical errors associated
with the discretized grid, and actual leakage of fluid from the
PVS. Our direct numerical simulations of flow in a PVS are
independent of PTV measurements and use closed boundaries,
excluding measurement uncertainties and leaks. In that case, the
volume flow rate inferred by AIV differed between inlet and
outlet by just 1.63%. We expect the mismatch due to combined
effects of imperfect AIV optimization and grid discretization to
be similar in other cases because their grid spacing is similar.

However, in mouse 2 and mouse 4, we observed much larger
mismatches, along with tracer and microspheres lying outside
the region defined as PVS, at the point where Q decreased
sharply (SI Appendix, Fig. S5). Together, those observations
suggest either that the region we classified as PVS, according
to tracer fluorescence, failed to encompass the entire PVS; or
that fluid was leaking out of PVSs. It has been suggested that
stomata (leptomeningeal fenestrations/pores) might allow fluid
to enter PVSs (57, 58). It is also possible that portions of the dura
were damaged during surgery, allowing leaks. In future work,
AIV could be used to estimate the rate of CSF leakage through
stomata by measuring axial changes in volume flow rate. AIV
could also be used to estimate flow rates into penetrating PVSs
by measuring differences in volume flow rate at axial locations
upstream and downstream of the penetrating PVS to infer how
much fluid entered the penetrating PVS. Either estimate would
significantly improve models of perivascular flow (18) and could
help resolve controversies regarding the glymphatic model (1, 6).

AIV-inferred PVS pressure gradients agree with previous
estimates. Though pressure gradients in pial PVSs have never
been measured previously, those we infer using AIV are consistent
with estimates based on models of PVS flow and measurements
in other regions of the brain. Kedarasetti et al. predicted that a
pressure gradient of 2.7×10−4 Pa/µm (2 mmHg/m) would drive
a flow with a net velocity of 20 µm/s in pial PVSs (59). Daversin-
Catty et al. predicted that a pressure gradient of 1.95 ×10−4

Pa/µm (1.46 mmHg/m) would drive flows with velocities of 30
to 40 µm/s (60). Vinje et al. measured pressure gradients around
1 to 4×10−4 Pa/µm (1 to 3 mmHg/m) between the subdural and
intraventricular compartments in humans (61). These pressure
gradients are all consistent with the pressure gradients of 0.7 to
5×10−4 Pa/µm (0.5 to 4 mmHg/m) inferred with AIV.

One advantage of AIV is that it infers the pressure gradients
that drive the flow, which are difficult to measure using pressure
probes. Being small, those instantaneous pressure gradients can
be obfuscated in measurements by the large temporal variations
in pressure. Intracranial pressure pulses at both the cardiac and
respiratory frequencies (61, 62) in the brain’s fluid cisterns.
(Pressure has never been measured in PVSs.) Those variations
have amplitude 100 to 400 Pa (1 to 3 mmHg) in mice (63), 250
to 1,000 Pa (2 to 8 mmHg) in humans (61, 64–66), and 600 Pa
(4.5 mmHg) in alligators (67). Thus, temporal pressure variations
are three orders of magnitude larger than spatial variations across a
short section of PVS, inferred by AIV to be on the order of 0.1 Pa
(7.5 ×10−4 mmHg). However, temporal pressure variations
drive no flow, whereas gradients do (as is evident in Eq. 2).
The gradients, though small, are key for understanding and
predicting CSF dynamics in PVSs. Because AIV infers pressure
using Eq. 2, it captures the important variations associated with
instantaneous gradients while excluding the less-important large
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temporal variations. This selectivity is an advantage of AIV.
Even if pressure measurements in PVSs (and at multiple PVS
locations) become possible in the future, if those measurements
are referenced to atmospheric pressure and therefore capture
the large temporal variations, extracting the small gradients will
require great sensitivity. For example, the average intracranial
pressure in mice is approximately 300 Pa (2 mmHg), so
measuring gradients of 5×10−4 Pa/µm (4 mmHg/m) between
locations separated by 100 µm would require measuring pressure
differences of 0.05 Pa (4×10−4 mmHg).

The pressure oscillations in the PVS at the cardiac frequency
that we report are not expected to measurably deform the
parenchyma. Kedarasetti et al. (68) and Bojarskaite et al.
(69) observed deformations of parenchymal tissue surrounding
penetrating PVSs, at timescales associated with slow or ultraslow
vasomotion. Based on a pressure difference of 30 Pa (0.23
mmHg) inducing a 1% strain (70), we can estimate the modulus
of elasticity for parenchymal tissue as 3000 Pa, in close agreement
with other published estimates, which range from 500 to 10,000
Pa (71). AIV infers pressure fluctuations of around 0.1 Pa
(7.5×10−4) at the cardiac frequency (Fig. 4C ). If we assume
a modulus of 500 Pa, at the low end of the various estimates, this
would result in a strain of around 2×10−4 in the parenchyma, a
level that would not be detectable with current in vivo imaging
techniques. That prediction is consistent with our observations,
which reveal negligible parenchymal deformation at the cardiac
frequency. The deformations observed by Kedarasetti et al. and
Bojarskaite et al. suggest the presence of larger amplitude pressure
oscillations at lower frequencies and in penetrating PVSs. Indeed,
Kedarasetti et al. predicted pressure oscillations in a penetrating
PVS with an amplitude of 15 Pa (0.1 mmHg) resulting from
functional hyperemia (70).

The mice used in this study were healthy, wild-type mice,
but AIV can be applied to explore how PVS flow is altered in
various conditions, including disease and aging as has been done
with PTV (12, 24, 72), and could potentially be incorporated
into models of disease pathogenesis to determine whether the
forces induced by PVS flow play a role in disease progression.
We speculate about a few possible applications here.

Vascular amyloidosis, aging, and small vessel disease all cause
long-term remodeling of the PVS (73), and AIV could be used to
determine how the altered PVS lumen affects flow rates, pressure
gradients, and shear stress. Vascular amyloidosis is characterized
by the accumulation of amyloid-β plaques between the smooth
muscle cells and the endothelial cells, and in severe cases the
plaques can protrude into the PVS lumen, altering PVS flow
and potentially inducing harmful flow structures. Detecting
flow features would be difficult with single-plane PTV, and
determining appropriate inlet and outlet conditions would be
difficult with direct numerical simulations (DNS), but AIV can
detect the presence of flow features in vivo with streamlines
without knowledge of the inlet and outlet conditions.

Small vessel disease (SVD) is characterized by enlarged PVSs,
which in isolation would have lower resistance to flow, but small
vessel disease results in reduced PVS flow due to changes in
other parts of the network. This reduction in flow would not
be predicted with DNS without knowledge of how the inlet
and outlet conditions change, but would be readily inferred
with AIV, since it does not require knowledge of the inlet and
outlet conditions. It has been hypothesized that the perivascular
space enlargement is a result of inflammation (74) and that
enlarged PVSs may play a role in SVD pathogenesis (75). Local
inflammation may result from oscillatory pressure exerted on

surrounding brain tissue or wall shear stress, both of which can
now be inferred in vivo in mouse models with AIV, although
enlarged perivascular spaces have not been reported around pial
arteries, specifically. Hypertension is associated with SVD and
can cause arterial wall stiffening, which may alter oscillations in
pressure and wall shear stress in the perivascular spaces. The
way a stiff blood vessel impacts the pressure and wall shear
stress inside the adjacent PVS can also be inferred with AIV
without knowledge of the vessel material properties. The cause
and impact of enlarged PVSs is unknown, and these hypothesis
are speculative but can now be tested with AIV.

Shear induced by fluid flow can promote protein aggrega-
tion (76), and though it is unclear how much shear is required
to promote the amyloid aggregation that correlates with cerebral
amyloid angiopathy and Alzheimer’s disease (49–51, 77), recent
measurements suggest that the shear rates we infer with AIV
may be in the relevant range (76, 78). The idea that shear in pial
PVSs may contribute to amyloid aggregation between the smooth
muscle cells and endothelial cell wall or in the parenchyma is
speculative, and additional work is needed to determine exactly
what shear rates promote amyloid aggregation and under what
conditions. However, the point is that AIV can be used to
determine the shear conditions that exist in vivo, opening the
possibility to explore the role shear plays in physiological and
pathological conditions.

Wall shear stress is important in cardiovascular flows due
to its role in regulating blood flow and vessel wall remodeling
(40–45). Magnitudes vary with location and physiological state
but are on the order of 1.5 Pa (46). In lymph vessels, wall shear
stress may modulate lymphatic tone and pumping (47, 48) and
has peak magnitude around 0.3 to 1.2 Pa in mesenteric lymph
vessels (47, 48). The wall shear stresses we infer in pial PVSs
have average and peak magnitudes around 0.005 and 0.03 Pa,
respectively. Whether wall shear stress plays an important role
in PVSs, as does it in blood vessels and lymph vessels, is not
known, in part because its details have not been quantified
before. One speculation is that perivascular flows may influence
smooth muscle cells through mechanotransduction. The inner
boundary of any PVS is lined with smooth muscle cells. They
are known to experience mechanotransduction from interstitial
flows (41, 79) and may likewise experience it from perivascular
flows, which impose shear stresses of similar magnitude (80).
Though that magnitude is lower than for blood flow, the CSF is
in direct contact with the smooth muscle cells, whereas the blood
is typically only in contact with endothelial cells. A separate
speculation is that a portion of the outer boundary of a pial
PVS is directly adjacent to brain tissue, which may be sensitive
to oscillatory pressures and shear stress. In general, shear stress
can induce changes in gene expression and inflammation (4).
It is not clear what affect the wall shear stress has on the outer
boundaries of the PVS, but now it can be measured with AIV. The
outer boundary of a penetrating (but not pial) PVS is lined with
astrocytes with receptors that may allow Ca2+ entry in response
to shear stresses (81). By inferring shear stress in vivo, AIV can
enable future studies of the effects of perivascular shear stress.

There are several important limitations in our experimental
measurements and AIV inferences. First, when performing AIV,
we approximated PVS boundaries as stationary, though they fluc-
tuate, particularly at the cardiac frequency, as previously reported
(24) and shown in SI Appendix, Fig. S14. The motion over the
course of a cardiac cycle is approximately one µm, of similar
magnitude to the uncertainty in PVS wall location (SI Appendix,
Fig. S4). Artery wall fluctuations create cross-stream oscillatory
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fluid motions observable via PTV, and are linked to downstream
pulsatile fluid motion (24). Despite having stationary boundaries,
the AIV inferences correctly include oscillatory cross-stream fluid
motion pulsatile downstream fluid motion. In future work,
3D boundary motion could be inferred by measuring in-plane
boundary motion, then assuming axisymmetric vessel dilation
and contraction. Second, phase merging precludes the possibility
of exploring frequencies lower than the cardiac frequency.
Though the cardiac frequency is the dominant frequency, CSF
in PVSs may also oscillate at the respiratory frequency and at
frequencies corresponding to slow and very slow waves (24, 69).
To capture these lower frequencies, particle density would need
to be higher so that phase merging is not required.

We report volume flow rates, pressures, and wall shear
stresses inferred in in vivo murine PVSs, inferred using both
measurements and theory. These numbers are immediately useful
in modeling flow in PVSs, and AIV can in the future potentially
be used to address critical questions related to cerebral CSF flow
including estimating volume flow rates in penetrating PVSs and
through pial PVS walls and exploring the role CSF flow-induced
shear stress plays in healthy and diseased conditions. With the
ability to infer volume flow rates (as opposed to sparse, single-
plane velocity measurements) and streamlines, AIV may be able
to elucidate how aging and disease affect PVS flow.

Materials and Methods
Animals and Surgical Preparation. Wild-type mice were anesthetized with
ketamine/xylazine and cranial windows were installed. One-micron fluorescent
microspheres were injected into the cisterna magna to track CSF flow, and
mice received intracisternal and intravenous injections of Alexa Fluor 647-
conjugated bovine serum albumin (66.5 kDa) and an intravenous injection of
FITC-conjugated dextran (2,000 kDa) to show the location of the PVS and blood
vessel lumen. Additional information on the mice and surgical procedures can
be found in SI Appendix.

Measurement of Vital Signs. Heart rate and respiration were acquired at 1 kHz
using a small animal physiological monitoring device (Harvard Apparatus). The
signal was digitized and recorded with a DigiData 1550A digitizer and AxoScope
software (Axon Instruments).

In Vivo Two-Photon Laser Scanning Microscopy. Two-photon imaging was
performed using a resonant scanner Bergamo scope (Thorlabs) and a Chameleon
Ultra II laser (Coherent) with a water-immersion 20x objective (1.0 NA, Olympus).
Intravascular FITC-dextran and either red microspheres or BSA-647 were excited
at an 820-nm wavelength, and emission was filtered at 525, 607, and 647
nm. Images were acquired at 30 Hz (ThorSync software) simultaneously with
physiological recordings (3 kHz, ThorSync software). For mouse 1, images were
acquired for one minute at two planes, referred to as Planes A and B. Plane A
is shown in Fig.1C. Plane B is approximately 20 µm below Plane A. In order
to determine how much the flow varied while acquiring data in the different
planes, Plane A was reacquired after imaging plane B. For mice 2 to 4, images
were acquired for 6 min. To visualize the PVS shape, a volume scan of the region
was imaged with 512 × 512 pixel frames from the surface to a depth of 200
µm with 1-µm steps.

Particle TrackingVelocimetry. We performed particle tracking velocimetry on
the microspheres in the time series images from the two-photon laser scanning
microscopy. We tracked the motion of each microsphere through time and
calculated its velocity based on its changing position with subpixel accuracy as
described by Mestre et al. (12, 24) using automated MATLAB code following a
previously described algorithm (82, 83). We calculated the particle velocities by
convolving a Gaussian smoothing and differentiating kernel with the tracked
particle positions in each frame, which allows us to achieve subframe accuracy
in the particle velocity.

PVS Segmentation. The three-dimensional boundaries of the PVS were
constructed by segmenting the PVS based on the location of the fluorescent
tracer in the CSF inside the PVS. Image resolution in the transverse plane was
0.648 µm/pixel, while resolution in the dimension aligned with cortical depth
was 1 µm/pixel. Images were upsampled in the cortical depth dimension (z) so
that the image resolution was isotropic and then smoothed with a 3D Gaussian
filter with SD of two voxels. The fluorescent signal intensity detected by the
microscope varies with depth because the signal is attenuated as it passes
through tissue, so we binarized the volume using a depth-varying threshold.
We determined six different depth-varying thresholds, resulting in six different
geometries, G1–G6, for the geometry sensitivity analysis on mouse 1. For G1
the threshold was equal to the sum of the mean and SD of the image intensity
at each depth. Unless otherwise noted, all domains shown are from G1 from
mouse 1. For G2 and G3, the threshold was determined based on the location
of the maximum image intensity gradient. We used the edge3 command in
MATLAB to identify the maximum gradient. We used an edge sensitivity of
0.5 for G2 and 0.05 for G3. At each depth, the threshold was set equal to the
median intensity value at the edges in the image. G4 and G5 were obtained
by manually combining the depth-varying thresholds determined for G1–G3 in
different ways, as shown in SI Appendix, Fig. S4A. The threshold for G6 was the
highest threshold from G1 to G5 at each depth. For all geometries, the resulting
volume was smoothed using a 3D box filter that had a kernel size of nine voxels.
The outer boundary of the G1 segmentation is shown in Fig. 1 C and D.

We followed the same process for determining the 3D boundaries for the
other three mice, but we performed AIV for only one geometry from each mouse.
The depth-varying threshold was iteratively adjusted by tuning the parameters
used to determine the threshold until the boundary in the imaging plane most
closely matched the location of the particles.

Registration of Particle Tracking Images to Volume Scan. The 2D time-
series images showing particle motion were registered to the isotropic 3D
image in order to determine the cortical depth at which each time series was
acquired and to identify any translation or rotation of the field of view between
the acquisition of the 2D time series and the 3D volume scans. The time-series
images were acquired in approximately the same transverse (x-y) location as the
volume images, but were shifted by a few microns. We found that the field of view
for the time-series images shifted slightly over the course of the data acquisition,
so we performed a dynamic registration by averaging and registering groups
of 25 images. We used the following algorithm for 2D-to-3D registration. First,
we determined the depth at which each 2D image was acquired by finding the
value of k that minimizes the difference dk between the time series image I2D,ij
and each 2D image extracted from the 3D volume series I3D,ijk:

dk =

∑M
i
∑N

j |I2D,ij − I3D,ijk|∑M
i
∑N

j I3D,ijk
, [1]

where i and j correspond to the dimensions in the transverse plane (x-y) and k
corresponds to the dimension into the cortex z, and M and N are the number
of voxels in each dimension in the transverse plane. Second, we found the
in-plane rigid transformation (translation and rotation) between the time series
and the image from the volume series, using the MATLAB imregtform function.
Last, we applied the transformation to the time-series image and recalculate the
difference dk for every image in the volume series. If a new value of k minimizes
dk , repeat until the value k does not change following the planar transformation.

Subdomain . For the AIV training and testing, we consider only a portion of the
imaged domain, as indicated in Fig. 1 C–E.

Phase Merging. The number of particles in each image in the time series is
relatively small, but flows in PVSs are pulsatile and closely synchronized with the
cardiac cycle (24). We divided the cardiac cycle into 50 phases, then combined all
the particles that appear at the same cardiac phase, thus increasing the effective
density of the particles, as shown in SI Appendix, Fig. S1.

PNAS 2023 Vol. 120 No. 14 e2217744120 https://doi.org/10.1073/pnas.2217744120 9 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

R
O

C
H

E
ST

E
R

 L
IB

 S
E

R
IA

L
S 

&
 B

IN
D

IN
G

 D
E

PT
 o

n 
M

ar
ch

 2
9,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
12

8.
15

1.
15

0.
9.

https://www.pnas.org/lookup/doi/10.1073/pnas.2217744120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217744120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2217744120#supplementary-materials


Underlying Physical Laws. The flow of cerebrospinal fluid along a PVS is
incompressible and obeys the Navier–Stokes and continuity equations (7, 84):

ρ(
∂u
∂ t

+ u · ∇u) = −∇p + µ∇2u,

∇ · u = 0,
[2]

where u = (u, v, w) is the Eulerian velocity field, ρ is the fluid density, p is the
fluid pressure, µ is the dynamic viscosity, ∇ is the spatial gradient operator,
and∇2 is the Laplacian operator. We assume that the density and viscosity are
constant and uniform, with ρ = 993 kg/m3 and µ = 6.95 × 10−4 Pa s.
The kinematic viscosity ν ≡ µ/ρ is 7 × 10−7 m2/s. These equations are
supplemented by the no-slip boundary condition u = 0 at the walls of the PVS.

The Navier–Stokes equation Eq. 2 that we use does not include the gravity
force. As is usual, the pressure in this equation is defined to be the total
pressure minus the hydrostatic pressure (which balances the gravity force),
and the hydrostatic equation is subtracted from the full NS equation. In vivo
measurements of pressure at various locations in the brain would give the total
pressure, which will include the hydrostatic pressure variation.

Implicit in these equations is the assumption that pial PVSs are open,
not porous. Flow characteristics measured in vivo broadly support that
assumption (25).

Artificial Intelligence Velocimetry. AIV is developed based on physics-
informed neural networks (PINNs), which can assimilate velocity vectors from
PTV and the underlying physical laws. In the context of AIV, a neural network
FNN is used to approximate the solution of the flow fields, namely:

(u, p) = FNN(x, t,2), [3]

where FNN receives the coordinates (x = (x, y, z) ∈ R3 and t) as input and
2 denotes the learnable parameters in the network; u(x, t,2) = (u, v, w)
and p(x, t,2) are the velocity and pressure fields inferred by the networks,
respectively. Here,FNN is instantiated by using a feed-forward fully connected
network, where 2 include the weights and biases of multiple hidden layers.
In order to train the parameters2, we apply the phase-merged PTV dataD as
labels and minimize the mean squared loss as follows:

Ldata(2) =
1
N

N∑
n=1

(
unPTV − u(xn, tn,2)

)2

+
1
N

N∑
n=1

(
vnPTV − v(xn, tn,2)

)2
.

[4]

This penalizes the mismatch between the data (u, v)PTV and the network output;∑N
n=1 is the summation over different data points and N is the batch size for

one training iteration. The data loss Ldata allows us to anchor the solution
(i.e., flow fields) based on the measurements from PTV. However, it does not
guarantee good estimation at the locations where the velocity data are not
available because of the sparsity. Therefore, another loss function penalizing the
residuals of the governing equations is introduced in AIV:

Lres(2) =
1
N

∑
i

N∑
n=1

(
ei(x

n, tn,2)
)2 , [5]

where ei=1,2,3,4 includes the residuals of three-dimensional Navier–Stokes
equations and the continuity equation. The partial differential operators in the
governing equations are computed using automatic differentiation (AD) (85),
which calculates the derivatives of the outputs with respect to the network inputs
directly in the computational graph. In addition, the no-slip boundary conditions
on the PVS are also enforced by adding:

Lbcs(2) =
1
N

∑
u=(u,v,w)

N∑
n=1

(
u(xn, tn,2)

)2 , [6]

where x ∈ ∂ represents points at the boundary. In summary, the total loss
function of AIV can be defined as:

L(2) = λdLdata + λrLres + λbLbcs, [7]

where λ∗ are the weighting coefficients used to balance different terms in the
loss function. Our objective is to find a neural network,FNN(2), to approximate
the velocity and pressure fields, which satisfy the PTV data as well as the physical
laws. The hyperparameter settings in AIV can be found in SI Appendix.

Computational Fluid Dynamics Simulation. We performed a synthetic
experiment to validate the AIV methodology, as shown in SI Appendix,
Figs. S2 and S3. We simulated steady perivascular flow at Reynolds number
Re = 2.2 × 10−3 using a high-order spectral element method. The 3D
geometry was reconstructed from two-photon images of a mouse perivascular
space. We used a tetrahedral mesh with 81,375 elements. Doubling the number
of elements resulted in the same steady flow field. We prescribe a Poiseuille
inflow velocity profile, a zero-pressure outlet boundary condition, and no-slip
boundary conditions on the walls. The dimensionless time step size is 1×10−5,
and the simulation continued until the L2 norm of the velocity was steady, which
occurred at computational time is 20. We extracted 2D velocity vectors from the
simulated flow fields and applied AIV to infer the 3D flow fields.

Velocity Calculations. The time-averaged and normalized speed plots in
SI Appendix, Figs. S11C, S11D, S13C and S13D were calculated by dividing
the spatial domain into 7.5× 7.5 pixel bins, then time-averaging the velocities
in each bin. Subsequently, the velocities were normalized by the maximum
velocity over the space. The Rms velocity (uRMS) was computed by calculating
the Rms velocity of all the particles or AIV-inferred velocities in each frame
or phase. We calculated the downstream velocity, or downstream velocity
component udown = u · |u ˆmean|, where u is the instantaneous velocity
and | ˆumean| is a unit vector computed from time-averaging the velocity field
over the entire time series. In Fig. 2E, we show the spatial average of all
the downstream velocity components. The cross-stream velocity ucross is the
flow component perpendicular to the downstream velocity component and was
obtained similarly, as a dot product of the velocity of each particle and a unit vector
perpendicular to the local mean velocity. The Rms and downstream velocities
reported for particle tracking data include only velocities from particles within
the segmented 3D domain and subdomain, as shown in Fig. 1E.

The Rms error between the AIV inferred velocities and the PTV data is
defined as

RMSEmean =

√√√√√ 1
N

N∑
i

[(uPTV − uAIV)
2 + (vPTV − vAIV)

2], [8]

and the root-median-square error is defined as

RMSEmed =

√
median[(uPTV − uAIV)

2 + (vPTV − vAIV)
2], [9]

where (uPTV, vPTV) and (uAIV, vAIV) are the two-dimensional PTV and AIV velocities
in the PTV measurement plane, computed over all points in space and time.

We compute the percent error for each as

root-mean-square error error√
1
N
∑N

i (u
2
PTV + u2

PTV)
, [10]

and
root-median-square error√

median(u2
PTV + u2

PTV)
. [11]

In addition, the relative L2-norm error is defined as ‖xAIV−xCFD‖2
‖xCFD‖2

where x is the
quantity of interest at all points in space, and ‖x‖2 is the L2-norm of x.
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Hydraulic Resistance.
Computational fluid dynamics. The direct simulations were performed in NX
Flow in NX Advanced Simulation software from Siemens PLM. We prescribed a
steady flow at the inlet, similar to the time-averaged flow rate inferred by AIV. We
created a Poiseuille velocity profile at the inlet of the PVS by extruding the shape
of the PVS at the inlet until the flow was fully developed. We set a zero-pressure
outlet boundary condition and no-slip boundary conditions on the walls. The
computational grid was refined until resistance changed by less than 0.1% when
halving the element size, which occurred when the element size was 0.2 µm.
We calculated the resistance by dividing the difference between the average
pressure at planes located 10 µm from the ends of the domain by the distance
d between the planes and the prescribed volume flow rate, R =

Pinlet−Poutlet
d·Q .

Resistance for Poiseuille flow in channels of constant cross-section. To
estimate hydraulic resistance and its axial variation, without the computational
cost of simulating the Navier–Stokes equations, we divided the PVS subdomain
into short segments and calculated the resistance of each, assuming fully
developed flow. We solved the Poisson equations that describe such flows
numerically with MATLAB’s solvepde. For each cross-section, we first eroded
the binary array containing the PVS segmentation by one pixel then found the
location of the segmented PVS boundary using MATLAB’s bwboundaries. We
used the polyshape and geometryFromMesh commands to create a model that
can be discretized using MATLAB’s generateMesh command, which creates a
triangular mesh. We refine the grid until the element size is small enough that
error in resistance for a circle of the same area is less than 1%.

We calculated the resistance in a channel with an elliptical annular cross-
section using the equation for the resistance of an optimal elliptical annulus
described by Tithof et al. (53). The shape is determined to be optimal because
it minimizes the resistance for a given ratio K of PVS-to-vessel cross-sectional
areas: R = 2 · 6.67µK−1.96/r4. Here µ is the dynamic viscosity and r is the
vessel radius, which we determined based on the segmented PVS area and an
area ratio K=1.4, which has been shown to be a representative value for pial
PVSs (24). We multiplied the equation provided in ref. 53 by two to obtain the
resistance of half of the annulus, since we consider only the resistance in one
side of the PVS. The resistance in a channel with a circular cross-section is given
by R = 8µ

π r4
.

Oscillatory toMeanCalculations. The ratio of oscillatory to mean quantities is
taken to be the difference between the maximum and minimum values divided
by the mean of the time-varying, spatially averaged quantity over the course of
the cardiac cycle:

ratio =
max X − min X

(1/N) ·
∑N

i X
, [12]

where X is the quantity of interest (flow rate, shear, or pressure) and N is the
number of measurements.

Shear Stress Calculations. The shear stress is defined as

τ = µγ̇ , [13]

where γ̇ is the shear rate, calculated using the stress–strain rate tensor E:

γ̇ =
√

2E : E,

E =
1
2
(∇u + (∇u)T ).

[14]

The gradients of the velocity field were computed in the neural network via
automatic differentiation. The resulting shear stress has physical units of Pascal.
By this definition, τ is a scalar magnitude accounting for all components of
shear, not just the component oriented downstream along the wall (often called
the “wall shear stress”). We expect that if signaling at the PVS wall and/or
aggregation of plaques are affected by shear, the magnitude is the relevant
quantity. That said, in these laminar flows, we also expect the magnitude to be
dominated by the component proportional to the wall-normal gradient of the
downstream velocity.

Data, Materials, and Software Availability. Data have been deposited in
Zenodo (https://zenodo.org/record/7723381#.ZAzSZjpKhD8) (86).
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