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Mechanisms driving shape distortion in two-dimensional flow
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Abstract – In order to elucidate the physical processes governing the evolution of material
areas in complex flow, we study the shape dynamics of three-point Lagrangian clusters in an
experimental quasi–two-dimensional flow. By comparing our measurements with simulations of
triangles evolving purely diffusively, we show that the path taken by the mean triangle shape
through a suitably defined phase space is indicative of the underlying flow dynamics. We
demonstrate the existence of organizing curves in shape space for the evolution of triangles with
different initial shapes. Our results suggest a detailed, multi-step process governing the shape
dynamics of clusters in complex flow.

Copyright c© EPLA, 2011

Introduction. – The advection of passive scalar fields
by fluid flows with complex spatiotemporal structure
is relevant in a wide range of natural and industrial
situations [1]. When the Péclet number, which compares
the importance of advection and scalar diffusion, is large,
the dynamics of the scalar concentration are pinned to the
fluid flow, and isocontours of the scalar field are stretched
and folded just as fluid material volumes are. For that
reason, a characterization of the Lagrangian dynamics of
the flow field, and in particular the evolution of material
volumes, is necessary to understand the advection of scalar
fields.
Material volumes themselves can be parametrized by

a cluster of discrete fluid elements [2–4]. In general, a
minimum of d+1 fluid elements is required to describe
a d-dimensional structure; that is, a three-dimensional
material volume requires four points (often known as
a “tetrad” [2]), while a two-dimensional material area
requires three points. Such minimal parameterizations
are the basis of a class of turbulent-flow models [2,5],
which have motivated several experimental and numerical
studies of multi-particle clusters in turbulence [6–8].
In previous work [9], we showed that the shapes assumed

by triangles advected in a two-dimensional spatiotempo-
rally chaotic fluid flow mirrored those observed in turbu-
lent flows, suggesting that fully developed energy cascades
are not required to produce strongly distorted shapes. We
found that the most important factor in determining the

(a)E-mail: nicholas.ouellette@yale.edu

triangle shape distribution was the size of the triangles,
but that the multi-scale nature of the Eulerian flow field
was not the reason for this dependence.
Here, we extend our previous work by studying the

detailed mechanisms that drive the deformation of
Lagrangian triangles in an effort to connect the observed
shapes with the flow dynamics. After describing our
experimental setup and the ways in which we characterize
triangle shapes, we discuss how the shape distributions of
initially equilateral triangles evolve with time. We subse-
quently consider the role of the initial triangle shape,
and find not only that all initial conditions converge
to the same ultimate shape distribution but also that
there are several preferred paths through the space of
triangle shapes that organize the dynamics. We contrast
our results with simulations of triangles evolving under
purely diffusive dynamics (that is, in the limit of very
low Peclet number), which show very different shape
dynamics. These results lead us to a mechanistic picture
of triangle deformation in our flow field. Finally, we show
how the shape evolution can be explained by considering
the topological structure of the flow field. We finish by
summarizing and discussing the connections between our
results and the more general turbulent-flow problem.

Methodology. – As we have described elsewhere
[9–11], our apparatus generates quasi–two-dimensional
flow via electromagnetic forcing. We place a thin layer,
4mm deep, of an electrolyte (14% by mass NaCl in water)
above an array of permanent magnets. The magnets are
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arranged in a square lattice of alternating polarity, with
a center-to-center spacing of Lf = 2.54 cm, which we take
to be the forcing scale. The fluid is separated from the
magnets by a glass plate with a thickness of 3.18mm; the
glass is coated with a hydrophobic wax to reduce bottom-
friction effects. The entire flow cell measures 86× 86 cm2
(34Lf × 34Lf ), of which we measure the central 31×
23 cm2 (12Lf × 9Lf ), and contains 1156 magnets. The
unusually large size of the apparatus allows us to measure
long-time Lagrangian statistics, ensures that the effects of
the lateral side walls are negligible in the measurement
area, and provides a wide range of scales larger than the
forcing scale Lf .
In order to drive fluid flow, we run DC electric current

(of order 1A) through the electrolyte. The combination of
the horizontal current density and the vertical magnetic
field leads to a Lorentz body force on the fluid, which sets
it into motion [12–16]. The spatiotemporal structure of the
flow field is characterized by the Reynolds number Re=
u′Lf/ν, where u′ is the root-mean-square velocity (of order
1 cm/s) and ν is the kinematic viscosity. For Re! 70, the
flow field is a square lattice of steady vortices of alternating
sign. As Re increases, the symmetries of this cellular
flow are spontaneously broken and the flow becomes
chaotic in space and time [16,17]. Eventually, at Re≈ 200,
the vertical velocity profile becomes unstable and the
flow develops a non-negligible component in the depth
direction [11]. Here, we report results at Re = 185 (driven
by a forcing current of 1.5A), well above the transition
to chaos but still in the quasi–two-dimensional regime.
Though we do observe some inverse energy transfer, our
flow does not exhibit a fully developed inverse energy
cascade.
To measure the flow fields, we use particle tracking

velocimetry (PTV). Briefly, we seed the fluid with 51µm
fluorescent polystyrene microspheres; these particles are
less dense than the electrolyte, and so float to its surface.
To minimize surface-tension–driven interactions among
the particles, we float an additional thin layer of fresh
water above the electrolyte. The particles sit on the (misci-
ble) interface between these two fluids. We image the
particles with a 4-megapixel camera at a frame rate of
60Hz. Estimating the time scale of the forcing to be
TL =Lf/u′ ∼ 2 s, this frame rate gives us a time resolution
of 167 samples per TL. We image roughly 35 000 parti-
cles per frame, locating them with a precision of about
0.1 pixels (∼13µm); the mean interparticle spacing is on
the order of 15 particle diameters. We then track the
motion of the particles using a three-frame predictive algo-
rithm [18], and differentiate the resulting particle tracks by
convolving them with a Gaussian smoothing and differen-
tiating filter [19], giving us a set of locations and velocities
at each time step. To suppress noise and ensure that these
fields are two-dimensional, we project the measurements
onto a set of numerically computed stream function eigen-
modes [11,20]. Finally, we construct virtual Lagrangian
trajectories (thereby avoiding potential finite-volume bias

from long measured trajectories [21]) by numerically solv-
ing the equations of motion for fluid elements given the
measured fields using a second-order Runge-Kutta inte-
grator [9,14,15,22].
To describe the shapes and sizes of Lagrangian triangles,

we label their side lengths as Λ1, Λ2, and Λ3, with Λ1 "
Λ2 "Λ3, and their internal angles as θ1, θ2, and θ3, with
θ1 " θ2 " θ3. We characterize the size of a triangle with
the radius of gyration, given by

R2g =
1

3
(Λ21+Λ

2
2+Λ

2
3). (1)

We are primarily interested, however, in the trian-
gle shape. The shape has two degrees of freedom,
and so we require two independent parameters to
characterize it. One common choice is to define the
vectors ρ1 ≡ (r2− r1)/

√
2 and ρ2 ≡ (2r3− r2− r1)/√

6, where rn is the position of the n-th triangle
vertex [23,24]. With these vectors, the parameters
χ≡ (1/2) arctan[2ρ1 ·ρ2/(ρ22− ρ21)] and w≡ 2|ρ1×ρ2|/
(ρ21+ ρ

2
2) can then be defined to characterize the triangle

shapes [3,4,13,25]. Unfortunately, although χ and w are
indeed independent quantities that are only functions
of the triangle shape, they do not have clear geometric
interpretations [13]. We therefore instead describe the
triangle shape using a simpler set of parameters [9]: the
largest internal angle θ1 and the ratio of the smallest
side to the intermediate side, γ ≡Λ3/Λ2, which gives
a measure of the closeness of the nearest two vertices.
Defined in this way, θ1 ∈ [π/3,π] and γ ∈ [0, 1]. We note
that only shapes where γ " 2 cos θ1 are geometrically
allowed.

Results. – As a Lagrangian triangle evolves under the
action of flow, the shape of the three-point cluster changes
and the mean triangle shape will move on some path
through the shape space spanned by γ and θ1. When the
evolution time is large compared to the correlation time of
the flow field and the radius of gyration of the triangles has
grown large compared to the correlation length of the field,
the shape distribution will approach a universal form [3,9].
This “random” limit can be computed by considering
the shapes assumed by triplets of uniformly distributed
random numbers, and is given by γ = 0.55 and θ1 = 0.65π
for an unconstrained system like ours. The mean shape of a
given population of triangles therefore has two well-defined
limits: the initial shape distribution and the final random
limit. The dynamics of the advecting field determine only
the path joining these two points in shape space.
To illustrate this point, we show in fig. 1 the trajectories

in shape space taken by two populations of initially equi-
lateral (γ = 1, θ1 = π/3) triangles: one that is advected in
our chaotic flow and one where the dynamics of the trian-
gle vertices are simply diffusive. The ensemble of diffusive
triangles moves rapidly and monotonically through shape
space to its final distribution. The ensemble of chaotically
advected triangles, however, shows markedly different
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Fig. 1: (Color online) Mean shape of a population of initially
small (Rg(t= 0) =Lf/20), equilateral (γ = 1, θ1 = π/3) trian-
gles, evolving either diffusively or in our experimental flow.
Both populations begin and end at the same points in shape
space, but take different paths in between.

behavior, exploring an intermediate, highly distorted
regime before finally settling back to the random limit
(after a time of roughly 90TL). This type of “overshoot”
has been observed previously [13,25], and was interpreted
as a signature of turbulent flow. As we showed, however,
robust turbulence cascades are not required for the devel-
opment of such an overshoot [9]; rather, chaotic advection
appears to be sufficient. Interestingly, we found that the
triangle shapes were closely tied to the triangle sizes:
large triangles favored shapes close to the random limit,
while small triangles were more strongly distorted. These
observations are scale-dependent and hold regardless of
how long the triangles have evolved in time. We find that
the shape statistics for each length scale are stationary.
Triangle growth and deformation are therefore strongly
coupled.
To gain more insight into the flow dynamics governing

triangle shape and the connection with triangle size, we
studied not only the mean triangle shapes but also the
full shape distributions as a function of instantaneous
triangle size. We advected a population of initially small
triangles (Rg(t= 0) =Lf/20) until the mean triangle
shape reached the random limit. We did not vary initial
triangle size because previous work has shown that
initially large triangles do not exhibit an overshoot, more
closely tracking diffusive dynamics [9]. In fig. 2, we plot
joint probability density functions (PDFs) of γ and θ1
for four different ranges of instantaneous triangle size
for the same chaotically advected triangles illustrated in
fig. 1. The PDFs are computed using all triangles with
appropriate sizes, regardless of when they reached those
sizes. Accumulating shape data over time is justified
here because the distributions are stationary. For very
small triangles (fig. 2(a)), nearly all the triangles are
equilateral. Since the triangles tend to grow rapidly as
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Fig. 2: (Color online) Joint probability density functions
(PDFs) of γ and θ1 of triangles advected in our chaotic flow.
The PDFs are conditioned on triangle size, with (a) Rg/Lf <
10−1, (b) 10−1 !Rg/Lf < 10−1/4, (c) 10−1/4 !Rg/Lf < 101/2,
and (d) 101/2 <Rg/Lf .

they are advected [9], the only triangles in this size range
are those that have not yet had time to evolve, and so
the PDF simply reflects the initial conditions. The PDFs
for larger sizes, however, are determined by the flow
dynamics. From fig. 2(b) and (c), it appears that the
distortion of triangles at intermediate scales (that is, large
compared to the initial triangle size but small compared
to Lf , the forcing scale of the flow) can be decomposed
into two distinct stages. First, the triangles are strongly
strained, leading to a distribution that favors points that
are close to collinear (large θ1) and with two vertices
much closer to each other than they are to the third (low
γ). Subsequently, this third vertex is rapidly advected
away in a random direction, leading to a distribution that
favors two vertices close together (γ ≈ 0) but that does
not indicate any special internal angles. As the triangles
continue to grow, the two close points begin to separate.
Finally, once the triangles are large, the PDF becomes
less strongly peaked, and favors shapes that are closer to
equilateral, with a lower θ1 and an intermediate γ.
When the triangles evolve diffusively rather than under

the influence of chaotic advection, the picture is markedly
different. The PDF changes rapidly from a delta function
at the initial conditions to the stationary distribution
shown in fig. 3. The similarity of the PDFs in fig. 2(d)
and 3 is striking but expected: once the triangles are large,
the motion of the three vertices is uncorrelated even in
chaotic advection, and effectively they diffuse relative to
each other.
Although most studies have considered shapes that

are initially equilateral [8,9,13,25], this initial condition
is somewhat arbitrary, since (as shown above) triangles
rapidly distort into shapes that are far from isotropic.
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Fig. 3: (Color online) Joint probability density function (PDF)
of γ and θ1 for triangles that evolve diffusively. Contrary to the
chaotic advection case, this PDF is independent of the triangle
size. Note the close similarity between this PDF and the case
of very large advected triangles (fig. 2(d)).

Fig. 4: (Color online) Trajectories of the mean triangle shape
under chaotic advection for different initial conditions. Initially
equilateral triangles deform much more quickly than those
that are initially distorted, but all the ensembles approach the
random limit at long times (and large sizes). Note the apparent
existence of attracting curves onto which many different initial
conditions quickly converge.

We therefore considered the effect of changing these initial
conditions on the subsequent triangle evolution.
Figure 4 shows the paths of the mean shape taken

in phase space by many different ensembles of triangles
that began with different initial shapes. Just as for the
initially equilateral case, all the ensembles distort away
from their initial distribution and eventually converge
to the random limit at long times. But rather than
approaching this random limit in a different way for each
initial condition, fig. 4 shows a surprising amount of self-
organization in shape space. In particular, two special
trajectories are apparent that appear to attract triangles
with different initial conditions: one that begins in the
upper left corner of the phase space (equilateral triangles)

Fig. 5: (Color online) Trajectories of the mean triangle shape
for diffusively evolving triangles, for different initial conditions.
Unlike the chaotic advection case (fig. 4), diffusive triangles
converge to the random limit very rapidly and without any
clear organizing structure in shape space.

and sweeps towards the central part (γ ≈ 0.4, θ1/π≈ 0.75)
and one that begins in the upper right corner (equidistant
collinear vertices). This result suggests, interestingly, that
the detailed initial shape distribution of the triangles does
not dominate the subsequent evolution, but rather that
the flow dynamics impose structure on the shape changes
and may be responsible for the presence of attracting
curves in the phase-space flow. Predicting these organizing
curves from the equations of motion remains an open
challenge.
To clarify these suggestions, we also considered the

effect of different initial conditions on diffusively evolving
triangles, as shown in fig. 5. Unlike the case of chaotic
advection, the diffusive triangles flow much more directly
towards the random limit, and much less organization is
evident.
In figs. 4 and 5, the triangles grow as they deform and

move along the measured paths in shape space. As we
showed previously, however, shape and size are tightly
coupled [9]. Separating the two effects —that is, growth
and deformation— can lead to a deeper understanding
of the dynamics. To that end, we calculated both the
triangle growth rate, defined as dRg/dt, and the triangle
deformation rate, defined as

√(
∂γ

∂t

)2
+

(
∂θ1/π

∂t

)2
. (2)

The deformation rate is thus the magnitude of the rate
of change of position in shape space. In fig. 6, we show
the growth rate and deformation rate as a function of
triangle shape for several different times. As is clearly
shown, the triangles that grow quickly are not necessar-
ily the same as those that deform quickly. The fastest-
growing triangles are those that have large γ and are
nearly collinear. Though the growth rate distributions are
not stationary, this tendency persists at all times. Such
quickly growing, collinear triangles are likely those that
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Fig. 6: (Color online) Rates of triangle growth (a)–(c) and
deformation (d)–(f) for T/TL = 3/4 (a), (d), 1 (b), (e), and 5/4
(c), (f). In all cases, dark areas denote faster rates than light
areas. Triangles that grow quickly are not necessarily those
that deform quickly.

are trapped in strongly stretching Lagrangian Coherent
Structures (LCS) [26], which are nearly line-like them-
selves [14]. Small collinear triangles should behave simi-
larly to material-line segments, which have been shown to
align strongly with the attracting LCS [27].
In contrast to the growth rate distributions, the distrib-

ution of triangles that deform the fastest is much more
dependent on time. At short times, the most rapidly
deforming triangles are those that are nearly equilateral,
whereas low-γ, high-θ1 triangles deform slowly. As time
progresses, however, it is the high-γ, high-θ1 triangles that
deform quickly, while the slowly deforming triangles are
those with low γ and low θ1.
These data, combined with the results shown in fig. 2,

support a detailed, mechanistic picture for how triangles
(and therefore material areas) evolve in our flow. Small
triangles, regardless of their initial shape, are rapidly
distorted into nearly collinear structures by the action of
coherent (Lagrangian) strain. As these strained triangles
are trapped in strongly stretching, line-like regions of the
flow, they grow rapidly until they are large enough that
the different vertices can sample distinct regions of the flow
field. A single vertex is then typically swept away from the
other two in a random direction, leading to triangles with
low γ but random θ1. As the triangles continue to grow,
the closer two vertices may also be separated, leading
to shapes that move away from the extreme values of
γ and θ1. Finally, once the three vertices are separated
by distances large compared to the correlation length
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Fig. 7: (Color online) (a) Size (Rg), growth rate (dRg/dt), and
distance to the nearest hyperbolic point (∆hyp) for a single
triangle. (b) Correlation coefficient of dRg/dt and ∆hyp for
the same triangle.

of the flow field, the vertices simply diffuse relative to
one another and the distribution reaches the stationary,
random limit.
To test the hypothesis that it is the coherent strain

in the flow that drives the distortion and growth of
triangles, we studied triangles as they passed near the
hyperbolic critical points in our flow. The hyperbolic
points are stagnation points that are purely straining,
and drive much of the chaotic advection in the flow [28].
Previously, we introduced a robust algorithm for locat-
ing these points in experimental flow fields based on the
curvature of Lagrangian trajectories [16,17], and showed
that the hyperbolic points can sometimes be long-lived,
particularly at lower Reynolds numbers. As the hyper-
bolic points are both sites of large, coherent strain and
are the endpoints of LCS, they should have measurable
effects on triangle shape if our hypotheses above are
correct.
In fig. 7, we show data for an example triangle. As time

evolves, Rg increases and the triangle grows more or less
monotonically larger. The growth rate dRg/dt, however,
shows large fluctuations. To explain these fluctuations,
we also plot the distance ∆hyp between the triangle
centroid and the nearest hyperbolic point. Qualitatively,
it appears that jumps in the growth rate are associated
with times when the triangle centroid moves close to
the hyperbolic point. This observation is supported by the
cross-correlation of the two curves, shown in fig. 7(b): the
two curves are strongly correlated.
A single triangle, however, can only tell us so much.

We therefore computed the cross-covariance of ∆hyp and
dRg/dt for many triangles, as shown in fig. 8. In addition,
we conditioned these covariances on Rg/Lhyp, where Lhyp
is the mean hyperbolic point spacing, by truncating
the trajectories of triangles that exceed this threshold.
Two features are evident from these plots. First, ∆hyp
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Fig. 8: (Color online) Cross-covariance of ∆hyp, the distance
to the nearest hyperbolic point, and the triangle growth
rate averaged over an ensemble of triangles, conditioned on
Rg/Lhyp. The black dots show the covariance for τ/TL = 0.

and dRg/dt are well correlated, but with the strongest
correlation coming with a characteristic lag after the
triangle passes the hyperbolic point. We associate this lag
with the low flow velocities just around a hyperbolic point
(since it is a stagnation point): the triangle vertices must
be advected slightly away from the hyperbolic point itself
before they can separate quickly. Second, the covariance
is strongest for triangles whose size is on the order of the
mean hyperbolic point spacing, Rg ∼ 1.4Lhyp. This shows
that triangles larger than the scale of the critical-point
separation do not contribute to this effect.

Conclusions. – By studying the shape dynamics of
Lagrangian triangles, we have elucidated the mechanisms
that govern the distortion of material volumes in complex
flow. The process by which triangles grow and deform
consists of a sequence of distinct phases. Triangles are
first caught in coherently straining regions and become
nearly collinear. Subsequently, they grow rapidly until one
vertex separates from the other two, though in a random
direction. Finally, the two close vertices also separate,
the dynamics of the three points decorrelates, and the
shape distribution is identical to that of random triplets
in two-dimensional space. The situation is qualitatively
different for diffusively evolving triangles, where there is
no coherent strain.
We expect that the qualitative results here are likely

to be quite generic, and thus may also apply to three-
dimensional turbulent flows, which also show non-trivial
shape dynamics [2,3,6,8], with two principle distinctions:
coherent straining regions are not quasi–one-dimensional
in three-dimensional turbulence, and Lagrangian points
separate algebraically rather than exponentially. By prop-
erly accounting for these distinctions, however, the general
mechanisms outlined here may potentially be used to
refine turbulence models that depend on material-volume
deformation.
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