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We investigate the scaling properties of the primary flow modes and their sensitivity to
aspect ratio in a liquid gallium (Prandtl number Pr = 0.02) convection system through
combined laboratory experiments and numerical simulations. We survey cylindrical aspect
ratios 1.4 ≤ Γ ≤ 3 and Rayleigh numbers 104 � Ra � 106. In this range the flow is
dominated by a large-scale circulation (LSC) subject to low-frequency oscillations. In
line with previous studies, we show robust scaling of the Reynolds number Re with Ra
and we confirm that the LSC flow is dominated by a jump-rope vortex (JRV) mode
whose signature frequency is present in velocity and temperature measurements. We
further show that both Re and JRV frequency scaling trends are relatively insensitive to
container geometry. The temperature and velocity spectra consistently show peaks at the
JRV frequency, its harmonic and a secondary mode. The relative strength of these peaks
changes and the presence of the secondary peak depend highly on aspect ratio, indicating
that, despite having a minimal effect on typical velocities and frequencies, the aspect
ratio has a significant effect on the underlying dynamics. Applying a bandpass filter at
the secondary frequency to velocity measurements reveals that a clockwise twist in the
upper half of the fluid layer coincides with a counterclockwise twist in the bottom half,
indicating a torsional mode. For aspect ratio Γ = 3, the unified LSC structure breaks
down into multiple rolls in both simulation and experiment.

Key words: turbulent convection, Bénard convection

† Email address for correspondence: j.s.cheng@rochester.edu

© The Author(s), 2022. Published by Cambridge University Press 949 A42-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:j.s.cheng@rochester.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.778&domain=pdf
https://doi.org/10.1017/jfm.2022.778


J.S. Cheng, I. Mohammad, B. Wang, D.F. Keogh, J.M. Forer and D.H. Kelley

1. Introduction

Turbulence is traditionally associated with intermittent, stochastic flows. Despite this, in
many examples of convective turbulence, the flow is organised into large-scale coherent
structures; for example, granulation at the solar surface and cloud streets in the atmosphere
(Markson 1975; Nordlund, Stein & Asplund 2009; Pandey, Scheel & Schumacher 2018).
The most fundamental and ubiquitous coherent structure in thermal convection is the
large-scale circulation (LSC) – approximately described as a quasi-two-dimensional
overturning motion of the fluid bulk (Krishnamurti & Howard 1981; Villermaux 1995;
Funfschilling & Ahlers 2004; Zhou et al. 2009), but also subject to a variety of complex
dynamics, as we will discuss further in this work. The LSC is of central importance
for convective turbulence theory; it shears the fluid where thermal plumes are ejected
from boundary layers into the bulk, and numerous predictions for the transport properties
of convective systems rely on this sweeping effect as a theoretical launching point
(Grossmann & Lohse 2000; Shishkina et al. 2015; Ching et al. 2019).

Progress has been made in characterising the LSC in the reduced system of
Rayleigh–Bénard convection. In it, a layer of fluid is confined between two parallel plates
while being heated from below and cooled from above. An extensive body of work
has examined this flow in water and similar fluids, where the ratio between the viscous
diffusivity and thermal diffusivity – characterised by the Prandtl number Pr = ν/κ – is
near or larger than unity. Here, ν is the kinematic viscosity and κ is the thermal diffusion
coefficient.

In this canonical set-up, comprised of an aspect ratio Γ = D/H = 1 cylindrical
container (where D is the vessel diameter and H is the height) of fluid with Pr �
1, fundamental LSC behaviours have become apparent. Two modes, corresponding to
low-frequency oscillations, appear to dominate; a sloshing horizontal translation of the
LSC plane and a periodic twisting of the LSC plane around the central axis of the container
(Funfschilling & Ahlers 2004; Zhou et al. 2009; Sun, Xia & Tong 2005). These so-called
‘sloshing’ and ‘torsional’ modes are illustrated in figure 1(a,b). Although we portray them
separately here, it is argued that the two modes are interconnected and inseparable, both
arising from the tendency of the LSC to become misaligned with respect to its container
(Brown & Ahlers 2009; Xi et al. 2009).

Convection in liquid metals, for which the thermal diffusivity is orders of magnitude
larger than the momentum diffusivity and Pr � 1, has received far less attention (Rossby
1969; Takeshita et al. 1996; Cioni, Ciliberto & Sommeria 1996, 1997; Glazier et al. 1999;
Aurnou & Olson 2001; King, Stellmach & Buffett 2013; Frick et al. 2015; Schindler et al.
2022; Xu, Horn & Aurnou 2022). This is despite a broad range of applications; low-Pr
convection is involved in interiors of terrestrial planets (Aurnou et al. 2015), turbulent
regions of stars (Hanasoge, Gizon & Sreenivasan 2016), industrial processing of materials
(Asai 2012) and energy technologies such as liquid metal batteries (Kelley & Weier 2018),
among other systems.

In Pr � 1 fluids, the thermal boundary layers at the top and bottom boundaries are
significantly thicker than the momentum boundary layers, leading to significantly larger
thermal plumes detaching from the boundary layers and enhanced vorticity generation
(Schumacher, Götzfried & Scheel 2015). The result is distinct dynamics, scaling properties
and statistics from Pr � 1 flows (Ahlers, Grossmann & Lohse 2009; Scheel & Schumacher
2016, 2017), as well as different interactions between the LSC and the boundary
layers (Schumacher et al. 2016). One way these distinctions manifest is in the scaling
relationships between global parameters. Momentum transport is parametrised by the
Reynolds number Re = UH/ν, where U is a typical velocity, while the thermal forcing
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Figure 1. Periodic motions of the LSC in convection: (a,d) the sloshing mode, (b,e) the torsional mode and
(c, f ) the jump-rope vortex (JRV) mode. Panels (a–c) correspond to one apex of the motion, set as the initial
phase, while panels (d–f ) correspond to the opposite phase. The blue region represents the plane of the LSC.
Arrows represent motions of the LSC associated with each mode. Dashed lines represent a meridional slice of
the vessel, which coincides with the time-averaged plane of the LSC motion in each case.

is parametrised by the Rayleigh number Ra = αg�TH3/νκ , where α is the coefficient
of thermal expansion, g is gravitational acceleration and �T is the overall temperature
difference. In the Ra ranges relevant to most applications, Grossmann & Lohse (G–L)
theory predicts that Re scales as Ra1/2 in water but as Ra2/5 in liquid metals (Grossmann
& Lohse 2000), a result that has been corroborated in experiments and simulations (Cioni
et al. 1997; Sun & Xia 2005; Scheel & Schumacher 2017; Zürner et al. 2019; Schindler
et al. 2022) and points to dynamical differences in the flows.

The majority of Pr � 1 convection studies have adhered to the canonical cylinder
of aspect ratio Γ = 1 (Ahlers et al. 2009). In it, the sloshing and torsional modes
are dominant, as for moderate Pr (Horn, Schmid & Aurnou 2021). But recent studies
focusing on Γ > 1 geometries have demonstrated the emergence of another mode, dubbed
the jump-rope vortex (JRV) for its resemblance to the flipping motion of a jump rope
(Vogt et al. 2018; Zürner et al. 2019; Akashi et al. 2022; Horn et al. 2021). This mode
appears at relatively high Reynolds values of Re � 103 and likely originates in a turbulent
environment (Vogt et al. 2018). We illustrate its behaviour in figure 1(c). The JRV is
in fact the dominant mode at cylindrical aspect ratios

√
2 � Γ � 2 (Vogt et al. 2018).

Using dynamic mode decomposition in direct numerical simulations (DNS), Horn et al.
(2021) found that the JRV is still present even at an aspect ratio Γ = 1, although it is less
dynamically important than the slosh and torsional modes. Using laboratory experiments
combined with DNS, Akashi et al. (2022) discovered that a network of JRVs dominate the
LSC dynamics in a cuboid container of sidewall-length-to-height aspect ratio of 5. These
results point to the idea that the properties of the LSC – particularly its geometry and the
dynamical importance of different modes – vary greatly over a relatively narrow range of
moderately large aspect ratios between 1 and 5.

In this work, we present a suite of convection experiments and complementary
simulations in liquid gallium (Pr = 0.02) in order to delineate the scaling properties of
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Figure 2. (a) Design drawing of the experimental set-up. The cylindrical vessel is composed of copper top
and bottom plates and a Delrin acetyl polymer sidewall. (b,c) Velocity and temperature measurement probe
placements around the set-up. There are nine ultrasound transducers (numbered 1–9 and colour coded) and
two sets of four thermocouple probes embedded on both the top and bottom plates (numbered T0–T3 with
positions marked by red circles). Horizontal ultrasound probes are placed at heights z = H/4, H/2 and 3H/4
for Γ = 1.4, 1.7 and 2, and z = H/3, H/2 and 2H/3 for Γ = 3. Chord probes 5, 6 and 7 have beams parallel to
probe 1 but offset horizontally by D/4 (the probes are placed at a small angle in order to account for refraction
of the beam at the Delrin–gallium interface). Some probes in the Γ = 3 vessel are rotated to different locations
to conserve space, but they retain radial/chord orientations. Vertical ultrasound probe 9 is located at the radial
centre while probe 8 is 4 mm from the sidewall. The radial distances of the thermocouple probes from the
central axis are 1.15 cm, 2.30 cm, 3.80 cm and 4.45 cm.

the primary flow modes and their sensitivity to the container aspect ratio. We conduct
a survey over multiple aspect ratios 1.4 ≤ Γ ≤ 3 and Rayleigh numbers 104 � Ra �
106. Comparing frequency spectra from our laboratory velocity measurements and flow
fields from simulations yields quantitative agreement. Normalising the JRV oscillation
frequency with a diffusive time scale based on the overall path length collapses it into the
same scaling against Ra over multiple aspect ratios. While the JRV serves as the dominant
flow mode for 1.4 ≤ Γ ≤ 2, the flow dynamics nonetheless varies with the aspect ratio.
A separate spectral peak appears in the temperature and velocity data more consistently
as Γ approaches 1, and filtering around this peak gives evidence that it corresponds
to a torsional motion. For Γ = 3, the JRV signature is no longer detectable. Unlike in
JRV-dominated regimes, the large-scale flow appears to consist of two or more circulations
in the horizontal dimensions, and is prone to reversals in orientation.

Below, in § 2, we outline our laboratory and numerical methods. In § 3 we present and
interpret our main findings: § 3.1 looks at scaling between the global parameters, § 3.2
examines features of the flow morphology and 3.5 focuses on individual spectral peaks
and connects them to LSC modes. In § 4 we summarise results and discuss the broader
implications of this work.

2. Methods

Our study was conducted using a novel laboratory set-up designed and fabricated at the
University of Rochester (Cheng et al. 2021). Figure 2(a) shows the overall layout of the
set-up with a design drawing. The working fluid is liquid gallium and is confined in a
cylindrical vessel with copper plates for the top and bottom boundaries and an insulating
Delrin acetyl polymer cylinder for the sidewall. To explore convection at different aspect
ratios, we employ several interchangeable Delrin sidewalls of heights H = 3.3, 5.0, 5.9
and 7.1 cm and inner diameter D = 10 cm, corresponding to aspect ratios Γ = 3, 2, 1.7
and 1.4.
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The K-type thermocouple temperature probes are embedded in the top and bottom
plates, within 3 mm of the fluid layer, as shown in figure 2(b,c). Signals are recorded
by a set of National Instruments NI 9211 cDAQ modules and read into LabVIEW. We
induce convection in the gallium layer using heat exchangers attached to each copper
plate. Water is pumped through the heat exchangers from a pair of thermal baths; a
VWR 1136 heated circulating water bath for the bottom plate and a Thermo Neslab RTE7
chiller for the top plate. The heat exchangers consist of non-inductively wound copper
tubing, ensuring uniform temperatures across plates to <5 % of the vertical temperature
difference for almost all cases. Thermocouple measurements serve as a diagnostic tool,
and they are also useful for controlling the device; the heat exchangers are tuned such
that the mean temperature (Tbot + Ttop)/2 always remains in the neighbourhood of
43 ◦C and the fluid properties of the gallium remain nearly constant over all cases (see
table 2 in the Appendix). Here, the overline indicates spatial averaging across all top or
bottom temperature probes. On average, the viscous diffusivity ν = 2.6 × 10−7 m2 s−1,
thermal diffusivity κ = 1.3 × 10−5 m2 s−1 and coefficient of thermal expansion α =
1.3 × 10−4 K−1. The fluid properties are estimates based on published values (Davidson
1968; Okada & Ozoe 1992; Prokhorenko et al. 2000; Iida & Guthrie 2015a,b). Further
details on the set-up, probe layout and gallium properties can be found in Cheng et al.
(2021).

Our other primary diagnostic tool is an array of ultrasound probes placed around the
vessel in various positions and angles, again shown in figure 2(b,c). Using ultrasonic
Doppler velocimetry (UDV), these probes give us one-component velocity profiles along
each probe beam. Much of the following analysis will make use of these velocity
measurements and their statistics.

Figure 3 shows typical measurements from six of the ultrasound probes. These
high-resolution Dopplergrams – one-dimensional velocities plotted as colour, varying over
a distance and time – reveal a strong periodic signal which we will argue is associated
with the JRV. We can estimate typical velocities in the flow using the free-fall velocity
Uff , the characteristic velocity associated with the leading-order balance between inertial
and buoyancy terms

Uff = (αg�TH)1/2 , (2.1)

where �T = 〈Tbot − Ttop〉 and ‘〈 · 〉’ signifies an average over time. Assuming a single
flow structure, the path length of the LSC is coarsely approximated by L = 2H + 2D
(Vogt et al. 2018), and an associated free-fall circulation time τff = L/Uff and free-fall
circulation frequency fff = 1/τff can be derived as useful quantities for our subsequent
discussion. Since the Dopplergrams in figure 3 show distance vs time, we can represent Uff
as diagonal lines in each panel. Compared with the angle of streaks in the Dopplergrams,
we see that Uff qualitatively serves as a slight overestimate for the speed of LSC motion.

We compare our experimental results with complementary DNS. The DNS were
performed using the open-source finite volume solver OpenFOAM. The discretisation
scheme utilised a fourth-order cubic interpolation scheme in space and a fourth-order
least-squares scheme to calculate the surface normal gradients. The second-order accurate
implicit Euler scheme was used for time advancement. The incompressible Navier–Stokes
equations were solved using the Oberbeck–Boussinesq approximation. The conservation
of momentum is given by

∂u
∂t

+ (u · ∇)u − ν∇2u = 1
ρ0

∇ (ρ0gz − p)− gα(T − T0), (2.2)
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Figure 3. Dopplergrams showing velocity as a function of distance from probe and time, from a convection
case at Ra = 6.5 × 105 (�T = 8.8 ◦C, Γ = 1.7). All of the probes used for a typical case are included here,
with numbers and positions given in figure 2. Features with slopes matching the solid or dotted lines move
away from or toward the probe, respectively, with speed equal to the free-fall speed Uff .

in which t is time, u is the velocity vector, ρ0 is the density, g is the gravitational
acceleration vector, z is the vertical depth, p is the pressure and T is the temperature.
The continuity equation is

∇ · u = 0, (2.3)

and finally, the temperature is calculated using the energy equation

∂T
∂t

+ u · ∇T = k
ρ0Cp

∇2T, (2.4)

in which k is the thermal conductivity and Cp is the heat capacity. Dirichlet boundary
conditions for temperature were used on the top and bottom boundaries, while the
sidewalls were considered to be perfectly insulating due to the low thermal conductivity
of the Delrin. No-slip boundary conditions were used on all surfaces to solve the equation
for the conservation of momentum. The main DNS was carried out on the study with
Γ = 1.4 and Ra = 1.2 × 106, with grid dimensions of Nx × Ny × Nz = 222 × 222 × 158.
The computations were carried out for a duration of 500τff after a statistically steady state
was reached. Mesh convergence was checked by comparing the Nusselt number at the top
boundary against a finer grid with a resolution of Nx × Ny × Nz = 296 × 296 × 211. The
Nusselt number was found using

Nu = hl
k
, (2.5)

in which h is the heat transfer coefficient and l is the characteristic length which, in this
case, we define as the height of the domain. The heat transfer coefficient was calculated
using

h = q
�T

, (2.6)

in which q is the heat flux at the top boundary and �T = TH − TC. An average was
computed for six times the turnover time resulting in a value of Nu = 4.14 and 4.15 for
the coarse and fine grid, respectively. With only a 0.24 % difference found between the
two grid sizes, we considered the mesh converged.
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3. Results

3.1. Global parameters
Global parameters provide a broad indication of the underlying dynamics in the system. In
convective systems, the Reynolds number and the Rayleigh number are known to follow
a power law scaling of the form Re = cReRaγRe , where cRe and γRe are constants. We
plot Re vs Ra values in figure 4. An added complication arises from the fact that many
methods exist for estimating Re based on velocities. Previous studies have shown that even
measurements from a single ultrasound probe can produce Re values that scale as predicted
theoretically (Vogt et al. 2018; Zürner et al. 2019), despite only giving one component of
the velocity vector along one line. We estimate Re using three different methods:

(i) We take the time and space root-mean-square (r.m.s.) of velocities measured by
probe 1, which is oriented radially through the tank at height H/2. We refer to this
speed estimate as Ur.

(ii) Beams from probes 3, 4 and 9 all intersect at a single point at the central axis of
the tank, forming an orthogonal basis for the velocity vector at that point, which
we name P. Assuming a Cartesian coordinate system with the origin at the bottom
of the central axis of the vessel, point P has coordinates (x, y, z) = (0, 0, 3H/4)
in the Γ = 1.4, Γ = 1.7 and Γ = 2 vessels. In the Γ = 3 vessel, in which spatial
constraints require different probe placements, the coordinates of P are (0, 0, 2H/3).
The speed at P is

U3D =
√〈

u2
x (P)+ u2

y (P)+ u2
z (P)

〉
, (3.1)

where ux, uy and uz are measured by probes 4, 3 and 9, respectively. To reduce noise,
we include velocity measurements in the vicinity of P; if � represents the total length
of a given probe beam, we take the spatial r.m.s. of measurements within �/8 of P
for each probe.

(iii) From figure 3, there appears to be a single spatial structure detected by probe 3.
For this estimate, we therefore assume that the vessel is populated by a single LSC.
The intersection of probes 3 and 4 at P is near the top of the tank, so we use them
to estimate the overturning velocity of the LSC (which is approximately horizontal
there)

ULSC =
√〈

u2
x (P)+ u2

y (P)
〉
. (3.2)

This estimate closely follows the methodology of Zürner et al. (2019), but without
averaging against another position near the bottom of the tank since we only have
one radial probe at z = H/4.

Figure 4 shows the scaling properties of Re with Ra following our above estimates for the
typical velocity, where Rer = UrH/ν, Re3D = U3DH/ν, ReLSC = ULSCH/ν and H varies
with the aspect ratio as described in § 2. Figure 4(a) shows that Ur produces a seemingly
robust scaling of Rer = 3.9+1.5

−1.1Ra0.46±0.03, near the G–L theory prediction and previous
studies at Γ = 1.7 and 2, although it underestimates the prefactor by approximately a
factor of 2. (The uncertainties represent 95 % confidence intervals in a linear polynomial
fit to the logarithm of the scaling. Subsequent best-fit scaling arguments use the same
fitting method.) Results are in close agreement with Zürner et al. (2019), who found Re =
3.1Ra0.46 for a similar probe position. The Re values are generally smaller than other
published predictions, as expected in the mid-height region where horizontal velocities
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Figure 4. Variation of the Reynolds number Re with the Rayleigh number Ra for all convection cases.
Simulation cases are plotted as yellow hexagrams. Best-fit scaling trends over all aspect ratios are plotted
as black lines. Also plotted for comparison are the best-fit scaling slopes from previous low-Pr convection
studies: Re = 12Ra0.424 (Cioni et al. 1997), Re = 6.5Ra0.45 (Scheel & Schumacher 2017) and Re = 8.0Ra0.42

(Zürner et al. 2019). Panels (a–c) show Re vs Ra using estimates of Re based on Ur, U3D and ULSC, respectively.
Panels (d–f ) show Re compensated by the overall best-fit scaling trends vs Ra, with coloured lines representing
the best-fit trends for individual aspect ratios. Yellow hexagrams represent velocity measurements from the
simulation case.

tend to be weak (Qiu & Tong 2001; Ahlers et al. 2009). However, data do not appear to
collapse meaningfully for the Γ = 1.4 or 3 geometries. One explanation for this is related
to the fact that an LSC by nature produces slow horizontal velocities at the mid-height
horizontal plane; the largest component of LSC flow in this region is vertical (Qiu &
Tong 2001). If the JRV mode is most energetic at Γ ≈ 2, its vigorous orbital motion could
periodically lift the core of the LSC outside of the mid-height plane (see figure 1), allowing
horizontal flow outside the core region to sweep in and be detected by probe 1. This would
increase the average velocity. On the other hand, when the JRV motion is weaker, we
speculate that this effect is dampened and average velocities lowered. If we use this model
to explain the lower Ur velocities when Γ = 1.4 and Γ = 3, it is consistent with the
prevalence of other modes unique to these geometries, which we discuss further in § 3.4.

Figure 4(b,c) demonstrates that Re3D and ReLSC are both successful at collapsing data
to a single best-fit scaling across 1.4 ≤ Γ ≤ 2; Re3D = 8.4+2.3

−1.8Ra0.43±0.02 in the former
case and ReLSC = 10.8+1.5

−1.3Ra0.41±0.01 in the latter. For Re3D, data points from Γ = 3 other
than the two clear outliers at the lowest Ra values are included in the fit, while for ReLSC,
the fit only includes 1.4 ≤ Γ ≤ 2. The case of Re3D collapses most of the data points
from Γ = 3, but ReLSC does not, likely because the flow at Γ = 3 is no longer dominated
by a single, horizontal LSC, running counter to the assumption underlying (3.2). We will
expand on this when examining the flow morphologies in § 3.2. Curiously, however, ReLSC
does a better job of collapsing 1.4 ≤ Γ ≤ 2 data. Ultimately, both methods are in line with
the results of Zürner et al. (2019) who found a best-fit relation of Re = 8.0Ra0.42. The
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absolute Re values for all methods give Re = O(103), in line with parameter ranges where
the JRV has been observed (Vogt et al. 2018; Akashi et al. 2022).

The DNS measurements for Re3D and ReLSC are also shown in figure 4(b,c). To optimise
experimental comparison, we sampled DNS velocities on grid points analogous to the
locations sampled by experimental UDV probes; we defined ‘virtual probes’ oriented
similarly to probes 3 and 4 with respect to the LSC, selected grid points that lay in the
probe beams’ diameters (approximated as 5 mm) and within �/8 of P and obtained a
spatial r.m.s. of the velocity components axial to each probe at these grid points. Both
the two- and three-dimensional measurements show good agreement with experimental
data; ReLSC|DNS = 3228 and Re3D|DNS = 3648 lying 1.0 % and 6.1 %, respectively, above
corresponding experimental values at Γ = 1.4, Ra = 1.18 × 106 (see table 2 in the
Appendix). A possible source of mismatch could be systematic error in our Ra estimates;
the material properties of gallium have seen a broad range of measured values, with ν
differing by as much as 40 % for a given temperature (Brandes & Brook 1992; Okada
& Ozoe 1992; Iida, Guthrie & Tripathi 2006; Xu et al. 2012; Aurnou et al. 2018). We
employ some of the most recent estimates, as discussed in Cheng et al. (2021). Mismatches
between our assumed material properties and reality would cause a translation of our
results to different Ra and Re numbers, changing the prefactors of the scaling relationships
shown in figure 4 but not affecting the exponents.

Figure 4(d–f ) shows the same data, compensated by the overall best-fit scaling trend
for each Re estimate. Within these plots, the scaling trends for data at each Γ are plotted
as coloured lines. Differences between the best-fit scaling exponents are small but not
insignificant. This may be because, while the probe beams are fixed at z = 3H/4, the
position of the JRV vortex core relative to the probe beams varies with Ra. The nature of
this variation likely changes with the JRV confinement, determined by Γ . A speculative
explanation is that the faster JRV overturn cycle at higher Ra could lead to a different
amplitude of the orbital motion, such that each subsequent case at higher Ra presents a
different region of the flow to the probes at P.

Although one might expect the JRV to complicate velocity estimates compared with a
more stationary LSC in, say, Γ = 1 containers, our results are ultimately consistent with
the predictions of G–L theory and previous DNS and experiments.

3.2. Flow morphology
In figure 5, we compare the typical flow morphologies at Γ = 1.4 and Γ = 3.
Cross-sections of the velocity field from the simulations are compared with experimental
measurements. Although only one component of the velocity vector appears for each
probe, the structure of the fields and velocity magnitudes appear to agree. Between
Γ = 1.4 and 3, an immediate contrast is clear; while a single LSC dominates the Γ = 1.4
dynamics (see also supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.
778), a torus-like LSC is present for Γ = 3, giving two overturning structures and an
intermittent central region for any meridional slice of the flow. The roughly axisymmetric
morphology in Γ = 3 DNS is not fully consistent with experimental observations – for
example, on a given horizontal plane, flows converging toward the central axis in the
x-direction often occur in concert with diverging flows in the y-direction (roughly observed
in figure 5h). Further analysis at this aspect ratio will concern experimental data. Like the
DNS, a single LSC-style structure is certainly not dominant in any Γ = 3 experiment.

A feature unique to Γ = 3, and present in both DNS and experiments, is the occurrence
of reversals in the flow direction. This LSC behaviour is known to occur at many Prandtl
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Figure 5. Visualisations of the flow in simulations (a–d) compared with velocity measurements in experiments
(e–h). Panels (a,b,e, f ) show Γ = 1.4 data at Ra = 1.2 × 106 while panels (c,d,g,h) show Γ = 3 data at Ra =
1.4 × 105. Panels (a,c,e,g) show vertical slices of the flow. Panels (b, f ) show horizontal slices at height 3H/4.
Panels (d,h) show horizontal slices at height 2H/3. The overall flow morphology visible in simulations is also
captured by experimental UDV measurements.

numbers and vessel geometries (Yanagisawa, Hamano & Sakuraba 2015; Schumacher
et al. 2016; Tasaka et al. 2016; Akashi et al. 2019). In wider aspect ratios, it can be
interpreted as an effect of the confinement, where transitions between different numbers
of rolls cause reorientations of the whole flow field (Yanagisawa et al. 2015; Tasaka et al.
2016; Akashi et al. 2019). Small-scale turbulence can also be responsible for reversals even
in Γ = 1 systems, triggering extreme dissipation events that disrupt the LSC (Schumacher
& Scheel 2016). In our set-up, reversals seem to occur with some regularity, happening
during several one hour experiments. We therefore believe the more likely culprit is
confinement of the LSC rolls rather than rare dissipation events. Further support for this
view comes from observations that the flow at the sidewall probe 8 is occasionally oriented
downward, despite usually being oriented upward; one example is our Ra = 7.7 × 104

case. The fact that cases at both higher and lower Ra values return to a downward flow
at the sidewall may reflect a somewhat arbitrary orientation of the rolls depending on the
initial conditions. In a similar fashion, a simulation at Ra = 1.38 × 105 has given upward
rolls at the sidewalls while, at only a small increase in the Ra, the flow re-orients, with a
simulation at Ra = 1.62 × 105 giving downward rolls on the sidewall.

Although not shown in figure 5, the flow morphologies at 1.7 ≤ Γ ≤ 2 bear strong
resemblance to those at Γ = 1.4. The flow is oscillatory nearly everywhere, such that its
morphology depends heavily on the cycle of the JRV. The exception to this is probe 8,
which closely tracks the sidewall of the vessel and therefore lies outside of the JRV orbit,
detecting its signal only weakly. Figure 6 demonstrates that conditionally averaging both
simulations and experiments with respect to the JRV oscillation frequency clearly reveals
a flipping jump-rope motion. The vortex core, marked by a region of low flow speed,
starts on the right central side of the LSC plane. We associate this with a phase of 0◦. It
then migrates to the central lower region of the plane at a phase of 90◦ and continues a
clockwise, roughly circular motion until returning to the initial position. Note that while
the JRV migration is clockwise, the LSC flow is counterclockwise. Our observations are
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Figure 6. Conditionally averaged snapshots of the flow field at different points in the JRV cycle at Ra = 1.2 ×
106, Γ = 1.4. (a–d) Vertical slices of the simulated velocity field (arrows) and temperature field (background
colour). (e–h) Velocity components measured in experiments. From left to right, the panels correspond to
phases 0◦, 90◦, 180◦ and 270◦ of the JRV cycle. At phase 0◦, the vortex core is near mid-height on the right-hand
side. Over the cycle, it orbits along a circular path in the clockwise sense, opposite the counterclockwise
circulation of the LSC.

consistent with the thorough analysis of JRV motion in Vogt et al. (2018). Supplementary
movies 2a and 2b show videos of the conditionally averaged flow in simulations and
experiments, respectively.

3.3. Spectral information
Thus far, we have discussed the overarching flow morphology in which a single mode
appears dominant. In truth, however, a variety of modes are expected to occur (Horn
et al. 2021). As these modes are periodic in nature, we build insight into them with
spectral analysis. In figure 7, we compare the power spectral density, calculated via
Welch’s method, of individual temperature and velocity probe measurements across all
aspect ratios. For 1.4 ≤ Γ ≤ 2 a prominent peak at lower frequencies corresponds to
the JRV motion described above and in figure 6. Other peaks at integer multiples of this
frequency are the harmonics of the JRV motion. The harmonic signal in our experiments
is consistently stronger than in previous studies (Vogt et al. 2018; Horn et al. 2021), and
furthermore does not manifest as clearly in the DNS.

At Γ = 3, we rarely observe a spectral peak at the expected JRV frequency, and often no
peak is present in the typical measurements shown in figure 7(c) or 7( f ). Instead, broader
peaks consistently manifest at higher frequencies. At low Γ , a recurring feature appears
across most Ra values; a peak close to the harmonic peak but distinct enough to count
separately. We mark this peak with a green line. Thermocouple probes and UDV probes
produce spectral peaks in close agreement with each other.

Figure 8 shows the frequencies of selected peaks in experiments at varying values
of Ra and Γ . Examining the full ensemble of cases in the first column, we see that
these frequency peaks line up along several power-law scaling trends. For each Γ , peak
frequencies appear to be well characterised by Ra0.4 variation at high Ra; this result is
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Figure 7. Power spectral density of (a–c) temperature measurements from thermocouple TC2bot and (d–f )
spatially averaged velocity measurements from velocity probe 6, with aspect ratio and Rayleigh number varying
as shown. Solid black lines mark the lowest clear frequency and dashed black lines appear where a harmonic
peak was identified. Green lines mark another spectral peak that is most prominent at lower Γ . (g) Frequencies
of spectral peaks measured in all temperature and velocity probes from the Γ = 1.4 case shown in (a,d).

consistent with prior studies (Cioni et al. 1997; Ahlers et al. 2009; Vogt et al. 2018; Zürner
et al. 2019). However, the frequencies deviate from this trend at lower Ra values. We will
expand on this discussion of frequency scaling in § 3.5.

In the second column of figure 8, the frequencies are normalised by the free-fall
frequency fff . At high Ra we observe that the scaling trend approaches a flat slope at each
aspect ratio, indicating that the frequencies become directly proportional to the turnover
time, as expected for LSC modes (and thus that fff ∝ Ra1/2). The region of transient f /fff
increases as Γ → 1. Several different explanations could be employed for this behaviour;
at low �T , the temperature control may not be robust enough to prevent horizontal
gradients across the boundaries which could accelerate existing flow modes. The flow
may be in a transient state where the canonical modes are interacting with other chaotic
motions. Notably, Γ = 1.4 data take the longest to settle to a constant scaling; this may
reflect the weaker nature of the JRV mode for Γ = 1.4. Finally, it may be the case that
flow is too near convective onset, where power-law scalings do not manifest consistently
(Chandrasekhar 1961; Rossby 1969); however, our Re vs Ra trends appear robust in this
region. To be safe, the remaining analysis in this work focuses on higher Ra ranges where
f /fff has settled toward a constant value.

In the third column of figure 8, the frequencies are normalised by f3D = L/U3D. This is
a turnover frequency based on U3D, the velocity estimate that most successfully collapses
Re vs Ra trends across all aspect ratios. The peak frequencies again approach a constant
value with increasing Ra, but apparently more quickly. For most cases, the frequency of
the lowest peak resides near f3D, indicating that flow occupies the whole vessel and that
L provides a reasonable estimate for the path length of the primary mode. Higher f /f3D
values for the peaks in Γ = 3 indicate that motions generally take place on a shorter path
length than L, consistent with the multiple rolls observed in figure 5.
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Figure 8. Peak frequencies varying with Ra for each probe in each case. Red stars represent peaks in the
temperature spectra while blue circles represent peaks in the velocity spectra. Simulation data are plotted as
yellow hexagrams. Panels (a–c), (d–f ), (g–i) and (j–l) show data from Γ = 1.4, 1.7, 2 and 3, respectively. Panels
(a,d,g,j) contain raw frequencies, and the dashed lines in each panel represent f ∼ Ra0.4. Panels (b,e,h,k) show
peak frequencies normalised by the free-fall frequency, fff . Panels (c, f,i,l) show peak frequencies normalised
by the turnover frequency derived from velocity measurements, f3D. A dashed black line is plotted at f /f3D = 1.
We associate the lowest-frequency peaks at each Ra with the JRV, except for Γ = 3, where the flow morphology
is less clear. For Γ = 1.7 and 2, higher-frequency peaks are harmonics of the main peak. At Γ = 1.4, an
additional set of peaks occurs at slightly lower frequency than this harmonic. At Γ = 3, the secondary set of
peaks does not appear to be a harmonic of the lowest-frequency signal.
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Figure 9. Orientation of the LSC estimated from velocity measurements. (a) Schematic showing our methods
for estimating orientation. Other panels show distributions of the orientation θ over one hour each at (b) Γ =
1.4 and Ra = 1.2 × 106, (d) Γ = 2 and Ra = 4.7 × 105 and (e) Γ = 3 and Ra = 1.4 × 105. Panel (c) shows
the same analysis applied to the DNS case (same parameters as panel b). Curves in panels (b–d) indicate normal
distribution fits omitting the noisy regions where ‖θ − μ‖ > 70◦ (100◦ for the simulation in panel c). Here,
μLSC and σLSC are the average and standard deviation of the LSC orientation, respectively. The insets show
polar histograms, with the radial extent representing the number of counts in each bin.

A DNS frequency peak from z = 3H/4 temperature measurements is included in
figure 8(a). It is in excellent agreement with laboratory measurements: f0 = 3.39 × 10−2

for the lowest-frequency peak in the experimental case and f0 = 3.51 × 10−2 in the DNS.

3.4. LSC dynamics
The orientation angle of the LSC provides a useful launching point for our discussion of
the dynamics. Many prior studies have made use of temperature measurements around the
sidewall of the container at a fixed height to determine the orientation of the LSC (Cioni
et al. 1997; Zhou et al. 2009; Vogt et al. 2018; Zürner et al. 2019). In our set-up, we are
limited to eight thermocouple probes which we rely on for accurate measurements of �T
between the top and bottom boundaries.

We instead estimate the angle of the LSC with velocity measurements, again making
use of the intersection between probes 3 and 4 at P in a similar fashion to Zürner et al.
(2019). Figure 9(a) shows a schematic of this technique. For 1.4 ≤ Γ ≤ 2, where a single
LSC roll dominates, the direction of the flow at P is determined by the LSC orientation.
We use the spatial mean of the central 25 % of each probe beam in order to account for
noise. Figure 9(b) shows a histogram of the orientation of the LSC at Γ = 1.4, Ra =
1.2 × 106. We see that the average orientation of the LSC (which we call μLSC) appears to
be generally fixed close to the y-direction, with a standard deviation (σLSC) in the angle of
only 19.5◦. In figure 9(c), we conduct the same analysis for the simulation case at Γ = 1.4
and Ra = 1.2 × 106 using the virtual velocity probes described in § 3.1. This method gives
σLSC = 18.2, seemingly in close agreement with experiments.

Much like earlier works, our experiments show motion of the LSC plane around a
preferred orientation (Brown & Ahlers 2006; Xi, Zhou & Xia 2006). Unlike those works,
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however, our experiment manifests the same preferred orientation for each experimental
run. We posit that our observed preference is likely due to small inhomogeneities in the
boundaries of the gallium layer, where perturbations on the top plate from the filling and
overflow ports could become preferential locations for plume detachment. Separately from
the short time scale modes we observe, the LSC is known to meander on longer time scales
of O(103)τff , as well as undergo rare cessations and reversals (Tsuji et al. 2005; Brown &
Ahlers 2006; Xi et al. 2006; Xie, Wei & Xia 2013). We do not observe these behaviours,
likely due to a combination of one hour-long runs, strong momentum diffusion in liquid
metal and relatively low Ra numbers compared with those works.

Figure 9(d) shows that, at Γ = 2, a normal distribution again seems to describe the
majority of LSC orientations. However, in contrast to the Γ = 1.4 data, orientations near
180◦ also appear at most Ra values. Angles in between 0◦ and 180◦ are largely avoided,
casting doubt on the idea that rotation of the LSC plane is responsible. Instead, we posit
that it is tied to the intersection between the JRV core and the probe beams; if the vortex
core briefly passes over the beam intersection point, flow pointing in the opposite direction
will also briefly intersect the plane of the probes without sweeping through other angles.
Thus, this is a signature of the vortex core being lifted higher relative to the 3H/4 plane at
Γ = 2, likely corresponding to a larger orbital motion relative to H at Γ = 2.

This explanation raises questions about the JRV geometry; one might expect the taller
Γ = 1.4 tank to have ‘room’ for more vertical motion in the JRV cycle, but it appears
that the confinement at Γ = 2 actually causes the JRV to sweep a larger vertical range
in the tank relative to the height. This may be evidence that the vertical part of the JRV
motion does not depend solely on H. While we can expect large spatial asymmetries in
JRV motion – the horizontal extent of the vortex core has been found to be several times
larger than the vertical extent in Akashi et al. (2022) – we cannot rule out the horizontal
dimension influencing the vertical extent of the JRV motion.

At Γ = 3, θ no longer accurately describes the LSC orientation since the assumption
of a single LSC has broken down. However, it still lends some insight into the horizontal
orientation of the flow at the central axis. In figure 9(d), we see much more freedom in the
flow direction, although some preference remains for θ = 0 and 180◦. This is consistent
with our observations of the flow morphology, where P is located in the central ‘hole’ of a
doughnut-shaped LSC rather than in a high-velocity region in the upper region of the LSC
(see figure 5). Here, the flow direction is highly time dependent.

Although we cannot access sidewall temperatures in experiments, we can in simulations,
and those temperatures can be useful for characterising the LSC dynamics (Horn et al.
2021). Plots of the temporal evolution of sidewall temperatures in simulations (Hovmöller
diagrams), at heights H/4, H/2 and 3H/4, are shown in figure 10. Our simulations
demonstrate the typical JRV behaviour at Γ = 1.4, Ra = 1.2 × 106; a single period of
hot and cold alternation shows that one convection roll is present, while the characteristic
accordion shapes of the hot and cold patches indicate the presence of the JRV mode
(Horn et al. 2021). The black lines give the orientation of the LSC based on an extended
sinusoidal fitting

Tψ(θ) = A cos(ψ − θ)+ B cos(2(ψ − θ))+ Tavg, (3.3)

in which A and B are the amplitude of the cold and hot sidewall signals and Tavg is
the average sidewall temperature at mid-height. We use this fitting function to find the
orientation of the LSC in the DNS. Similar to the experiments, the LSC remains fixed
at an orientation of μLSC ≈ −57◦. The standard deviation of the angle of orientation is
smaller from the fit data, with a value of 9.9◦. This is likely due to the lower variability
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Figure 10. Variation of sidewall temperature with angular position θ and time t (Hovmöller diagrams) in
simulations of the Γ = 1.4 case at Ra = 1.18 × 106. (a) Height z = H/4; (b) z = H/2; (c) z = 3H/4. The
characteristic ‘accordion’ shape of the warm and cold regions as they evolve in time demonstrates prominence
of the JRV mode (Horn et al. 2021). Black curves indicate the orientation of the LSC.

of the temperature compared with the velocity, and the readings being taken from the
circumference which is at the boundary layer.

3.5. Separating the modes
Next, we examine the different sets of frequency peaks shown in figure 8 separately. Since
these peaks appear consistently across multiple diagnostics, at different positions in the
vessels and at different container aspect ratios, we posit that they correspond to different
container-scale flow modes.

3.5.1. Main peak
The most prominent peak in the majority of 1.4 ≤ Γ ≤ 2 cases is associated with the JRV
frequency. In figure 11(a) we plot peak frequencies vs Ra over all Γ values. For each Ra,
we take the average peak frequency over all temperature data to produce one point, f T

0
(stars on the plot) and the average peak frequency over all velocity data to produce the
other, f U

0 (circles on the plot).
To quantify how the JRV frequency varies with Ra, we define f0 as the average between

f T
0 and f U

0 in each case and determine its power-law scaling against Ra at each Γ . The f0 vs
Ra trend varies at lower Ra, but a power-law scaling appears at high Ra. This tendency is
most apparent in frequencies normalised by fff (plotted in the second column of figure 8)
as discussed above. To omit the low Ra regions, we include only data points obeying the
following criterion at each aspect ratio:∣∣∣∣∣

f /fff − (
f /fff

)
end(

f /fff
)

end

∣∣∣∣∣ ≤ 0.10, (3.4)
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Γ = 1.7
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Γ = 3
Vogt et al. (2018)

(a) (b)

(c) (d )

Figure 11. Frequency f0 of the strongest spectral peak in each convection case, as measured (a), normalised by
the thermal diffusion time τκ (b), normalised by a diameter-based diffusion time τD

κ = D2/κ (c) and normalised
by a path length-based diffusion time τL

κ = L2/κ , all varying with Ra (d). Each frequency is an average from all
velocity probes f U

0 (circles) or all temperature probes f T
0 (stars). Secondary peaks f1, appearing at Γ = 1.4 and

3, are drawn in lighter colours in (a). Colours represent aspect ratio following figure 4. Experimental frequency
peaks from Vogt et al. (2018) are included as grey circles. The dimensions of their set up are DRoMag = 20 cm
and HRoMag = 10 cm. Best-fit trends over both temperature and velocity data are plotted as coloured lines with
fits given in table 1. Best-fit trends between f0 and Ra become nearly identical when compensated by τL

κ , but
are also effectively collapsed by τD

κ .

where ‘| · |’ indicates absolute value and ( f /fff )end corresponds to the normalised
frequency for the highest Ra case at a given Γ (i.e. a point where the f /fff vs Ra trend has
flattened out). Apart from Γ = 3, the resultant power-law trends are in close agreement
in both prefactor cf and exponent γ (see table 1). In fact, the prefactors and exponents
generally lie within the 95 % confidence bounds of each other. The secondary peaks
appearing at Γ = 1.4 and 3 are also plotted in in lighter colours. They scale similarly
to the primary peaks, but with larger prefactors (see table 1).

Figures 4 and 11 together demonstrate that both the JRV frequency f0 and the Reynolds
number Re scale roughly as Ra0.4. This agrees with a host of previous studies which find
that oscillation frequencies associated with the LSC are directly proportional to the typical
flow velocity (Ahlers et al. 2009). Following this, previous studies define a diffusive time
scale τκ = H2/κ and posit that a characteristic scaling of

cf τκ τκ f0 = cReRe (3.5)
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Γ cRe γRe cf0 γf0 cf1 γf1

1.4 10 ± 2 0.40 ± 0.02 1.8+1.4
−0.8 × 10−4 0.37 ± 0.04 3.1+3.4

−1.6 × 10−4 0.37 ± 0.05

1.7 15 ± 2 0.38 ± 0.01 2.3+0.5
−0.4 × 10−4 0.36 ± 0.02 — —

2 11+3.2
−2.5 0.40 ± 0.02 1.8+0.7

−0.5 × 10−4 0.39 ± 0.02 — —

3 0.6+0.8
−0.4 0.6 ± 0.08 1.7 ± 0.6 × 10−4 0.49 ± 0.04 3.1+0.9

−0.7 × 10−4 0.47 ± 0.02

Table 1. Table containing the prefactor and exponent of the power-law fits for ReLSC vs Ra and frequency
peaks f0 and f1 vs Ra, at each aspect ratio Γ . We chose ReLSC since it collapses the data best for 1.4 ≤ Γ ≤ 2
where the JRV is dominant, and also produces a power-law trend when Γ = 3.

should relate the flow speed to oscillation frequencies, where cf τκ depends on the container
geometry (Ahlers et al. 2009; Vogt et al. 2018).

In figure 11(b) we compensate the JRV frequencies f0 by the diffusive frequency τκ . It
becomes immediately clear that f0τκ varies significantly more with Γ than f0 alone in panel
(a). It does, however, bring the Γ = 2 JRV frequencies from Vogt et al. (2018) into close
proximity to our Γ = 2 data. In panel (c) we compensate f0 by τD

κ = D2/κ , a diffusive
time scale associated with the horizontal extent of the container rather than vertical. This
replicates the close agreement between f0 trends, of course, since D is constant. However,
the agreement between Vogt et al. (2018) is also carried over from (b) – the vessel size
is certainly important to meaningfully scale the JRV frequency. Finally, in (d), we find
that τL

κ = L2/κ collapses 1.4 ≤ Γ ≤ 2 data into what is effectively a single trend. This
diffusive time scale is associated with the total path length L of the JRV motion. This
implies that, when using the correct length scale to define τκ , the prefactor cf τκ is actually
constant with respect to aspect ratio. A best-fit scaling across all relevant data produces
cf τκ = 1.8+0.6

−0.9. The fact that data are largely collapsed by horizontal time scales may
indicate that the horizontal dimension is generally more important to the JRV dynamics.
This view is consistent with the arguments presented by figure 9.

3.5.2. Secondary peak
As shown in figures 8 and 11, a secondary peak f1 manifests at Γ = 1.4, distinct from
both the fundamental JRV peak and its harmonic. Faint signatures of the peak also
appear at Γ = 1.7 and 2. The frequency f1 approximately scales with Ra0.4 and thus stays
proportional to the JRV frequency, exceeding it by a factor of 1.7 ± 0.1.

Because the secondary peak appears most prominently in measurements from probes 6
and 7 (see figure 7), we focus our attention there. Probes 6 and 7 are located directly above
and below one another, at heights 3H/4 and H/4, and in chord positions, meaning that they
can detect azimuthal motions in the LSC. Figure 12 shows that the oscillatory patterns are
offset in time by a phase difference of 180◦. In figure 12(b) the power spectral density of
the velocity measured by probe 6 (b (i), grey) shows that the secondary frequency peak
present is clearly distinct from the JRV fundamental frequency and its first harmonic. The
same secondary frequency peak appears in probe 7 (b (ii), grey). To examine in detail the
dynamics associated with the secondary peak, we apply a bandpass filter that attenuates
measurements of flows at other frequencies. The power spectral density of the filtered
velocities in figure 12(b) (blue) for probes 6 and 7 shows a single narrow peak at the
secondary frequency that excludes the first harmonic of the JRV frequency, as expected.
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Figure 12. (a) Schematic of probes 6 and 7 detecting the torsional mode. (b) Power spectral density of the
velocities in the Γ = 1.4, Ra = 9.77 × 105 case as measured by probes 6 and 7 (grey) and after bandpass
filtering around the secondary peak (≈ 0.055 Hz) (blue). (c) Variation of velocity with position and time, as
detected by probes 6 (i) and 7 (ii), after filtering. (d) Phase difference between the measurements on probes 6
and 7 at the secondary frequency peak, varying with distance from the probe. The phase difference is almost
constant at 180◦ (dashed line) throughout space.

The filtered velocity as a function of position and time is plotted in figure 12(c) for
probe 6 (panel c (i)) and probe 7 (panel c (ii)). The filtered velocity profiles are periodic
and have opposite orientations at the two probes. Supplementary movie 3 shows filtered
velocity measurements from probes 6 and 7, in which the anti-symmetric variations
associated with a twisting motion are clear. We calculated the spatial variation of the
phase difference, at the secondary frequency, between velocities measured by probes 6
and 7 in figure 12(d). To estimate the phase of each signal, we took the imaginary part of
its discrete Fourier transform. The phase difference, at the secondary peak, is uniformly
near 180◦.

Thus, we posit that the secondary peak is a manifestation of the torsional mode of the
LSC. As shown in figure 1 and again in figure 12(a), the torsional mode involves azimuthal
twisting motions which would not register on horizontal radial probes, consistent with
the fact that spectra of probes 1, 2, 3 and 4 (not shown) have no significant peak at the
secondary frequency. A clockwise twist in the upper half of the fluid layer coincides with
a counterclockwise twist in the bottom half; the former motion provides a small positive
component to probe 6 velocities and the latter a small negative component to probe 7
velocities. The second half of the oscillation period gives the inverse motions on probes
6 and 7. The periodic velocities in probes 6 and 7, offset in phase by 180◦, are consistent
with this description. Although probe 5 is also in a chord position, it is located at height
H/2, where the torsional mode causes negligible motion. Accordingly, its spectrum has no
significant peak at the secondary frequency, either (see figure 7g). This behaviour is also

949 A42-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.778


J.S. Cheng, I. Mohammad, B. Wang, D.F. Keogh, J.M. Forer and D.H. Kelley

distinct from the JRV motion; filtering the same measurements with a passband around
the main peak f0 yields a phase difference of mostly 25◦ that varies with spatial position
(not shown, see supplementary movie 4).

A surprising feature of this torsional mode is the fact that its frequency is separate from
the JRV frequency. Horn et al. (2021) found that each of the JRV, sloshing and torsional
modes occur at similar frequencies and can only be separated through dynamic mode
decomposition. Likewise, our simulations reveal no spectral peaks apart from the JRV and
its harmonic. A possible explanation is that the torsional peak we observe is actually a
harmonic of the fundamental torsional mode, which would exist in even closer proximity
to the fundamental JRV peak and may be masked by it. In any case, we believe that ours
are the first experimental observations of the torsional mode and JRV mode operating
simultaneously.

4. Conclusion

Convection in liquid metals is an ever-relevant topic to geophysical, astrophysical and
industrial applications. In this work, we investigated the dynamics of the LSC, which
is the fundamental mode of liquid metal convection and can be robust even in the
presence of other flow drivers such as magnetic fields (Yanagisawa et al. 2015; Tasaka
et al. 2016; Akashi et al. 2019). Our survey of convection shows robust Re vs Ra scaling
consistent with previously published values regardless of aspect ratio. Deriving Re from a
three-dimensional velocity measured on the central axis at height 3H/4 (in the Γ = 1.4,
1.7 and 2 cases) or height 2H/3 (in the Γ = 3 case), U3D collapses the velocities over the
full Γ range and compares well with previously published values (Scheel & Schumacher
2017; Zürner et al. 2019). The horizontal two-dimensional velocity at the same location,
ULSC, approximates the flow speed of the LSC. It collapses Re values even more
effectively over 1.4 ≤ Γ ≤ 2, excluding Γ = 3 where the flow is not dominated by a single
LSC roll.

By delving into spectral data and the orientation of the LSC plane, we infer that the
JRV frequency and morphology may depend only weakly on container height. A couple
of separate results support this claim: first, at Γ = 2 the LSC plane occasionally orients
itself at a 180◦ offset from its primary position in nearly every case (figure 9). We interpret
this to mean the vortex core occasionally passes over the probe beam at height 3H/4. This
behaviour is entirely absent at Γ = 1.4, indicating that the JRV core circulates around a
smaller path relative to the container height. Second, when normalised by τκ = H2/κ ,
the scaling of the JRV frequency f0 varies significantly with Γ (figure 11). The raw
frequency data f0, and therefore also f0/D2/κ , nearly follow a common best-fit scaling,
with prefactors and exponents within 95 % confidence intervals. One way to interpret this
is that the horizontal dimension plays a larger role in determining the JRV frequency and
than the vertical dimension.

The best collapse of JRV frequency with Ra over the entire JRV-dominated range
1.4 ≤ Γ ≤ 2 is produced by considering a diffusive time scale proportional to total path
length L2/κ , which indicates that the scaling between Re and JRV frequency is related
by a common prefactor of cf τκ = 1.8+0.6

−0.9, regardless of Γ . Denser surveys over larger Ra
ranges could serve to reduce the uncertainties on this prefactor.

Despite the fact that varying the aspect ratio has only weak effects on Re, JRV frequency
and perhaps JRV morphology, other dynamical markers demonstrate sensitivity to Γ .
For Γ = 1.4, a robust secondary peak appears in the velocity spectra, one which is
largely absent for Γ = 1.7 and 2. Using bandpass filters to single out this peak, we
see it is best described as a torsional motion. The increasing prominence of such a
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torsional mode as Γ approaches 1 is consistent with the DNS results of Horn et al.
(2021) and speaks to the 1 ≤ Γ ≤ 3 range of geometries containing rapid shifts in flow
morphology.

A remaining mystery is the separation between the frequencies of the torsional-style
mode and the JRV mode. Taken at face value, this appears to run counter to previous
studies where all LSC modes occur at similar frequencies (Brown & Ahlers 2007;
Horn et al. 2021). This topic is certainly worth future experimental and numerical
investigation.

At Γ = 3, many of the single-roll LSC behaviours appear to break down, giving way
to a multi-roll system prone to reversals. The LSC orientation is mostly fixed for aspect
ratios 1.4 ≤ Γ ≤ 2 but varies for Γ = 3. The spectra at Γ = 3 also paint a distinct picture
compared with other geometries: the JRV mode seems absent, the primary peak is broader
and less consistent in frequency and a secondary peak surfaces at approximately 1.4 times
the frequency of the primary peak.

An attractive trajectory for future work is to expand our understanding at Γ = 3 and
investigate aspect ratios in the range of 2 ≤ Γ ≤ 3; our data indicate that a transition
away from the dominant JRV mode should occur here, yet the nature of this transition
remains unclear. The decreased importance of the JRV at Γ = 3 could be interpreted
to contrast with the results of Akashi et al. (2022), where the JRV dominates in aspect
ratios as large as 5, but the difference in vessel shape (cylindrical vs cuboid) confounds
any direct comparison. Further investigation into the frequency spectra at Γ = 3 could
be particularly helpful; bandpass filtering around the peaks does not yield an easily
interpretable picture of the morphology. In general, convective flows at low Pr demonstrate
rapid transitions in the dominant flow modes over a compact range of aspect ratios between
1 and 3.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.778.
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