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The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an
important part of the brain’s system for clearing metabolic waste. Experiments
reveal that arterial motions from cardiac pulsations and functional hyperae-
miadrive CSF in the same direction as the blood flow, but the mechanism
producing this directionality is unclear. Astrocyte endfeet bound the PVSs of
penetrating arteries, separating them from brain extracellular space (ECS) and
potentially regulating flow between the two compartments. Here, we present
two models, one based on the full equations of fluid dynamics and the other
using lumped parameters, in which the astrocyte endfeet function as valves,
regulating flow between the PVS and the ECS. In both models, cardiac pulsa-
tions drive a net CSF flow consistent with prior experimental observations.
Functional hyperaemia, acting with cardiac pulsation, increases the net flow.
We also find, in agreement with experiments, a reduced net flow during wake-
fulness, due to the known decrease in ECS permeability compared to the sleep
state. We present in vivo imaging of penetrating arteries in mice, which we use
to measure accurately the amplitude of their constrictions and dilations during
both cardiac pulsation and functional hyperaemia, an important input for the
models. Our models can be used to explore the effects of changes in other input
parameters, such as those caused by ageing or disease, as better measurements
of these parameters become available.
1. Introduction
The annular perivascular spaces (PVSs) surrounding blood vessels in the brain
cortex provide low-resistance pathways that carry cerebrospinal fluid (CSF) into
the brain, promoting clearance of metabolic wastes (see recent reviews [1,2]).
Experiments reveal that CSF in pial (surface) arterial PVSs flows in the same
direction as the blood flows, while also pulsing at the cardiac frequency
[3–5]. However, the driving mechanism is poorly understood. This pulsatile
flow, with a net (bulk) flow, has been attributed to peristaltic pumping [6] by
arterial cardiac pulsations, in which peristalsis drives a net flow in the same
direction as the arterial wall wave [7,8]. However, the wavelength of the arterial
pulsations is approximately 1m, far greater than the length of arteries in the
brain (approx. 1 mm in mice). In such a sub-wavelength domain, the peristaltic
pumping mechanism alone likely does not drive CSF flow at the speeds
observed in experiments, approximately 20 μm s−1 in pial PVSs of mice [9,10].

Functional hyperaemia, the increase of blood flow to neurologically active
brain regions, has also been shown to propel CSF flow [11]. Functional hyper-
aemia is associated with artery dilations of longer time scale and larger
amplitude (approx. 10 s, 10%) compared to cardiac pulsations (approx. 0.3 s,
2%). The mechanism by which functional hyperaemia promotes CSF influx is
not well understood. Kederasetti et al. [12] considered a poroelastic model
that couples the axial flow along the PVS of a penetrating cortical artery and
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a radial flow between the PVS and the extracellular space
(ECS). Their model suggests that functional hyperaemia
with a temporally asymmetric waveform of arterial pulsation
can drive a net radial flow from the PVS into the ECS.
Holstein-Rønsbo et al. [13] observed increased tracer influx
and clearance during functional hyperaemia in mice, and
they proposed impedance pumping as a possible mechanism.
In their model, constructive and destructive interference of
waves reflected between PVS bifurcations and other features
drives a net flow.

A possible mechanism for producing bulk motion of CSF
into the brain is the presence of valves or valve-like structures.
While no valves have been found inside the PVSs themselves,
the outer boundary of a PVS of a penetrating artery, formed by
astrocyte endfeet, is a possible candidate. Indeed, Bork et al.
[14] recently proposed a mechanical model of flexible endfeet
in which a fluctuating pressure causes the endfeet to flap in a
way that promotes a directional flow, similar to the action of a
bicuspid valve. Several studies using extracellular tracers indi-
cate that fluid communication between PVSs and the ECS
occurs mostly through the gaps between endfeet (see the
reviews [1,15,16]). (It has also been suggested that some com-
munication occurs through the astrocyte bodies themselves
[17].) Other studies proposed that astrocyte endfeet act as
valves controlling the resistance to axial flow, resulting in back-
flow in the nanomembrane to the brain surface under
functional hyperaemia [18,19], although the mechanism for
controlling the resistance was not defined.

Here, we propose that astrocyte endfeet act as valves, with
the fluid permeability of the endfoot layer increasing when-
ever the pressure in the PVS exceeds the pressure in the
ECS. We focus on the implications of this hypothesized
valve action for CSF flow, not on the mechanics of how the
valves themselves operate. However, the scenario we consider
here is consistent with the recent mechanical model of an end-
foot valve proposed by Bork et al. [14]. Our model is also
consistent with a related proposed mechanism in which
dilation of a penetrating artery causes an outward deformation
of the outer boundary of its PVS [20,21]: we would expect the
endfoot gaps to expand when the artery dilates, increasing the
permeability, and shrink when the artery constricts, reducing
the permeability. This pressure-dependent permeability
could explain how pulsatile CSF motion is rectified to produce
a net flow in the same direction as the blood flow in a penetrat-
ing PVS. During artery dilation, the PVS shrinks, requiring
fluid to be expelled, and increased permeability of the endfoot
wall allows fluid to pass into the ECS. During artery constric-
tion, the PVS expands, requiring fluid intake, and reduced
permeability of the endfoot wall inhibits a reflux of fluid
from the ECS, so the fluid must come instead from the pial
PVS connected to the penetrating PVS.

Our proposed valve mechanism can also explain how
wakefulness suppresses CSF influx. During wakefulness,
the permeability of the ECS is lower by a factor of five than
during sleep [22]. Although cardiac pulsations and functional
hyperaemia occur in both states, CSF inflow in the PVSs is
rarely observed during wakefulness. Solute measurements
show that perivascular CSF tracer influx and interstitial
solute efflux, including the clearance of amyloid beta, are
more rapid in the sleeping brain compared to the awake
brain [22]. Few theories of perivascular pumping consider
how wakefulness suppresses CSF inflow, or whether ECS
permeability is responsible, as they do not include an
exchange of fluid between the PVS and the ECS. Because
the astrocytic valves we model here control the net CSF
flow transport into the ECS, it is natural to expect that the
decreased permeability of the ECS during wakefulness will
suppress the valve mechanism.

In this study, we use the lubrication approximation to
simulate the CSF flow in the PVS of a cortical penetrating
artery caused by arterial motions. The analysis is similar to
that of Romanó et al. [20]. The PVS is considered to be an
open, unobstructed space, and the outer wall of the PVS (the
endfoot wall) is permeable to CSF and deformable. We set
the permeability of the outer wall to be a step function of
the pressure in order to model the valve function [19]. We
couple the CSF flow in the PVS with the pressure response
in the ECS, which is modelled as a porous medium. We find
that both cardiac pulsations and functional hyperaemia drive
a net CSF flow from the the upstream pial PVS into the pene-
trating PVS. During wakefulness, our model displays a higher
ECS pressure response and a suppression of the CSF inflow.
We further simplify our model by employing lumped par-
ameters to gain a comprehensive understanding of the
pumping mechanism, considering varied arterial-pulsation
frequencies and endfoot wall elasticities.

An important input to our models is the amplitude of the
arterial pulsations. Measurements of CSF flow and arterial pul-
sations have been generally limited to the PVSs of pial arteries
because the PVSs of penetrating arteries are difficult to image.
Studies have shown, however, that penetrating arteries have
larger pulsatility than the mother pial artery [23,24], which
would enhance the pumping with the proposed valve mech-
anism. Here, we use robust in vivo imaging techniques and
custom-written processing software to measure the cardiac
pulsations of penetrating arteries of mice. We also use whisker
stimulation to activate functional hyperaemia and measure the
associated diameter changes [13].
2. The model
Here, we describe the idealized computational model of
our proposed valve mechanism. Details of the governing
equations and numerical methods, based on those of Romanò
et al. [20], are described in appendix B. We model the flow of
CSF in two connected, axisymmetric domains, as shown in
figure 1a. The PVS of a penetrating artery is modelled as a cir-
cular annular tube of length l and width b, lying between the
impermeable, deformable artery and the permeable, deform-
able endfoot wall. The width of the PVS is taken to be b =
10 μm, the radius of the artery is taken to be r1 = 10 μm, and
the length is taken to be l= 1000 μm, typical values for a pene-
trating artery in the mouse brain [25]. (Values of all of the
dimensional parameters of the model are listed in table 1.)
The PVS is an open space [26,27], and the flow there obeys
the Navier–Stokes equation, in its approximate form for low
Reynolds number flow in a thin tube (the lubrication approxi-
mation) and quasi-steady flow (low Womersley number). The
aspect ratio of the PVS, 1 ¼ b=l, is of order 0.01, justifying the
use of the lubrication approximation.

At the inlet (the upstream pial PVS) and the outlet (a pre-
capillary PVS) we specify a hydraulic resistance to model the
inflow and outflow and require conserved flow rates across
each interface. The inner boundary of the PVS (the artery
wall) is assumed to be impermeable, and we apply a no-slip



(a)

becs pecs

penetrating venules

extracellular space

flow resistance

pr
es

su
re

 (
Pa

)

r

100

80

60

40

20

10.2

ar
te

ry
 r

ad
iu

s 
(�

m
)

10.1

10.0

9.9

9.8
0 0.5 1.0 1.5

t (s)

11.0

10.5

10.0

9.5

9.0

0 5 10

asymmetric
symmetric

15 20

t (s)

0

z

perivascular space p

penetrating artery
ι

b

r1

(b)

(d) (e)

(c)

Figure 1. Sketch of the model. (a) The model includes the exchange of cerebrospinal fluid (CSF) between the perivascular space (PVS) of the artery, modelled as an open
space, and the extracellular space (ECS), modelled as a porous medium. The upstream PVS of the pial artery and the downstream PVS of a capillary are modelled as flow
resistances. (b) During artery dilation, hypothesized astrocytic valves along the PVS outer boundary open, facilitating flow into the ECS, which increases the ECS pressure. (c)
During artery constriction, astrocytic valves close. The constriction drives CSF flow in the PVS and decreases ECS pressure. (d ) The arterial radius varies during cardiac
pulsation according to equation (2.2). (e) The asymmetric (n = 2) and symmetric (n = 1) arterial waveforms of functional hyperaemia generated by equation (2.3).
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boundary condition there. The outer boundary of the PVS
(formed by the astrocyte endfeet) is modelled as a thin,
deformable, elastic layer of permeable tissue, with a no-slip
boundary condition. The Young’s modulus of this elastic
layer, Eendft, lies in the range [104 106] Pa [20]. To represent
the proposed valve mechanism, the permeability kendft of the
outer boundary of the PVS is modelled as a step function of
the pressure difference:

kendft ¼ k1 if pðz, tÞ . pecs
k0 if pðz, tÞ � pecs

�
ð2:1Þ

where k1 > k0 and k0 = 10−10 m Pa−1 s−1 [28]. Thus, during
artery dilation, the increased pressure in the PVS increases
the permeability, effectively opening a valve and allowing
fluid to enter the ECS (figure 1b). During artery constriction,
the pressure in the PVS drops, permeability is decreased, the
valve closes, and CSF flow is confined to the PVS (figure 1c).

The ECS surrounding the PVS is modelled as a large
porous, circular annular tube of length l and width becs, filled
with a porous medium composed of a deformable but incom-
pressible solid phase and an incompressible fluid phase
(interstitial fluid) that flows according to Darcy’s law. The annu-
lar width of the ECS, becs, is taken to be a typical distance to the
nearest venule, which is 100 μm for the mouse brain [25,29]. The
permeability of the ECS during wakefulness has been measured
as [2 × 10−17 m2 1 × 10−16 m2] [30–32]. To model sleep, we set
the permeability to its maximum value, kecs = 1 × 10−16 m2,
about five times greater than the value we use to model wake-
fulness [22]. The flow velocity is kept continuous across the
outer boundary of the PVS, where it meets the endfoot wall
and the ECS. The pressure difference across this boundary
depends on both the elasticity of the thin membrane and the
flow rate through it, as described in appendix B. The fluid
pressure is set to zero at the outer boundary of the ECS.
The fluid axial pressure gradient is set to zero at the distal
and proximal ends of the ECS in z direction.

The motion of the impermeable artery wall is specified as
an input, representing cardiac pulsations or functional hyper-
aemia. Given that the wave speed of arterial pulsations is of
order c≈ 1 m s−1, the cardiac frequency is f≈ 3 Hz, and
the length of the domain is l = 1000 μm, we have lf/c≈
0.003, and hence we can neglect the phase difference in the
pulsations along length of the tube. (This phase difference
is also negligible for the slower arterial motions associated
with functional hyperaemia.) Thus we model the cardiac
pulsations as

hðtÞ ¼ hcp sinð2pftÞ ð2:2Þ

(figure 1d ), independent of the axial coordinate z. hcp is the
pulsation amplitude. For functional hyperaemia, we model
an individual pulsation as a quick dilation followed by a
slow constriction and relaxation, in the form

hðtÞ ¼

hfh
2 (1� cosð2npftÞ) if t � 1

2nf

hfh
2 1� cosð2ð 1

2�ð1=nÞÞpðft� 1ÞÞ
� �

if 1
2nf , t � 1

f

0 if t . 1
f

8>>><
>>>:

ð2:3Þ

with f≈ 0.1 Hz, where hfh is the dilation amplitude, and n
determines the fraction of dilation time and constriction
time. We use n = 1 to model temporally symmetric vasomo-
tion and n = 2 to model temporally asymmetric vasomotion.



Table 1. Dimensional parameters.

u axial CSF velocity

w radial CSF velocity

r radial coordinate

z axial coordinate

t time

p pressure in the PVS

q axial flow rate in the PVS

f the arterial pulsation frequency

μ dynamic viscosity of CSF 9 × 10−4

Pa s−1

r1 artery radius 10 μm

l length of the penetrating artery 1000 mm

hcp artery pulsation amplitude of the

cardiac pulsation

∗[0.01r1,
0.025r1]

hfh artery dilation amplitude of functional

hyperaemia

∗[0.1r1, 0.2r1]

h arterial waveform of cardiac pulsation

or functional hyperaemia

b width of the PVS 10 mm

apvs equilibrium cross-sectional area of the

PVS

942 mm2

Eendft elasticity of the PVS outer boundary ∗[104, 106] Pa
kendft permeability of the PVS outer boundary 10−10 m

Pa−1 s−1

kpial conductivity of the pial PVS 1000 kendftapvs
kcap conductivity of the capillary PVS kendftapvs
kecs permeability of the ECS ∗[ 2 × 10−17,

10−16] m2

becs width of the ECS domain/distance

between the artery and the venules

10−4 m

u* axial CSF velocity relative to the

endfeet motion
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In both cases, the waveform is smooth, with a continuous
wall velocity (figure 1e).
3. Experimental measurements of penetrating
artery motions due to cardiac pulsations and
functional hyperaemia

The pulsation amplitude of a penetrating artery is a vital
input for our model. However, compared to the surface pial
arteries, experiments for penetrating arteries are limited.
Fast line scans provide high temporal resolution [23,24,33]
but are sensitive to errors in image registration. A slight
shift in the cross-sectional plane, perhaps due to motion arte-
facts during an experiment, can cause a large variation in the
measurement. Here, we present 2-photon recordings of the
cross-sectional plane of the penetrating artery.
In the experiments, mice were head-plated and a cranial
window was carefully inserted above the middle cerebral
artery (MCA) under ketamine/xylazine anaesthesia, before
transferring the mice for 2-photon in vivo imaging. Before ima-
ging, an intravascular tracer (0.1ml FITC-labelled 2000 kDa
dextran, 1%; Sigma-Aldrich, FD2000S) was injected in order
to visualize the artery. A penetrating branch of the MCA
was located, and unilateral whisker stimulations [13] were
applied to record arterial diameter changes. Imaging was per-
formed just below the cortical surface (at 0 mm) and 100 mm
deeper. We alternated between the upper and lower depth
(five stimulations each). The imaging was performed at
128 × 128 pixels, 4× zoom, 59 or 113 frames per second.
More details of the experiments are given in appendix A.

To measure the area change of the artery over time, we
used a custom segmentation code that is insensitive to the
artefacts of in-plane shifts (figure 2d ). Since the cross section
of the penetrating artery is essentially circular, we can calcu-
late an effective diameter d = 2(Aartery/π)

1/2, where Aartery is
the measured area (figure 2b,e).

It has been reported that a penetrating artery has pulsati-
lity that increases from the surface to deeper brain regions
[23,24]. To confirm this, we compared observations at
depths 0 μm and 100 μm. When observing pulsation due to
the cardiac cycle, we applied a bandpass filter in the range
2 Hz to 6 Hz to the diameter signal (figure 2b shows 5 s of
the signal). The pulsation percentage was calculated as the
interquartile range of the bandpass diameter signal timesffiffiffi
2

p
divided by the mean diameter. From the measurements

of eight mice, we observed a mean pulsation percentage
around 1% for the 0 μm deep plane and a mean pulsation
percentage of 1.5% for the 100 μm deep plane (figure 2c).

To observe pulsation due to functional hyperaemia, we
stimulated neural activity via whisker puffing [13]. We
measured the dilation waveform induced by functional
hyperaemia in both planes over the 90 s of the recording
(figure 2e). Over the 30 s stimulation period (from 30 s to
60 s in figure 2e), we observed several dilation peaks. By
dividing the peak diameter change by the mean diameter
of the baseline (from 0 s to 30 s in figure 2e), we obtained a
pulsation percentage of 6% for the 0 μm deep plane and
11% for the 100 μm deep plane (figure 2f ). Our experiments
thus demonstrate that functional hyperaemia induces larger
dilation amplitudes in the deep cross section of the penetrat-
ing arteries compared to the surface cross section.
4. Results of the simulations
4.1. With the valve mechanism, cardiac pulsations drive

a net cerebrospinal fluid influx
We modelled flow driven by cardiac pulsations, which have
high frequency (2–6Hz) but small amplitude (1% to 5%). We
first tested the model using an essentially rigid endfoot wall
with elasticity Eendft = 106 Pa, roughly an order of magnitude
higher than measured for artery walls [34]. In the k1/k0 = 1
case, where wall permeability remains constant and no valve
action occurs, the inflow and backflow rates for each cycle
were the same, resulting in zero net flow (figure 3a,b). With
k1/k0 > 1, however, we observed less backflow than inflow
and hence a net flow.
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For a more compliant endfoot wall, we expect increased
wall deformation that would absorb more of the arterial
pump energy. To test this expectation, we performed simu-
lations varying Eendft. We measured the mean flow rateÐ t0
0 qdt=t0 (where q is the instantaneous volume flow rate)
and the pressure difference between the two ends of the
PVS. Both increased with k1/k0 and decreased for a more com-
pliant endfoot wall, as expected (figure 3c–e). We observed a
mean pressure gradient at the pial entrance of the order
of 100 Pam−1 (figure 3f ), which matches experimental
measurements [35] and other numerical models [10,21].

4.2. The valve mechanism is suppressed during
wakefulness

In vivo experiments show that, compared to sleep or anaes-
thesia, wakefulness results in smaller ECS permeability and
reduced CSF influx [22,36]. In this section, we show
that our model likewise predicts reduced net flux during
wakefulness. We modelled the difference between sleep
and wakefulness by varying kecs from 2 × 10−17 m2 to 1 ×
10−16 m2. For small kecs (wakefulness), we found an increased
pressure response in the ECS and a reduced net flow of CSF
(figure 4a,b). Higher pressure in the ECS during wakefulness
(figure 4c,d ) hinders CSF entering across the endfoot wall,
resulting in less axial CSF influx.
4.3. A lumped-parameter model and the frequency
analysis

We further simplify our model in terms of lumped par-
ameters (details of the simplified model are included in
appendix B). There are two pathways by which fluid can
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enter or exit the penetrating PVS, as sketched in
figure 5a: fluid can be exchanged with the pial PVS or
the ECS, via the endfoot wall. Rpial, Recs and Rendft

represent the flow resistance in the pial PVS, ECS and end-
foot wall, respectively. Since the value of Rendft depends
on the pressure difference (analogous to voltage) across it
according to equation (2.1), we represent it as a Zener
diode, a circuit device whose resistance is much higher
(though not infinite) for reverse flow than forward flow.
Flow through the capillary PVS is negligible because their
resistance far exceeds that of the ECS and endfoot wall.
The flow resistance within the penetrating PVS itself
is negligible.

Fluid motion induced by the prescribed arterial pulsation
is modelled as a flow source (analogous to a current source)
with a volume flow rate equal to the rate of change of the
artery volume:

qart ¼ @

@t
(pðr1 þ hÞ2l) � 2pr1l

@h
@t

: ð4:1Þ

Here, the final expression results from neglecting terms that
are second-order small, given that h≪ r1. In addition to the
change of the artery volume, the pressure-dependent defor-
mation of the endfoot wall (analogous to capacitance) also
causes a change of PVS volume, which can be represented
as a source with flow rate

qcompliance ¼ @

@t
(plððr1 þ bþ dÞ2 � ðr1 þ bÞ2Þ)

� 2pðr1 þ bÞl @d
@t

¼ Cendft
@p
@t

, ð4:2Þ
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where Cendft ¼ 2plðr1 þ bÞ2Eendft
�1, given that the defor-

mation of the endfoot wall is proportional to pressure
(equation (B8) in appendix B). The system is then a parallel
circuit (figure 5a) governed by

p
Rendft þ Recs

þ p
Rpial

þ Cendft
@p
@t

¼ qart: ð4:3Þ

For convenience, we define qpial ¼ �pRpial
�1 (the inflow rate

from the pial PVS) and qecs = p (Rendft + Recs)
−1 (the outflow

rate to the ECS).
Figure 5b shows that the value of qpial predicted by the

lumped-parameter model is close to that of the fluid dynami-
cal model. Since the lumped-parameter model is simple, we
can quickly study analytically how the system responds to
arterial pulsations of different frequencies. Using equation
(2.2) in the absence of the valve mechanism (Rendft = 0) and
neglecting transients, we can solve for qpial analytically:

qpial ¼
4p2r1lhcpf

RpialCendft

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f2 þ 1

ReffCendft

� �2
s e2piðft�ðarctanð2pfReffCendftÞ=2pÞÞ,

ð4:4Þ

where Reff is the effective flow resistance of the lumped-
parameter model (Reff

�1 ¼ ðRendft þ RecsÞ�1 þ Rpial
�1).

Though equation (4.4) does not account for the valve
mechanism, it fully describes how the arterial pulsation fre-
quency f and the endfoot wall elasticity Eendft influence the
flow rate.

The exponential term in equation (4.4) describes the phase
of qpial, from which we can calculate the phase difference
between the arterial wall velocity and the inflow rate. In
figure 5c, we calculate the phase difference for various pulsa-
tion frequencies f and Eendft and find that it matches the
simulation result. Based on equation (4.4), the phase difference
increases as we increase f or decrease Eendft, eventually conver-
ging to −π/2. The phase difference changes most rapidly when
the pulsation timescale f−1 is similar to the characteristic
relaxation time Reff Cendft of the compliant system.

The initial factor in equation (4.4) describes the maximum
value of qpial and the maximum value of p. In figure 5d, we
plot the maximum value of p for various pulsation frequen-
cies f and Eendft, which also matches the simulation result
with the valve. When f is small or Eendft is large, the maxi-
mum value of p is proportional to f, whereas when f
becomes large or Eendft becomes small, the maximum value
of p approaches a constant. Both limiting cases are consistent
with our expectations from the lumped-parameter model.
First, equation (4.1) implies that qart∼ ∂h/∂t∼ fh. Then,
when f is small, the compliance term in equation (4.3)
becomes negligible, so that p∼ qart ∼ f. On the other hand,
when f is large, the compliance term dominates because ∂
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p/∂t∼ f p, so p∼ qart/f, a constant. The small and large fre-
quency ranges are separated by (Reff Cendft)

−1, the inverse of
the characteristic relaxation time.

In figure 5e, we show the mean inflow rate per cycle with
the valve mechanism in effect (with k1/k0 = 2), which follows
the same trend as the maximum p in figure 5d, again increas-
ing with f at low frequencies but saturating at high
frequencies, with the two frequency regimes separated by
(Reff Cendft)

−1. The increase with f at low frequencies can be
explained by the higher wall velocities that occur at higher
frequencies (for constant amplitude). Saturation at higher fre-
quencies can be explained by rapid endfoot deformations
damping the pumping. In the same way, as f increases, the
net inflow volume per one cycle is nearly constant for large
Eendft but gradually decreases for small Eendft, still depending
on (Reff Cendft)

−1 (figure 5f ). The numerical solutions of the
lumped-parameter model (solid line) and the full fluid
dynamic model (dots) in figure 5e,f match very well.
4.4. With the valve mechanism, functional hyperaemia
drives a net cerebrospinal fluid influx in addition
to that produced by cardiac pulsation

Next, we model flow driven when functional hyperaemia,
which has a longer time scale (5–20 s) but a larger oscillation
amplitude (10–20%), occurs in addition to cardiac pulsation
(figure 6a). We observe an increased net inflow volume
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for the coupled waveform compared to that of cardiac pulsa-
tion acting alone (figures 1d and 6b). We can also consider the
hypothetical situation, which is physiologically impossible
but nonetheless informative, of functional hyperaemia
acting in the absence of cardiac pulsation (figure 1e). We
observe that acting alone, functional hyperaemia drives less
net inflow than either cardiac pulsation alone or their combi-
nation (figure 6b).

In figure 6c, we show the mean inflow rates driven by car-
diac pulsation alone, functional hyperaemia in combination
with cardiac pulsation, and functional hyperaemia alone.
Though the mean flow rate for the coupled waveform is
larger than for either mechanism acting alone, it is also
smaller than the sum of the mean flow rates induced inde-
pendently by the two mechanisms. Valve action is a
nonlinear process, so superposition does not hold; the recti-
fied, summed flow is smaller than the sum of the rectified
flows (see appendix B).

We also observe that the mean flow rate driven by the car-
diac pulsation is larger than the mean flow rate driven by
functional hyperaemia for large Eendft, which is consistent
with figure 5e. That is because there are many cycles of car-
diac pulsation during one episode of functional hyperaemia
(figure 6a). However, when the compliance of the endfoot
wall is relatively low (Eendft = 104 Pa), functional hyperaemia
drives a larger mean flow rate than cardiac pulsation because
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the more compliant endfoot wall filters the high-frequency
pulsation (figure 5d–f ).

In figure 6d, we plot the mean flow rate for the coupled
waveform. The mean flow rate increases as hfh increases.
When Eendft is large, the increase is less significant because
the cardiac pulsation (the high frequency pulsation) domi-
nates the pumping mechanism. By contrast, for smaller
Eendft, functional hyperaemia dominates, and the increase of
mean flow rate with hfh is significant. In figure 6e, we plot
the mean flow rate for the functional hyperaemia waveform
acting alone. The mean flow rate increases as hfh increases
and is less affected by Eendft (the mean flow rate for Eendft =
106 Pa is nearly identical to that for Eendft = 105 Pa).

A previous study [12] found that a more realistic, asym-
metric artery pulsation waveform, composed of a fast
dilation and a slow constriction, increased the net flux
across the endfoot wall, perhaps because fast dilation
pushes more fluid into the ECS. We compared the effects of
a simple pulsation waveform to those of the more realistic,
asymmetric waveform (figure 1e) considered in [12]. Pressure
in the PVS increased rapidly during fast dilation, reaching a
large maximum value (figure 6f ). During slow constriction,
however, the reverse pressure amplitude change was
weaker but slower. On the other hand, the simple pulsation
waveform induced pressures of nearly equal amplitude
during dilation and constriction. We also observed an 8%
increase in the axial net flux for the more realistic, asymmetric
waveform, when compared with the simple waveform, given
k1/k0 = 2, Eendft = 105 Pa.
5. Discussion
Here, we propose the existence of valve-like action at the
astrocyte endfeet as an explanation for the observed directed
net flow in PVSs. Our simulations modelling that action as a
pressure-dependent permeability predict that flow from PVS
to ECS during artery dilation exceeds flow in the reverse
direction during constriction, resulting in net fluid motion
over time in the direction parallel to blood flow. The dilation
amplitudes we impose are based on our new in vivomeasure-
ments. We find that greater variation of permeability with
pressure leads to greater net flow. Greater rigidity of the sur-
rounding brain tissue also increases net flow, along with
instantaneous pressure fluctuations in the PVS. Reduced per-
meability of surrounding brain tissue, as expected during
wakefulness, leads to reduced net flow and increased mean
pressure in the ECS, consistent with prior observations that
glymphatic function is reduced during wakefulness. Net
flow is driven by artery wall motions with frequency and
amplitude characteristic of cardiac pulsation or functional
hyperaemia, although some frequencies pump more effec-
tively than others (figure 6e), and by either symmetric or
asymmetric pulsation waveforms.

Thus, the presence of valve-like action at the endfeet
is consistent with many phenomena observed previously,
including strong pumping by functional hyperaemia
[11,13,21] and pumping by cardiac pulsations in the absence
of functional hyperaemia [3–5]. Because our model assumes
artery dilation and constriction to be uniform along the
penetrating PVS, the observed effects do not depend on
wavelength, wave speed, or the presence of travelling
waves, in contrast to proposed peristalsis-like mechanisms
[6]. Nor do the observed effects require temporal asymmetry
of the artery pulsation waveform, though rapid dilation does
increase net flow, consistent with prior modelling [12]. In our
simulations, that effect can be explained by the concomitantly
higher instantaneous pressure, which coincides with
increased permeability (and therefore lower resistance) at
the endfoot wall. We also point out that flow rectification is
a nonlinear phenomenon, and by definition, nonlinearity is
amplified as magnitudes (of velocity and pressure, in this
case) grow. That said, the presence of valve-like action does
not exclude other proposed pumping mechanisms, such as
impedance pumping [13,37].

The pumping mechanism proposed here is based on the
assumption that kendft is larger when p > pecs than when p≤
pecs (equation (2.1)), which is supported by a recent study
of the mechanics of the endfoot gaps [14]. One might, alterna-
tively, imagine that kendft or kecs is smaller when p > pecs,
which would lead to a reverse flow (opposite the direction
of blood flow) in our model. The gaps between end feet
and poles in the ECS might conceivably shrink when being
squeezed by the pressure difference, causing reduced per-
meability. However, given the consistent experimental
observations of forward CSF flow, we adopt the former
assumption for our pumping model.

The pressures predicted by our model depend sensitively
on the elasticity of the endfoot wall and the elasticity
and permeability of the surrounding tissue. In some cases,
PVS pressure reached −1000 Pa =−7.5 mmHg (figure 3c).
Though measurements of the pressure distribution in the
brain in vivo are quite difficult, these values are much
higher than the expected approximately 1mmHg maximum
pressure difference across the glymphatic system [27,38].
Those extreme pressures, however, occurred only when the
wall elasticity was Eendft = 106 Pa, much stiffer than we
would expect [21,35]. With a smaller elasticity (Eendft = 105

Pa), PVS pressure reaches 200 Pa = 1.5 mmHg, more reason-
ably. The pressure gradient at the PVS inlet was around
100 Pa m−1. Recent work using artificial intelligence veloci-
metry [35] reports a time-averaged pressure gradient of
275 Pa m−1 in pial (not penetrating) PVS, which is of the
same order of magnitude. Similar values were found in
recent simulations [10,21]. In the ECS, maximum pressure
ranged from about 50 Pa = 0.38 mmHg when the per-
meability was kecs = 10−16 m2 to 200 Pa = 1.5 mmHg with
kecs = 2 × 10−17 m2 (figure 4b).

An effective valve mechanism does not necessarily
require discrete, localized valves: it can be produced by an
asymmetry along the flow pathway. Candidates for valves
may include the astrocyte endfeet and valves along the peri-
venous space or the lymph vessels (the exit of the CSF
pathway). Besides valves, the volume change of the brain
during sleep and the impedance pumping mechanism [37]
may also contribute to that asymmetry.

One important model proposed that, because a functional
hyperaemia cycle includes a rapid dilation and a slow con-
striction, it may push more CSF into the poroelastic ECS
than it pulls back [21]. We consider a penetrating artery of
length 1000 μm, a typical length for the mouse brain [25].
Owing to the small aspect ratio 1, solving the creeping flow
equations numerically is more challenging than solving the
thin-film equations [20]. More importantly, since p scales
with 1=12 for creeping flow, a longer penetrating artery can
drive a larger pressure change that pumps the flow.
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In our model, a pressure difference between the periarter-
ial space and the perivenous space is the driver for advective
flow in the ECS [25], which is necessary for our valve mech-
anism. According to Darcy’s Law, the flow speed in the ECS
is proportional to the pressure difference partery− pvenule and
the permeability kecs, and inversely proportional to the dis-
tance becs between the periarterial space and the perivenous
space. While the distance is constant, and the arterial pump
determines the pressure difference, the ECS permeability
varies from sleep to wake. From sleep to wakefulness, the
porosity of the brain decreases from 0.234 to 0.141, while
the tortuosity increases only very slightly, from 1.176 to
1.196. From these values, we estimate an approximately
4.82 times greater ECS permeability during sleep than
during wakefulness based on the Kozeny–Carman equation
[22,39]. The lower ECS permeability during wakefulness cre-
ates higher flow resistance, suppressing the entire glymphatic
circulation. The ECS is treated as a homogeneous medium in
our model. We could incorporate spatial-dependent porosity,
toruosity and permeability, which would be valuable in
future modelling to incorporate the inhomogeneities in the
ECS [40]. The mechanical properties of the endfeet might
also vary between sleep and wakefulness, potentially influen-
cing our model. Future experimental measurements are
needed to address this aspect.

The flow rates predicted by our model are broadly con-
sistent with prior values obtained from experiments and
simulations. In the cardiac pulsation simulation, we find a
mean volume flow rate of order 1000 μm3 s−1 (for k1/k0 = 2,
Eendft = 1 × 105 Pa, figure 3e). A mouse has around 320 pene-
trating arteries branching from the MCA [41], from which
we can estimate a total volume flow rate of 320 ×
1000 μm3 s−1 = 3.2 × 105 μm3 s−1 in the PVS of an MCA. An
experimental measurement reported a volume flow rate of
∼4.5 × 104 μm3 s−1 for an MCA [15,35]. Our simulation thus
gives a fairly close prediction, given that some key par-
ameters, such as Eendft, kendft, k1/k0 and kecs, have large
uncertainty. Various experimental studies indicate that
the elastic modulus of the endfeet, Eendft, lies in the range
102−104 Pa [34,42–44]. For the softest endfoot wall, the
pressure difference across the wall is limited to small values
that would not admit any significant through flow with the
assumed values of the permeability kendft [20].

The astroglial aquaporin-4 water channels (AQP4) in the
endfeet allow faster fluid transport: AQP4 knock-out mice
have lower CSF influx [45]. This might be due to an effect
of AQP4 on the properties of the endfoot wall. Thus, the
range of values of kendft might change, compared to previous
estimations, if the role of AQP4 is considered [28]. It has been
suggested that AQP4 might affect the stiffness and flexibility
of the endfoot wall [14].

The lumped-parameter model reveals what determines
the portion of cardiac pulsation and functional hyperaemia
in pumping the CSF inflow. While the former is 50 times
more rapid, the latter is five times larger in amplitude. Both
factors can contribute to a higher inflow rate (figures 5e
and 6e,f ). The model points out that deformation of the
endfoot wall plays a role as a lowpass filter (the compliance)
that limits the pumping efficiency of the cardiac pulsation
(figure 5e,f ). In the simulations, for Eendft > 104 Pa, cardiac
pulsation dominates the inflow (figure 6b,c,d ), but
functional hyperaemia gradually becomes a comparable
driver as Eendft decreases (figure 6c). The numerical solutions
of the lumped-parameter model and the fluid-dynamic
model match each other very well (figure 5e,f ). While
the fluid-dynamic model resolves the flow spatially, the
lumped-parameter model represents a pure time-varying
system without spatial resolution and is therefore computa-
tionally inexpensive and quite suitable for vascular network
modelling [27].

Another important observation is that although coupling
functional hyperaemia and cardiac pulsation drives more
flow than either mechanism acting alone, it drives less
than the superposition of them pumping independently
(figure 6c). That said, the coupled waveform is more realistic,
as functional hyperaemia never occurs in the absence of
cardiac pulsation. On the other hand, while functional hyper-
aemia happens only occasionally, cardiac pulsation, CSF
inflow is consistently observed as a continual process in exper-
iments [3,5,13,35,46]. The fact that cardiac pulsation is
approximately 30 times more rapid than functional hyperae-
mia, and occurs all the time, makes it a much stronger driver
of CSF flow (figure 6b–d ), at least in the context of our model.

For given values of kecs and becs, the flow speed is deter-
mined by the pressure gradient driven by the arterial
motion. The cardiac pulsation amplitude for a pial artery is
usually about 1% of the artery diameter and 0.5% of the
PVS width [16]. For penetrating arteries, a time-averaged
pressure difference of 10 Pa over an axial distance of
1000 μm can drive a 1 μm s−1 net interstitial flow in the
ECS. Because flow measurements in the ECS are exception-
ally challenging, it has long been debated whether there is
any significant flow there. A recent theoretical analysis [39]
demonstrates that the permeability increase from wake to
sleep reduces diffusive transport slightly but would increase
advection significantly (due to reduced hydraulic resistance),
suggesting that a flow in the ECS might help explain the
observed increase in brain clearance from wakefulness to
sleep. Our valve model shows that a flow in the ECS might
also be an important part of the mechanism that produces
the net flow in the system of PVSs.

It is also important to point out that when there is an
influx from the PVS to the ECS there must be a nearly simul-
taneous efflux somewhere, because the volume of the brain is
nearly constant, and the fluid inside (CSF, interstitial fluid) is
incompressible. The poroelasticity of the brain might allow a
slight time lag between the influx and efflux, but they have to
happen on the same time scale.

The predictions of our model are subject to additional
caveats. First, we have modelled penetrating PVSs as
open spaces, where flow is governed by the Navier–Stokes
equation, but they may contain enough tissue that they
should be modelled as a porous medium, with flow governed
instead by the Darcy equation. Recent imaging of penetrating
PVSs suggests this may be the case [47], although pial PVSs
are known to be open [26]. In fact, whether penetrating
PVSs are porous and what their permeability might be has
been identified as the source of greatest uncertainty for
brain-wide modelling of glymphatic flows [29]. That said,
other modelling suggests a useful constraint: good perfusion
throughout the brain seems to require that the resistance of
penetrating PVSs (which is proportional to their per-
meability) be much greater than that of pial PVSs but much
less than that of the ECS [27]. Regardless of the permeability
of penetrating PVSs, valve action of the sort we suggest here
would rectify oscillations and produce a net flow. Whether
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the potential poroelasticity of the PVSs plays a role in the
valve mechanism will be addressed in further studies.

Second, we have modelled the penetrating PVS as a circu-
lar annulus, concentric with the artery, but in vivo
measurements show that large eccentricity is common, with
the artery positioned against one wall of the PVS [48]. We
expect that accounting for this eccentricity would lead to
slightly different predictions. For an open PVS, eccentricity
reduces the hydraulic resistance, tending to increase flow
and reduce axial pressure gradients. On the side of the
artery where the PVS is narrowest, dilation and constriction
would cause larger local pressure fluctuations [8,49] and pre-
sumably stronger valve action. On the other side of the artery,
however, pressure fluctuations would be smaller and valve
action weaker. Future simulations might incorporate
eccentric PVSs to explore the effect of these adjustments. A
penetrating artery, along with its PVS, branches into smaller
arterioles and smaller PVSs as it goes deeper into the brain
tissue. These smaller PVSs likely will not contribute signifi-
cant pumping because of their high hydraulic resistance,
but they are still of interest for future brain-scale vascular
network modelling. Previous work [27] incorporates the
hydraulic resistance of PVSs all along the vascular network
in a lumped-parameter model. Our local lumped-parameter
model can be extended to a full vascular network model in
a similar way, but with the proposed pumping mechanism
included. This approach could also be applied to flow in
the lymphatic vessel network, which is driven by artery
wall motion and rectified by valves.

Third, we have not considered PVSs around veins in any
detail, although they have been proposed as a route for fluid
to leave brain tissue [50]. If fluid is passing from a higher-
pressure ECS to a lower-pressure perivenous space, by the
same reasoning discussed above, we would expect the end-
foot wall to be compressed, shrinking gaps between endfeet
and hindering flow. That is, we would naively expect valve
action at the endfoot wall of a perivenous space to promote
net flow in the direction opposite to that which has been
observed in vivo. The valve mechanism proposed by Bork
et al. [14], if acting at perivenous spaces, would also
promote flow in the opposite direction, unless the wedge-
shaped edges of endfeet were reversed. However, pulsatility,
pressure, and its gradients are much lower in veins [1], so
both sorts of valve action may be negligible there. Generally,
far less is known about glymphatic efflux than about influx,
making it a worthy topic for future studies.
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Appendix A. Experimental protocol
Our animal experiments were approved by the Danish
Animal Experiments Inspectorate or the University Commit-
tee on Animal Resources of the University of Rochester and
were performed according to guidelines from the National
Institutes of Health (NIH). The mice had ad libitum food
and water access in an environment with a 12 h light/12 h
dark cycle (lights on at 7.00). We used a mixture of males
and females for the studies and, if not otherwise stated, we
used C57BL/6JRj (Janvier). The mice were 11–15 weeks old.

The mice were anaesthetized with a ketamine/xylazine
mixture (100 mg kg−1; 10 mg kg−1, i.p.) and fixed in a stereo-
taxic frame. Lidocaine (2 mg kg−1, s.c.) and buprenorphine
(0.05 mg kg−1, i.p.) were injected for pain management.
During surgery, the mice were positioned on a heating pad to
maintain body temperature at 37°C. During surgery and sub-
sequent imaging, anaesthesia was maintained by alternating
between ketamine (50 mg kg−1, s.c.) and ketamine/xylazine
(50 mg kg−1; 5 mg kg−1, s.c.) injections every 30–45min. Head
fixing was required for imaging. The skin and fascia were
cut away to expose the skull and dried with a cotton swab.
A headplate was fastened with dental cement.

Whiskers were stimulated unilaterally by air puffs from a
pneumatic pressure pump (Picospritzer, Parker) controlled
by a digitizer (Molecular Devices, Axon Digidata 1550B
plus HumSilencer), which was programmed via Clampex
software (Axon pCLAMP). The whisker stimulations were
delivered for 30 s, with 60 s interval (30 s of relaxation
before the stimulation and 30 s of relaxation after each stimu-
lation), and for protocol optimization, we applied frequencies
of 5 Hz and pulse lengths of 10ms. Air pressure was set to 20
psi. For each mouse, we performed several stimulations and
computed a phase-averaged dilation waveform. Those stimu-
lations with poor image quality, or stimulations that failed to
generate neurovascular responses, were excluded.
Appendix B. Mathematical details of the models

B.1. The lubrication-theory model
B.1.1. The perivascular space domain
The PVS is an open space, and the flow there, assumed to be
axisymmetric, obeys the Navier–Stokes equations and conti-
nuity equation in cylindrical coordinates (r, z):

@u
@t

þ u
@u
@r

þ w
@u
@z

¼ � 1
r

@p
@r

þ m

r

1
r
@u
@r

þ @2u
@r2

þ @2u
@z2

� �
, ðB 1Þ

@w
@t

þ u
@w
@r

þ w
@w
@z

¼ � 1
r

@p
@z

þ m

r

1
r
@w
@r

þ @2w
@r2

þ @2w
@z2

� �
ðB 2Þ

and
1
r
@ðruÞ
@r

þ @w
@z

¼ 0, ðB 3Þ
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where u = (u, w) is the velocity field in cylindrical coordinates,
p is the pressure, t is time, ρ is the density of the fluid and μ
is the dynamic viscosity. These equations are subject to the
following boundary conditions:

z ¼ 0 : qpvs ¼ qpial, qpial ¼ kpialðppial � pÞ, ppial ¼ 0, ðB 4Þ
z ¼ l : qpvs ¼ qcap, qcap ¼ kcapðp� pcapÞ, pcap ¼ 0, ðB 5Þ

r ¼ r1 þ h : u � n ¼ 0, u � t ¼ 0 ðB 6Þ

and r ¼ r1 þ bþ d : u � n ¼ @d
@t

þ kendftðp� pecsÞ, u � t ¼ 0 ,

ðB 7Þ

where

d ¼ ðr1 þ bÞ p� pecs
Eendft

ðB 8Þ

is the deformation of the PVS outer wall (measured from d0 =
r1 + b). Here, r1 is the radius of the artery at rest, b is the width
of the PVS, l is the length of the penetrating artery, h is the
amplitude of artery pulsation, Eendft is the Young’s modulus
of the PVS outer boundary, qpvs is the flow rate at the end of
the penetrating artery PVS, qpial is the flow rate in the pial
PVS, qcap is the flow rate in the precapillary PVS, kpial and
kcap are the conductivities of the pial and precapillary
inlet and outlet, and finally, ppial and pcap are the pressure
in the pial and precapillary PVS (set to zero). The unit vectors
normal and tangential to the artery wall are n = (0, 1)
and t = (1, 0), respectively. We have used the lubrication
approximation [20].

At the upstream pial PVS and the downstream precapil-
lary PVS, we set a hydraulic resistance boundary condition
to model the inflow and outflow (equations (B 4) and (B 5)),
assuming a conserved flow rate across each interface. At the
artery wall, we set non-slip and non-permeable boundary
conditions (equation (B 6)). The outer boundary of the PVS,
formed by the astrocyte endfeet, is modelled as a thin,
deformable, elastic layer of permeable but non-slip tissue
(equation (B 7)). A linear elastic law is used to relate the
deformation of this boundary to the pressure difference
across it [20].

The artery motion of cardiac pulsation is modelled by
equation (2.2). The artery motion of functional hyperaemia
is modelled by equation (2.3), where h0 is the amplitude
and f is the frequency. This waveform ensures that h and
dh/dt are continuous (figure 1e).

At the valve-like PVS outer boundary, formed by astro-
cyte endfeet, the permeability kendft is modelled by equation
(2.1). During artery dilation, the increased pressure in the
PVS opens the valve, allowing fluid to enter the ECS
(figure 1b). During artery constriction, the valve closes and
CSF motion is confined to the PVS (figure 1c).

To put the equations in non-dimensional form, we use the
scalings

r ¼ bR, z ¼ lZ, t ¼ T
f
, u ¼ bfU, w ¼ lfW and

p ¼ mf
12

P,

ðB 9Þ

where each uppercase symbol signifies a dimensionless ver-
sion of the corresponding lowercase symbol. Applying the
lubrication theory, we obtain the following equations:

@P0

@T
þ A0

@2P0

@Z2 þ A1
@P0

@Z
þ A2P0

¼ EðR1 þHÞ
R1 þ 1þD0

� 	
@H
@T

þ A2PECS þ @PECS

@T
, ðB10Þ

W0 ¼ R2

4
@P0

@Z
þ C1 lnðRÞ þ C2 ðB11Þ

and U0 ¼ C3

R
� R3

16
@2P0

@Z2 � R
4
[2 lnðRÞ � 1]

@C1

@Z
� R

2
@C2

@Z
,

ðB12Þ
where P0, W0 and U0 are the leading order terms of P, W and
U, respectively. A0, A1, A2, C1, C2 and C3 are known functions
of Z and T. These equations are solved numerically using the
Chebyshev spectral method [20].

Integrating the axial velocity (equation (B11)) over the
cross section of the annulus, we obtain an expression for
the volume flow rate:

Q0ðZ, TÞ ¼
ð2p
0

ð1þR1þD

R1þH
W0RdRdu

¼ 2p
R4

16
@P0

@Z
þ C1

R2 lnðRÞ
2

� R2

4

� �
þ C2R2

2

� 	




R¼1þR1þD

R¼R1þH
:

ðB13Þ
Wemodel a hydraulic resistance at the PVS of the pial bound-
ary, with a conserved flow rate across the interface:

Z ¼ 0 : Q0ð0, TÞ ¼ Qpial,

Qpial ¼ Kpialð0� P0ð0, TÞÞ: ðB14Þ
In the same way, we model a hydraulic resistance at the PVS
of the capillary site:

Z ¼ 1 : Q0ð1, TÞ ¼ Qcap, Qcap ¼ KcapðP0ð1, TÞ � 0Þ: ðB15Þ
At the artery site, we have

R ¼ R1 þH : U � n ¼ @H
@T

, U � t ¼ 0, ðB16Þ

where H is the amplitude of artery pulsation. At the PVS
outer boundary, we have

R ¼ R1 þ 1þD : U � n

¼ @D
@T

þ Kendft(P0ðZ, TÞ � PECS), U � t ¼ 0, ðB17Þ

where

D ¼ P0ðZ, TÞ � PECS

E
ðB18Þ

is the (dimensionless) displacement of the PVS outer bound-
ary, Kendft ¼ kendftmðb12Þ�1 and E ¼ Eendft1

2ðmfðR1 þ 1ÞÞ�1.
B.1.2. The extracellular space domain
The ECS is modelled as an incompressible porous medium,
with incompressible flow governed by Darcy’s Law. The
governing equations are

u�
ecs ¼ � kecs

m
rpecs and u�

ecs ¼ uecs � @decs

@t
, ðB19Þ

and

r � fuecs þ ð1� fÞ @decs

@t

� �
¼ 0 and r � decs ¼ 0, ðB20Þ



Table 2. Dimensionless parameters.

U axial CSF velocity U = u/bf

W radial CSF velocity W ¼ 1w=bf

R radial coordinate R = r/b

Z axial coordinate Z ¼ 1ðz=bÞ
T time T = f t

RECS axial coordinate for the ECS RECS = r/becs
P pressure in the PVS P ¼ p12=mf

Re Reynolds number Re ¼ 1rfb2=m

Q axial flow rate Q ¼ q=b2lf ¼ 1ðq=b3f Þ
R1 artery diameter R1 = r1/b

D displacement of the PVS outer boundary D = d/b

APVS PVS cross-section area APVS = apvs/b
2

1 aspect ratio of the PVS 1 ¼ b=l

H artery dilation amplitude H = h/b

E elasticity of the PVS outer boundary E ¼ Eendft12=mf ðR1 þ 1Þ
Kendft permeability of the PVS outer boundary Kendft ¼ mkendft=b12

Kpial conductivity of the pial PVS inlet Kpial ¼ kpial=ðb2ðb=1f ÞÞ � ðmf=12Þ
Kcap conductivity of the capillary PVS outlet Kcap ¼ kcap=ðb2ðb=1Þf Þ � ðmf=12Þ
Krecs permeability of the ECS Krecs ¼ kecs=b2ecs1

2

Kzecs permeability of the ECS Kzecs ¼ kecs=l212

Pecs pressure in the ECS Pecs ¼ pecs12=mf

Uecs radial velocity in the ECS Uecs = uecs/becsf

Wecs radial velocity in the ECS Wecs = wecs/lf

Uecs radial velocity in the ECS Uecs = uecs/becsf

U* radial velocity relative to the endfoot wall motion U* = (u− ∂d/∂t)/bf
Wecs* radial velocity in the ECS relative to the solid phase motion

Uecs* radial velocity in the ECS relative to the solid phase motion
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where uecs = (uecs, wecs) is the velocity of the fluid phase in the
ECS, ϕ is the porosity, decs is the deformation of the solid
phase in the ECS, uecs* is the velocity field relative to the
solid phase velocity, and p is the pressure inside the ECS.
The dynamic viscosity μ of the CSF and the permeability
kecs of the ECS are both assumed to be uniform. Applying
all four of the above equations, we have

r2 pecs ¼ 0: ðB21Þ

Across the PVS outer boundary, CSF enters or leaves the ECS
from the PVS, and the velocity must be continuous there:

r ¼ r1 þ b : u�ecs ¼ u�, ðB22Þ

where u* = kendft( p− pecs) is the velocity across the PVS end-
foot wall measured relative to the deformation velocity of
the endfoot wall.

For the boundary at the outer radius of the ECS, corre-
sponding to efflux at the nearest venule, we assume free
surfaces and require

r ¼ r1 þ bþ becs : p ¼ 0: ðB23Þ

For the boundaries at the two ends, we assume zero axial
pressure gradient:

z ¼ 0 and z ¼ 1 :
@pecs
@z

¼ 0: ðB24Þ

Since the deformation of the endfeet is only in the r direc-
tion and the venule site is a free surface, if we also assume
negligible displacement in the z-direction, we obtain the
analytical solution

decsðr, z, tÞ ¼ dðz, tÞ r1 þ b
r

� �
, 0

� 	
: ðB25Þ

To put the equations in dimensionless form, we use the
scalings

recs ¼ becsRecs, u�ecs ¼ becsfU�
ecs, w�

ecs ¼ lfW�
ecs

and pecs ¼ mf
12

Pecs:
ðB26Þ

The equations in dimensionless form are then

U�
ecs ¼ �Krecs

@Pecs

@Recs
, ðB27Þ

W�
ecs ¼ �Kzecs

@Pecs

@Z
ðB28Þ
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and Krecs
1
R
@Pecs

@R
þ @2Pecs

@R2
ecs

� �
þ becs

l0
Kzecs

@2Pecs

@Z2 ¼ 0, ðB29Þ

where Krecs ¼ kecsðb2ecs12Þ�1 and Kzecs ¼ kecsðl2012Þ�1, and the
boundary conditions in dimensionless form are

Recs ¼ r1 þ b
becs

: U�
ecs ¼

b
becs

U�, ðB30Þ

Recs ¼ r1 þ bþ becs
becs

: Pecs ¼ 0 ðB31Þ

and Z ¼ 0, Z ¼ 1 :
@Pecs

@Z
¼ 0: ðB32Þ

The flow in the ECSdomain is computedusing a custom-devel-
oped Poisson equation solver. For the lubrication-theory
model, the dimensional parameters are listed in table 1, and
the dimensionless parameters are listed in table 2.

B.2. The lumped-parameter model
B.2.1. Lumped parameters
We further simplify our model in terms of lumped par-
ameters. All coefficients in equation (4.3) can be identified
from the coefficients in the fluid dynamical equation (B10),
neglecting some higher-order infinitesimal terms. Here, we
present another way to derive the coefficients through
direct analysis of the pressure–flowrate lumped-parameter
model (equation (4.3)).

Fluid motion induced by the prescribed arterial
pulsation is modelled as a flow rate source (analogous to
the current source in figure 5a) with a volume flow rate
equal to the rate of change of the artery volume, described
by equation (4.1).

There are three pathways by which fluid can enter or
exit the penetrating PVS, as sketched in figure 5a. Fluid
can be exchanged with the pial PVS or the ECS, via the
endfoot wall. Due to high resistance, flow through the
capillary PVS is negligible. Each pathway has a
hydraulic resistance, and ultimately connects to a place
where the pressure (analogous to voltage) is zero.
By calculation, the resistance of the pial pathway is
Rpial ¼ k�1

pial ¼ 1:06� 1016 kgm�4 s�1.
Though the resistance of the endfoot wall and that

of the ECS depend on the surface area change of the
endfoot wall (due to the deformation), they are small terms
and we neglect them here for simplicity. Therefore, the resist-
ance of the endfoot wall is inversely proportional to its
area and its area-normalized permeability kendft, which is
pressure-dependent:

Rendft ¼ 1
2plðr1 þ bÞkendft

¼ 4:0� 1016 kgm�4 s�1 p . pecs
8:0� 1016 kgm�4 s�1 p � pecs,

�
ðB33Þ

for k1/k0 = 2. We only consider the resistance of the ECS Recs

in the radial direction, which is

Recs ¼ m

2plkecs
ln

r1 þ bþ becs
r1 þ b

¼ 2:56� 1015 kgm�4 s�1 ðB34Þ

for kecs = 10−16 m2. The logarithmic term in equation (B 33) is
derived from equation (B 20) in the annular ECS domain
[25,30].

The deformation of the endfoot wall can be modelled as
the capacitance in the circuit, described by equation (4.2),
with a value Cendft ¼ ð2:51� 10�12 m3 kg�1 � Eendft
�1Þ,

inversely proportional to Eendft.

B.2.2. Time-dependent solution of the lumped-parameter model

in the absence of the valve
In complex domain equation (4.1) can be written as

~qart � 2pr1lhcp2pf e2pift: ðB35Þ

In the absence of the valve, equation (4.3) can be rewritten as

2pr1lhcp2pf e2piftþðt=ReffCendftÞ ¼ Cendft
@ðpet=ReffCendftÞ

@t
, ðB 36Þ

where Reff
�1 ¼ ðRendft þ RecsÞ�1 þ Rpial

�1. Integrating equation
(B 35) over time, we have

2pr1lhcp2pf
2pfiþ ð1=ReffCendftÞ e

2piftþðt=ReffCendftÞ ¼ Cendftp et=ReffCendft : ðB 37Þ

Therefore, we have the analytical solution for the pressure

p ¼ 4p2r1lhcpf
Cendftð2pfiþ ð1=ReffCendftÞÞ e

2pift

¼ 4p2r1l�hcpf e2piðft�ðarctanð2pfReffCendftÞ=2pÞÞ

Cendft

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2f2 þ ð1=ReffCendftÞ2

q :

ðB 38Þ

From equation (B 37), we can derive equation (4.4), given that
p=−Rpial qpial.

B.2.3. Solution of the lumped-parameter model in the presence

of the valve neglecting the endfoot wall deformation
Neglecting the endfoot wall deformation, equation (4.3) can
be rewritten as

p
Reff

¼ qart, ðB39Þ

where Reff
�1 ¼ ðRendft þ RecsÞ�1 þ Rpial

�1. Given that
p =−Rpial qpial, we have

qpial ¼ �Reffqart
Rpial

: ðB40Þ

Since Reff contains Rendft, which depends on the pressure
and acts like a valve (equation (B 32)), we can therefore
calculate the net inflow volume Vpial per cycle:

Vpial ¼
ðt�
0

Reff1qart
Rpial

dtþ
ðt0
t�

Reff2qart
Rpial

dt, ðB41Þ

where Reff1 is the value of Reff when the artery dilates (qart > 0)
and the valve opens, and Reff2 is the value of Reff when the
artery constricts (qart≤ 0) and the valve closes. Here, t� is
the time when qart changes sign and the valve switches its
state, and t0 is the period of the cycle. Since the artery diam-
eter always returns to the baseline after one cycle, we have
Vart ¼

Ð t0
0 qart dt ¼ 0, or

Ð t�
0 qart dt ¼ � Ð t0

t�
qart dt. We can there-

fore rewrite equation (B 40) as

Vpial ¼ g

ðt�
0
qart dt ¼ jgj

ðt�
0
jqartjdt ¼ jg

2
j
ðt0
0
jqartjdt, ðB42Þ

where γ = (Reff2/Rpial)− (Reff1/Rpial) > 0. The second
equality in equation (B41) holds because the sign of qart is
consistently positive during the time range of integration
(the dilation period). The third equality holds becauseÐ t0
0 jqartjdt ¼

Ð t0
t�
jqartjdt.
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