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Solute transport in a channel has important implications in industrial processes, biomechanics, and drug
delivery. When flow is driven down a channel by a pressure gradient, solute is spread axially by shear and
laterally by molecular diffusion. The combination causes the effective axial diffusivity to exceed the
molecular diffusivity, a phenomenon known as Taylor dispersion. Here we show, however, that if the
channel walls are permeable to the fluid but not to the solute, solute in the channel can be consolidated,
making the effective axial diffusivity negative, a phenomenon we call “antidispersion.” We present a
theoretical model, with numerical validation, to study antidispersion, demonstrating that it occurs both with
boluses of solute and with moving solute fronts. We determine the conditions in which antidispersion
exceeds dispersion: high dimensionless permeability, moderate dimensionless flow speed, and concen-
tration gradients that are not too steep. Our findings may inform understanding of biological circulation
systems and design of systems for controlling solute concentration, as in drug delivery and desalination.
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Considering a bolus of solute moving through a long,
narrow channel in steady, pressure-driven, viscous
(Poiseuille) flow, Taylor [1] demonstrated that shear
spreads solute and generates sharp concentration gradients
perpendicular to the flow direction, which are rapidly
smoothed out by diffusion across the channel’s narrow
width. The combination of shear and diffusion drives rapid
mixing, increases entropy, and widens the bolus more
quickly than either process could do alone—a phenomenon
known as Taylor dispersion [1,2]. The rate at which a
bolus spreads, or equivalently, the effective diffusivity, is
increased by the greatest factor for a low-diffusivity, large-
molecular-weight solute, which otherwise diffuses slowly.
Taylor dispersion, in simplest form, occurs in channels with
impermeable walls.
However, solutes are often transported along channels

whose walls are semipermeable, blocking solute molecules
but allowing fluid to leak in or out of the channel, like a
sieve. For example, water purification and desalination
depend on reverse osmosis through semipermeable mem-
branes [3,4]. The phospholipid bilayers that constitute most
cell membranes typically block large molecules but have
embedded aquaporin proteins which allow water to easily
cross the membrane [5]. In capillaries, water leaks through
the walls into the surrounding tissue [6], while cells and
large molecules in the blood are retained. Similarly, in
perivascular spaces that surround blood vessels in the brain,
cerebrospinal fluid leaks into surrounding tissue, but large
particles do not [7,8]. If fluid leaks out through channel
walls, flow speed within the channel drops as fluid moves
downstream. The resulting velocity gradient affects
solute transport and dispersion. Although it is well known
that a porous (not semipermeable) wall reduces Taylor

dispersion [9], to our knowledge, no study has discussed
the potential for semipermeable walls to concentrate and
narrow a solute bolus.
In this Letter, we report a phenomenon opposite to

Taylor dispersion: for flow in a channel with semiperme-
able walls, a bolus can narrow and become increasingly
concentrated, so that the solute becomes less mixed and
its concentration less uniform. The effective diffusivity
is negative, in contrast to ordinary diffusivity, which is
prohibited from being negative by the second law of
thermodynamics. We derive a reduced-order model to
demonstrate this “antidispersion” effect, and we validate
the model through three-dimensional simulations. We also
find that concentration gradients experience antidispersion,
as boluses do. We explore the range of conditions in which
antidispersion occurs. Our findings could enhance studies
of biological transport, microfluidic device design, and the
development of medical applications, such as the design of
catheters for drug delivery.
We consider the flow in a narrow channel between two

infinite, parallel, semipermeable plates, as illustrated in
Fig. 1. We assume the flow to be laminar, steady, and fully
developed. The channel has width 2h and length L. We
consider the case in which ε ¼ h=L ≪ 1, so we can
determine the flow analytically using lubrication theory,
in which the continuity and momentum equations are

∂u
∂x

þ ∂v
∂y

¼ 0;
∂p
∂x

¼ μ
∂
2u
∂y2

;
∂p
∂y

¼ 0; ð1Þ

where x and y are the axial and transverse coordinates, u
and v are the corresponding velocity components, p is the
pressure, and μ is the dynamic viscosity. The pressure is
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p0 > 0 at the inlet and p ¼ 0 at the outlet. The walls are
no-slip boundaries (uy¼h ¼ uy¼−h ¼ 0), but they allow
fluid to exit according to the Starling filtration law

vy¼h ¼ −vy¼−h ¼ Lpðp − pextÞ; ð2Þ

where Lp is the hydraulic conductivity of the porous
wall (linearly proportional to the wall permeability) and
pext ¼ 0 is the pressure external to the porous wall. We
neglect osmotic effects.
Defining a characteristic velocity u0 ¼ p0hε=ð2μÞ and

the dimensionless variables X ¼ x=ðh=εÞ, Y ¼ y=h,
P ¼ p=p0, U ¼ u=u0, and V ¼ v=ðu0εÞ, Eqs. (1) and (2)
lead to P ¼ − sinh½BðX − 1Þ�= sinhðBÞ, where the dimen-
sionless quantity B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Lpμ=h
p

=ε, which varies with the
ratio of the hydraulic conductivity of the leaky wall to that
of the channel itself, is an important parameter. The
corresponding velocity field is

U ¼ dP
dX

ðY2 − 1Þ; V ¼ −
d2P
dX2

�
Y3

3
− Y

�
: ð3Þ

Mathematical details are presented in the Appendix. Dejam
and Hassanzadeh [10] derived an analytical solution that
characterizes the effect of a semipermeable wall on
dispersion, but the flow field considered in their model
is one-dimensional and thereby independent of the axial
direction. Griffiths et al. [11] considered axial flow
gradients, but in the absence of semipermeability.
The advection-diffusion equation governing solute trans-

port in the channel is

∂C
∂t

þ u
∂C
∂x

þ v
∂C
∂y

¼ D

�
d2C
dx2

þ d2C
dy2

�
; ð4Þ

where C is the dimensionless solute concentration
(0 ≤ C ≤ 1), t is time, and D is the diffusivity of the
solute. Defining the scaled time T ¼ t=t0 ¼ t=ðhε−1u−10 Þ
gives

∂C
∂T

þU
∂C
∂X

þ V
∂C
∂Y

¼ 1

Pe

�
ε
d2C
dX2

þ 1

ε

d2C
dY2

�
; ð5Þ

where Pe ¼ u0h=D is the Péclet number, another important
dimensionless parameter (independent of B). Performing
a Reynolds decomposition, we let C ¼ C̄ðX; TÞ þ
C0ðX; Y; TÞ and U ¼ ŪðXÞ þU0ðX; YÞ, where C̄ðX; TÞ
and ŪðXÞ are the cross sectional averages of concentra-
tion and axial velocity, respectively. Considering times
t0 ≫ h2=D, assuming that transverse solute transport is
dominated by diffusion (ε Pe ≪ 1), and averaging both
sides of Eq. (5) lead to

∂C̄
∂T

þ Ū
∂C̄
∂X

¼ ε

Pe
ð1þ F Ū2Pe2Þ d

2C̄
dX2

þ 1

εPe
∂C0

∂Y

����
Y¼1

; ð6Þ

where F ¼ 2=105 [11]. The third term in Eq. (6) describes
the enhanced diffusion in the axial direction due to Taylor
dispersion [2], and the last term describes the solute
transport through the semipermeable walls.
At the semipermeable wall at Y ¼ 1, the solute flux is

J ¼ VY¼1ðC̄þ C0Þ − 1

εPe
∂C0

∂Y

����
Y¼1

; ð7Þ

where VY¼1 is the transverse flow velocity at the wall. The
solute flux at the wall at Y ¼ −1 is given by a similar
expression. For a solute that cannot permeate the wall,
J ¼ 0. Applying this condition to Eq. (6) and assuming
C̄ ≫ C0, we have

∂C̄
∂T

þ Ū
∂C̄
∂X

¼ ε

Pe
ð1þ F Ū2Pe2Þ d

2C̄
dX2

þ VY¼1C̄: ð8Þ

If a bolus of solute (a localized region of high concen-
tration) is present, the last term in Eq. (8) is positive, acting
as a source that increases concentration. Meanwhile, the
second (advection) term narrows the bolus due to a negative
axial velocity gradient, as described by Eq. (3). The third
term accounts for Taylor dispersion, which tends to
broaden the bolus and reduce concentration.
We set zero concentration at the inlet (CjX¼0 ¼ 0) and

zero concentration gradient at the outlet (dC̄=dXjX¼1 ¼ 0),
allowing solute efflux through pure advection. We assume
the initial concentration to have a Gaussian profile, CT¼0 ¼
C0 exp½−ðX − X0Þ2=ð2σ2Þ�, where C0 ¼ 1, X0 ¼ 0.2, and
σ ¼ 0.09. Equation (8) is solved in the frequency domain
using a Laplace transform, and mapped to the time domain
using a numerical inverse Laplace transform and a spectral
method in space [12,13].
When the wall is impermeable (B ¼ 0), the pressure

gradient and axial velocity are uniform from inlet to outlet
[Fig. 2(a)]. In that case, over time, the bolus’s width
increases and its maximum concentration decreases, both
due to Taylor dispersion [Fig. 2(b)]. However, when the

FIG. 1. A fluid-filled channel of length L, with semipermeable
walls at y ¼ h and y ¼ −h. Steady pressure p0 > 0 is applied at
the left end of the channel, driving axial flow within the channel
and driving fluid, but not solute, through the wall.
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wall is semipermeable (B ¼ 2.3), the pressure gradient is
steeper near the inlet than near the outlet, causing a negative
axial velocity gradient [Fig. 2(c)]. In that case, over time,
the bolus’s width decreases and its maximum concentration
increases [Fig. 2(d)], a behavior we call “antidispersion.”
Figure 2(e) shows that the maximum concentration
decreases over time when B ¼ 0 but increases over time
when B ¼ 2.3. Eventually, the bolus becomes so narrow
that dispersion overcomes antidispersion and the peak
concentration begins to drop again.

In both of those cases, we considered flows with
Pe ¼ 14, but the results depend on Pe as well as B. For
example, choosing B ¼ 1.3 but considering very slow flow
(Pe ¼ 0.14) or very fast flow (Pe ¼ 71), we observed
boluses spreading over time, not narrowing [Figs. 2(g)
and 2(i)], while choosing a moderate flow speed (Pe ¼ 14)
led to antidispersion [Fig. 2(h)]. Figure 2(f) shows how the
maximum concentration C̄max at time T ¼ 1.2 varies with
both Pe and B. Increasing B increases C̄max (promotes
antidispersion) because a leakier channel leads to flows
with steeper velocity gradients that compress the bolus.
Increasing Pe from values near zero to values of order unity
increases C̄max and promotes antidispersion, but increasing
Pe further decreases C̄max and hinders antidispersion. That
finding is consistent with Eq. (8): antidispersion occurs
when Pe is large enough for the velocity gradient to be
steep but not so large that Taylor dispersion overwhelms
antidispersion. Our analytic model was validated with
numerical simulations (see the Appendix).
We now examine the case of a uniform boundary outflow

speed VY¼1 (instead of uniform hydraulic conductivity Lp).
Assuming that the average concentration profile is
Gaussian with characteristic width σ, we have ∂2C̄=∂X2 ¼
−C̄=σ2 at X ¼ X0, where the concentration is maximum.
Equation (8) then becomes

DC̄
DT

����
X¼X0

¼ MC̄; ð9Þ

where D=DT is the material derivative and M ¼
−εσ−2Pe−1ð1þ F Ū2Pe2Þ þ VY¼1. Peak concentration
decreases and the bolus widens when M < 0; peak con-
centration increases and the bolus narrows when M > 0.
The value ofM depends on ŪðXÞ and σðX; TÞ. We consider
here M0 ¼ −εσ−20 Pe−1ð1þ F hŪi2Pe2Þ þ VY¼1, which is
independent of space and time, where σ0 is the width of the
initial bolus, hŪi ¼ R

X¼1
X¼0 ŪðXÞdX is the axial velocity

averaged in the axial direction, and VY¼1 ¼ B2
X¼0=2. The

first term on the right depends on σ, Ū, and Pe.
Alternatively, we can write Eq. (9) as

DC̄
DT

����
X¼X0

¼ ε

Pe
Deff

D
∂
2C̄
∂X2

; ð10Þ

where Deff=D ¼ −Peσ2M=ε is the ratio between the
effective diffusivity and the inherent diffusivity of the
solute, where a negative value indicates antidispersion.
Again, we consider Deff0=D ¼ −Peσ20M0=ε, which is
independent of space and time.
If VY¼1 is uniform, conductivity must vary spatially:

LpðXÞ ¼
LpjX¼0�

B2
X¼0=2

�
X2 þ �

α − 1 − B2
X¼0=2

�
X þ 1

; ð11Þ

where αp0 is the pressure at the outlet (0 < α < 1).

FIG. 2. Dispersion and antidispersion of solute boluses in
channels (ε ¼ 0.002). (a),(b) With impermeable walls (B ¼ 0),
the dimensionless pressure P drops linearly with dimensionless
position X, and the dimensionless axial mean velocity Ū is
uniform; over dimensionless time T, the profile of the dimen-
sionless concentration C̄ of a bolus becomes wider and shorter.
(c),(d) With semipermeable walls (B ¼ 2.3), both the slope of P
and value of Ū decrease with X; the profile of C̄ becomes narrower
and taller over time. See also the Supplemental Material, Video 1
[14]. (e) The normalized maximum concentration C̄max decreases
with time for B ¼ 0 but increases with time forB ¼ 2.3. (f) C̄max at
T ¼ 1.2 is large when B is large and Pe is moderate. (g)–(i) With
semipermeable walls (B ¼ 1.3) and very slow (Pe ¼ 0.14) or very
fast (Pe ¼ 71) flow, the profile of C̄ widens over time. But with
moderate flow (Pe ¼ 14), C̄ narrows over time. See also the
Supplemental Material, Video 2 [14].
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In this case, Lp increases with X, P is a parabolic
function of X, and Ū is a linear function of X [Figs. 3(a)
and 3(b)]. Figure 3(c) shows C̄max at T ¼ 1.2 for different
values of B and Pe. The regime where antidispersion domi-
nates can be determined analytically by the sign of M and
approximated by the sign of M0. The region in Fig. 3(d)
whereM0 > 0 approximately overlaps the region where anti-
dispersion dominates. Figure 3(e) shows that C̄max increases
with σ. Again, the region whereM0 > 0 in Fig. 3(f) overlaps
with the region where antidispersion dominates.
Finally, we move from boluses to examine the case in

which the concentration at the inlet is suddenly altered
according to a step function, as at the beginning of a steady
injection of solute, producing a moving concentration front.
With nearly impermeable walls (B ¼ 0.1), the profile of C̄
is smoothed over time but remains mostly flat on both sides
of the front [Fig. 4(a)]. However, with semipermeable
walls (B ¼ 3.2), the profile of C̄ curves upward over time
as solute accumulates near the front [Fig. 4(b)]. The peak
concentration occurs at the front and exceeds the inlet

concentration. Figure 4(c) shows how C̄max varies over time
with different values of B, remaining nearly constant when
B is small but growing and saturating when B is large.
Interestingly, the largest values of C̄max far exceed those
observed for boluses [Fig. 2(e)]. That observation is
consistent with our finding, above, that antidispersion is
stronger for wide boluses (large σ); the semi-infinite region
of high concentration behind a moving front can be
understood as a very wide bolus. Large B consistently
leads to large C̄max, but for moving fronts, altering Pe has
little effect [Fig. 4(d)]. That observation is consistent with
the fact that Taylor dispersion has little effect, since C is
nearly uniform except near the front. For some values of B,
concentration gradients near the front become so steep that,
eventually, dispersion overcomes antidispersion and the
peak concentration begins to drop.
We have shown that solute traveling along a channel with

semipermeable walls can become less mixed over time,
with high-concentration regions becoming more concen-
trated and low-concentration regions becoming less so.
This “antidispersion” is possible because semipermeable
walls leak fluid but not solute. For a bolus, antidispersion is
strong when B is large (leakier, longer, and narrower
channels), the Péclet number Pe is moderate, and concen-
tration gradients are not too steep. Antidispersion is driven
by the axial velocity gradient in the channel, which scales
as B2Pe; therefore, its effects are negligible when axial
transport is dominated by diffusion (Pe ≪ 1). Its effects
are also negligible when Pe ≫ 1 because of strong Taylor
dispersion.

FIG. 3. Dispersion and antidispersion in channels (ε ¼ 0.001)
with uniform outflow through the walls. (a) If the wall’s
conductivity LpðXÞ obeys Eq. (11), the outflow velocity VY¼1

is constant. Here, α ¼ 0.1. (b) In this case, P is parabolic, and Ū
is linear. (c) C̄max at T ¼ 1.2 is large when BX¼0 is large and Pe is
moderate. To a good approximation, C̄max > 1 where M0 > 0.
(d) The normalized effective diffusivity −Deff0=D is large when
BX¼0 is large and Pe is moderate. To a good approximation,
−Deff0=D > 1 where M0 > 0. (e) C̄max is large when σ is large
and Pe is moderate. To a good approximation, C̄max > 1 where
M0 > 0. (f) −Deff0=D is large when σ is large and Pe is moderate.
−Deff0=D > 1 where M0 > 0.

FIG. 4. Antidispersion of moving concentration fronts
(ε ¼ 0.001). (a) With nearly impermeable walls (B ¼ 0.1), the
profile of C̄ is smoothed at the front over time but remains flat
elsewhere. (b) In a leaky channel with semipermeable walls
(B ¼ 3.2), the profile of C̄ curves upward over time. See also the
Supplemental Material, Video 3 [14]. (c),(d) C̄max at T ¼ 1.2
increases and saturates over time, growing more when B is larger
but showing little variation with Pe. A star marks the parameter
values considered in (b).
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We varied the permeability of the wall to achieve
uniform fluid leakage along the channel [Fig. 3(a)],
enabling us to derive an analytical expression for the
effective diffusivity of a Gaussian-profiled bolus. When
the effective diffusivity becomes negative, the bolus nar-
rows and becomes more concentrated [Fig. 3(d)]. Notably,
the maximum concentration increases with the character-
istic bolus width σ, indicating that a broader bolus is more
prone to concentration than dispersion [Fig. 3(f)]. This is
consistent with our steady-injection study, where the solute
reaches a maximum width at steady state. For solute fronts,
antidispersion depends less on Pe because the solute is
already uniformly distributed in most places, weakening
dispersion.
We expect antidispersion to be observable with available

materials and flow parameters. For example, a membrane
with 45-nm pores with wall permeability 5 × 10−7 m=Pa=s
[15] would readily pass water molecules (with a radius
around 0.2 nm), but block solute molecules with radius
100 nm, whose diffusivity at room temperature is about
5.6 × 10−12 m2=s [16]. In a channel 5 mm long and 20 μm
wide with peak inlet velocity 10 μm=s, B ¼ 1.8, and
Pe ¼ 35, we would expect to see antidispersion, according
to Fig. 2. Owing to the higher Péclet number, solutes with
lower diffusivity experience more pronounced stretching
and dispersion within the channel, making them more
susceptible to dilution.
Antidispersion might be applied to drug delivery, where

precise control of concentration is essential [17,18]. For
controlled drug release, Taylor dispersion can cause pre-
mature release, but combining it with antidispersion (by
dynamically manipulating Pe) might help precisely control
the drug concentration during the injection. In tumor
therapy [19], antidispersion could reduce mixing and dilu-
tion of the drug before it reaches the target site, enhancing
its effectiveness. A typical microcatheter for drug delivery
has a radius of r ∼ 0.5 mm (similar to the channel width h
we considered) and a length of L ∼ 1000 mm [20], leading
to a small aspect ratio of ∼0.0005. According to Fig. 2(f),
when the catheter wall has a permeability greater than
∼1 × 10−7 m=Pa=s (corresponding to B ∼ 2), a drug bolus
can be concentrated through antidispersion during the
injection at Pe ∼ 10. The Péclet number can be tuned by
adjusting the injection flow speed based on the diffusivity
of the specific drug.
Antidispersion might also be used to separate solutes of

different diffusivities, causing some solutes to experience
antidispersion while others are dispersed. For example, to
separate particles of sizes 0.1 and 1 μm [21], which have
diffusivities differing by orders of magnitude [16], we can
maintain a moderate Pe [Fig. 2(h)] so that the small
particles undergo antidispersion while the large, high-Pe
particles disperse [Fig. 2(i)].
The ability to concentrate a solute is desirable in

microfluidic applications spanning industrial, biochemical,

and medical settings. For example, increasing the concen-
tration of a dilute solute could decrease the detection limit
and increase the signal-noise-ratio in bioassay tests [22,23],
such as pregnancy and COVID-19 tests [24,25]. A coro-
navirus particle has a diameter of ∼100 nm, much larger
than that of a water molecule, making it possible to
antidisperse using a semipermeable membrane in the assay.
As the antigen solution moves from the sample pad to the
test line under capillary force, the process can be modeled
as a moving concentration front [Fig. 4(d)], where anti-
dispersion occurs despite the relatively high flow speed in
the assay (∼0.1 mm=s).
Existing approaches for concentrating solutes can be

divided into active techniques (manipulating particles or
species with an externally applied force, such as electric,
magnetic, acoustic, or optical) and passive techniques
(e.g., diffusiophoresis, evaporation, or filtration). Here
we describe how a solute can be concentrated in certain
lateral-flow scenarios. The framework we present for
predicting antidispersion can be used to design microfluidic
devices that concentrate a solute. Those devices typically
have a larger ϵ (∼0.01) than catheters [15], implying that a
higher permeability (Lp > 1 × 10−6 m=Pa=s) is required to
antidisperse a bolus there.
Many channels in biological systems have slippery walls

or are filled with porous material. In either case, the shear in
the flow is reduced, diminishing the effect of Taylor
dispersion and thus promoting antidispersion. When the
channel is filled with porous material, both fluid and solute
must pass through small pores, and the shear is determined
by the characteristic width of these narrower pathways,
resulting in much weaker dispersion. On the other hand, the
hydraulic conductivity of a porous channel is smaller than
that of an open channel, leading to a higher value of B and
thereby enhancing antidispersion.
Bounded by permeable tissue, a perivascular space

surrounding a penetrating artery in the brain is a pathway
for cerebrospinal fluid flow. In mice, the characteristic
width of such a perivascular space is ∼5 μm, the length is
∼1000 μm, and the speed is ∼1 μm=s [26]. Gaps in the
wall have width ∼20 nm [27,28], making it permeable to
smaller solutes only. These parameter values are likely
within the regime of antidispersion. Measurement of flow
in these spaces using particle tracking velocimetry is not
currently feasible, however. Moreover, in vivo measure-
ment of wall permeability is prevented by the optical
diffraction limit. However, small-molecule tracer experi-
ments are currently available, and using them to quantify
dispersion and antidispersion in a perivascular space might
reveal the permeability of its outer wall and the velocity of
the cerebrospinal fluid within [29,30].
Our Letter has caveats. First, osmotic pressure—

proportional to the solute concentration [31]—has been
neglected in our model and in related studies [10]. This
neglect is justified when the osmotic pressure is much
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smaller than the applied pressure driving the flow, particu-
larly in cases involving dilute solutes, viscous flows, or
channels with high outlet resistance. Although developing a
corresponding reduced model is challenging and beyond
the scope of this Letter, osmotic pressure should be
incorporated in a future study. Second, our model considers
a two-dimensional channel for simplicity. However, the
model can be readily extended to other geometries, such as
circular or annular channels. It can also be adapted to
accommodate different boundary conditions.
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Appendix A: Derivation of the reduced-order model—
The flow field. Under lubrication theory, the pressure
differences in the y direction are negligible in the two-
dimensional Navier-Stokes equations, leading to

∂u
∂x

þ ∂v
∂y

¼ 0;
∂p
∂x

¼ μ
∂
2u
∂y2

;
∂p
∂y

¼ 0; ðA1Þ

where u is the flow velocity in the axial direction (x), v
is the flow velocity in the transverse direction (y), and p
is the pressure. Solving Eq. (A1) with a no-slip
boundary condition at the wall gives

u ¼ 1

2μ

dp
dx

ðy2 − h2Þ; v ¼ 1

μ

d2p
dx2

�
h2

y
2
−
y3

6

�
: ðA2Þ

The velocity at the permeable wall (y ¼ h), according to
the Starling law and neglecting the osmotic component, is
given by vðy ¼ hÞ ¼ Lpðp − pextÞ, where Lp is the per-
meability of the outer wall, and pext is the pressure outside
the permeable wall. Combining the equations above, with
an inlet pressure of p0 and an outlet pressure of 0, and
pext ¼ 0, we have

Lpp ¼ h3

3μ

d2p
dx2

: ðA3Þ

For a tube with a length L, we have

p ¼ p0

sinhBð1 − x=LÞ
sinhB

; ðA4Þ

where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3kμ=h

p
=ε.

We can express these equations in dimensionless form,
using the dimensionless quantities T ¼ t=t0, X ¼ x=ðh=εÞ,
ε ¼ h=L, Y ¼ y=h, P ¼ p=p0, U ¼ u=u0, V ¼ v=ðu0εÞ
(from the continuity equation). We define p0 as p0 ¼
2μu0=hε ¼ 2μv0=hε2, which ensures that a prescribed
pressure of p0 will drive a velocity of u0 at the center
line (y ¼ 0) of the tube when the outer wall is impermeable.
The dimensionless pressure distribution is

P ¼ −
sinh½BðX − 1Þ�

sinhðBÞ ; ðA5Þ

and therefore the fully resolved velocity components are

U ¼ dP
dX

ðY2 − 1Þ; V ¼ −
d2P
dX2

�
Y3

3
− Y

�
: ðA6Þ

The advection-diffusion equation. Within the tube, the
governing advection-diffusion equation is

∂C
∂t

þ u
∂C
∂x

þ v
∂C
∂y

¼ D
�
d2C
dx2

þ d2C
dy2

�
: ðA7Þ

Letting T ¼ t=ðh=u−10 ε−1Þ ¼ t=t0, this equation has the
dimensionless form

∂C
∂T

þU
∂C
∂X

þ V
∂C
∂Y

¼ 1

Pe

�
ε
d2C
dX2

þ 1

ε

d2C
dY2

�
; ðA8Þ

where Pe ¼ u0h=D is the Péclet number. This equation is
consistent with [33]. Using Reynolds decomposition, we
express the concentration and the axial velocity as the sum
of a mean term and a perturbation term,

CðX; Y; TÞ ¼ C̄ðX; TÞ þ C0ðX; Y; TÞ; ðA9Þ

UðX; YÞ ¼ ŪðXÞ þ U0ðX; YÞ; ðA10Þ

where the cross sectional average of the perturbation terms
is zero.
For a two-dimensional rectangular channel, we have

ŪðXÞ ¼ −
2

3

dP
dX

; U0ðX;YÞ ¼ −
�
1

3
− Y2

�
dP
dX

: ðA11Þ

Equation (A8) after the decomposition reads as

∂C̄
∂T

þ ∂C0

∂T
þ Ū

∂C̄
∂X

þ U0 ∂C̄
∂X

þ Ū
∂C0

∂X
þU0 ∂C

0

∂X
þ V

∂C0

∂Y

¼ 1

Pe

�
ε
d2C̄
dX2

þ ε
d2C0

dX2
þ 1

ε

d2C0

dY2

�
: ðA12Þ

In Eq. (A12), the fifth term (Ū∂C0=∂X) is negligible
compared to the third term Ū∂C̄=∂X because C0 ≪ C.
Averaging Eq. (A12) over the cross section, we have
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∂C̄
∂T

þ Ū
∂C̄
∂X

þ U0 ∂C
0

∂X
þ V

∂C0

∂Y
¼ 1

Pe

�
ε
d2C̄
dX2

þ 1

ε

dC0

dY

����
Y¼1

Y¼0

�
;

ðA13Þ

and subtracting Eq. (A13) from Eq. (A12), we have

∂C0

∂T
þ U0 ∂C̄

∂X
þ
�
U0 ∂C

0

∂X
−U0 ∂C

0

∂X

�
þ
�
V
∂C0

∂Y
−

¯
V
∂C0

∂Y

�

¼ 1

Pe

�
ε
d2C0

dX2
þ 1

ε

d2C0

dY2
−
1

ε

dC0

dY

����
Y¼1

Y¼0

�
: ðA14Þ

The first term in this equation can be neglected when
diffusion in the transverse direction has been completed
(t ≫ h2=D). The third term is much less than the second
term, given that C̄ ≫ C0. The fourth term, representing
advection in the transverse direction, can be neglected
when the transport in the transverse direction is diffusion
dominated (because the channel is narrow); the quantity
ε∂2C0=∂2X in the diffusion term on the right can be
neglected, given that axial diffusion is negligible compared
to transverse diffusion (because ε is small). Therefore,
we have

U0 ∂C̄
∂X

¼ 1

εPe

�
d2C0

dY2
−
dC0

dY

����
Y¼1

Y¼0

�
: ðA15Þ

Integrating Eq. (A15) over y twice, we have

C0 ¼ εPeŪ
∂C̄
∂X

�
Y2

4
−
Y4

8
−

7

120

�
þ dC0

dY

����
Y¼1

Y¼0

�
Y2

2
−
1

6

�
:

ðA16Þ

Note that the unknown constants in this expression were
evaluated given the definition that

R
1
0 C

0dY ¼ 0 and
C0ðYÞ ¼ C0ð−YÞ (the geometry is symmetric). Inserting
this expression for C0 [Eq. (A16)] and the expressions for
U0 and V [Eqs. (A11)] into the cross sectionally averaged
Eq. (A13), the second and third unknown terms are
determined to be

U0 ∂C
0

∂X
¼ −

2ŪεPe
105

�
∂Ū
∂X

∂C̄
∂X

þ Ū
∂
2C̄
∂X2

�
−

Ū
15

∂
2C0

∂X∂Y

����
Y¼1

Y¼0

ðA17Þ

and

V
∂C0

∂Y
¼ ε

3

35
VjY¼1ŪPe

∂C̄
∂X

þ 2

5
VjY¼1

∂C0

∂Y

����
Y¼1

Y¼0

: ðA18Þ

V∂C0=∂Y represents advection in the transverse direction,
which we later prove is negligible when transport in that
direction is dominated by diffusion (εPe ≪ 1).

Plugging Eqs. (A17) and (A18) into Eq. (A13), we arrive
at the leading-order equation for C:

∂C̄
∂T

þ
�
Ū − εPe

2

105
Ū
∂Ū
∂X

þ 3εPe
35

VjY¼1

�
∂C̄
∂X

þ 2

5
VjY¼1

∂C0

∂Y

����
Y¼1

Y¼0

¼ ε

Pe

�
1þ 2

105
Ū2Pe2

�
d2C̄
dX2

þ 1

εPe
dC0

dY

����
Y¼1

Y¼0

þ 1

15
Ū

∂
2C0

∂X∂Y

����
Y¼1

Y¼0

: ðA19Þ

At the semipermeable wall (Y ¼ 1), the solute flux is

J ¼ VY¼1ðC̄þ C0Þ − 1

εPe
∂C0

∂Y

����
Y¼1

; ðA20Þ

where VY¼1 is the transverse flow velocity at the semi-
permeable wall (Y ¼ 1) and ∂C0=∂YjY¼1 is the concen-
tration gradient in the y direction there.
For a solute that cannot permeate the wall, we have

J ¼ 0. Applying this boundary condition to Eq. (6) and
neglecting C0 in the first term (because C̄ ≫ C0), the
leading-order boundary condition gives

∂C0=∂YjY¼1 ¼ VjY¼1εPeC̄; ðA21Þ

and Eq. (A19) becomes

FIG. 5. Comparison between the reduced order model and 2D
COMSOL simulation In the simulation, the rectangular channel
has width 20 μm and length 5000 μm. The side walls have a
permeability k ¼ 1 × 10−15 m2 and are separated by 5 μm. The
viscosity is 7 × 10−4 Pa s, and the hydraulic conductivity is
Lp ¼ 2.86 × 10−7 m=Pa=s. (a),(b) The average pressure, varying
axially, in the reduced-order model and the simulation. (c) The
cross sectionally averaged concentration profile, in the model and
the simulation, with zero solute flux through the wall.
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∂C̄
∂T

þ
�
Ū þ εPe

�
−
2Ū
105

∂Ū
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þ
�
3

35
−

1

15
Ū

�
VjY¼1

�	
∂C̄
∂X

¼ ε

Pe

�
1þ 2

105
Ū2Pe2

�
d2C̄
dX2

þ
�
VjY¼1 þ εPe

�
−
2

5
VjY¼1

2 þ 1

15
Ū
∂VjY¼1

∂X

�	
C̄:

ðA22Þ

When εPe ≪ 1, we can further simplify this equation by
keeping only the leading-order term in the second advec-
tion term and the last source terms, respectively:

∂C̄
∂T

þ Ū
∂C̄
∂X

¼ ε

Pe

�
1þ 2

105
Ū2Pe2

�
d2C̄
dX2

þ VjY¼1C̄:

ðA23Þ

Appendix B: Validating the model with simulations—
We performed two-dimensional simulations in COMSOL
to validate the reduced model. A bolus, initially 500 μm
wide and with uniform concentration, was placed at the
inlet of a rectangular channel with width 2h ¼ 20 μm and
length L ¼ 5000 μm. With zero pressure at the outlet, a
pressure p0 ¼ 10 Pa was applied at the inlet to drive flow.
The hydraulic conductivity of the semipermeable walls
was Lp ¼ 2.86 × 10−7 mPa−1 s−1. The fluid was water at
37 °C (μ ¼ 7 × 10−4 Pa s). The solute diffusivity was D¼
10−10m2=s. Thus, ε ¼ 0.002, B ¼ 3.87, and Pe ¼ 14.3.
The simulated pressure and velocity at the centerline
(Y ¼ 0) matched the reduced-order model well [Figs. 5(a)
and 5(b)]. The simulated, cross sectionally averaged
concentration profile varied over time and matched the
reduced-order model well, showing that the bolus first
became narrower and more concentrated, then became
wider and more dilute [Fig. 5(c)].
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