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Abstract

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) and intersti-

tial fluid (ISF) in the extracellular spaces (ECS) is an important part of the brain’s

metabolic waste clearance system. The brain-wide circulation of these fluids is

often called the glymphatic system. Experiments reveal that arterial motions from

cardiac pulsations and functional hyperemia (neurovascular coupling) drive CSF

in the same direction, on average, as the blood flow, but since no valve has been

found in the PVS, the mechanism ensuring this direction is unclear.

Astrocyte endfeet bound the PVSs of penetrating arteries, separating them

from brain ECS. Gaps between astrocyte endfeet may provide a pathway for fluid

transport across the wall. Recent studies suggest that the astrocyte endfeet may

function as valves that rectify the CSF flow, producing the net flow observed in

experiments.

In this thesis, we show that the valve mechanism can exist based on simple

features of the PVSs. Oscillatory pressure in the PVS causes expansion and
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shrinking of the outer wall and the gaps on it. As CSF passes through the gaps

from the PVS into the surrounding interstitium, this expansion and shrinking act as

a rectifying valve because the fluid flows more easily when the gaps are larger. We

provide analytical and numerical models that verify and quantify the mechanism.

We couple the endfoot valve mechanism with fluid dynamics simulations of

the CSF flow in the PVS and find an axial net flow of CSF in the PVS that is

coupled with the net flow across the endfoot gaps due to the mass conservation law,

which matches the experiments. We find that cardiac pulsations drive a net CSF

flow consistent with prior experimental observations. Functional hyperemia, acting

with cardiac pulsation, increases the net flow. We also find, in agreement with

experiments, a reduced net flow during wakefulness due to the known decrease in

ECS permeability compared to the sleep state.

We present experimental work that reveals the importance of functional hyper-

emia in accelerating the CSF flow. We measured the diameter change waveform of

functional hyperemia in the pial artery and the CSF flow velocity in the surrounding

PVS, revealing a direct coupling between them. We present in vivo imaging of

penetrating arteries in mice, which we use to measure the amplitude of the diameter

change.
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represents the original gap shape. The blue curve represents the

constricted gap shape. . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.2 The deformation and the flow resistance change of a stretched gap

and a constricted gap (a) Deformation of the stretched gap (in blue)

and the constricted gaps (in orange). The deformation involves

changes in size and shape, causing the flow resistance change. (b)

The flow resistance change relative to the original is plotted for

various values of the azimuthal strain, which is proportional to the

pressure amplitude. For the 2D shell model (the black curve), the

flow resistance change is much larger than that compared to the

hoop-stress model (the red curve). (c) The pumping efficiency is

plotted for various values of the azimuthal strain and compared

with the hoop-stress model. The dashed line represents the case of

ideal rectification, where the constricted gap prevents any backflow

from reentering the PVS. . . . . . . . . . . . . . . . . . . . . . . 52
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3.3 The relative flow resistance change between a stretched gap and a

constricted gap across different gap directions. The amplitude of

the positive and negative pressure in the PVS is 100 Pa. (a) For

a gap direction of β = π/3, deformation of the stretched gap and

the constricted gaps is less dramatic compared to the lateral gap

in figure 3.2a. (b) The relative flow resistance change and area

change across different angles between the lateral axial stress and

the direction of the gap (β in the range of [0 π/2]). Both decrease

as beta increases, showing that the flow resistance and the area

change are maximum when the β = 0 (the lateral gap), and they are

minimum are β = π/2, the perpendicular gap. (c) The pumping

efficiency across different angles between the lateral axial stress

and the direction of the gap. The dashed line represents the case of

ideal rectification, where the constricted gap resists any backflow

from reentering the PVS. . . . . . . . . . . . . . . . . . . . . . . 53
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3.4 The relative flow resistance change ratio and area change between

a stretched gap and a constricted gap across different aspect ratios.

The amplitude of the positive and negative pressure in the PVS is

100 Pa. (a) For a gap aspect ratio of nearly 1 (essentially a circular

gap), deformation of the stretched gap and the constricted gaps is

less dramatic compared to the more elliptical gap in figure 3.2a. (b)

The relative flow resistance change across different aspect ratios of

the gap (l/t), where t is the length of the short axis of the gap, l is

the length of the long axis of the gap. (c) The pumping efficiency

across different aspect ratios of the gap (l/t), where t is the length

of the short axis of the gap, l is the length of the long axis of the

gap. The dashed line represents the ideal rectification, where the

constricted gap prevents any backflow from reentering the PVS. . 54
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3.5 Direct 3D simulations that validate the 2D shell model. (a) The

setup of the 3D simulations includes a cylindrical shell, which

represents the endfoot wall, with an elliptical gap (F2) on it, where

stress-free conditions apply. One end of the shell is clamped and

open (F1), while the other end is free and closed to simulate the cap-

illary end (F3). Positive pressure or negative pressure is uniformly

applied to the inner surface of the shell to model the pressure os-

cillation in the PVS. The amplitude of the positive and negative

pressure is 100 Pa (b) The mesh used for the finite element analysis

of the endfoot wall is shown, with a denser distribution of mesh

points around the gap. c With a positive pressure of 100 Pa applied

in the PVS, the stretched gap shape is calculated using the 2D

analytical shell model and the 3D FEM simulations using a larger

and a smaller gap. The smaller gap configuration has an area four

times smaller than the larger gap. With the area of the gap at rest

state (p = 0) normalized to unity, the stretched shapes derived from

these methods are plotted. (d) The relative area change across

different gap directions β is presented and compared between the

2D analytical shell model and the 3D FEM simulations using larger

and smaller gaps. The smaller gap configuration has an area four

times smaller than the larger gap for the same value of β . (e) The

relative flow resistance change across different gap directions is

presented and compared between the 2D analytical shell model and

the 3D simulations. f The pumping efficiency across different gap

directions is presented and compared between the 2D analytical

shell model and the 3D simulations. The dashed line represents the

case of ideal rectification, where the constricted gap prevents any

backflow from reentering the PVS. (g) The relative area change

across different aspect ratios is presented and compared between

the 2D analytical shell, the 3D FEM simulations model using larger

gaps and smaller gaps. The smaller gap configuration has an area

four times smaller than the larger gap for the same value of l/t (h)

The relative flow resistance change across different aspect ratios is

presented and compared between the 2D analytical shell model and

the 3D simulations. (I) The pumping efficiency across different

aspect ratios is presented and compared between the 2D analytical

shell model and the 3D simulations. The dashed line represents the

case of ideal rectification, where the constricted gap prevents any

backflow from reentering the PVS. . . . . . . . . . . . . . . . . . 57
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3.6 Validation of the analytical solution and mesh convergence. (a) A

numerical 2D finite element analysis is performed to validate the

analytical solution of the 2D shell model. The mesh used for the

numerical analysis is shown, with an elliptical gap at the center

of a square shell. With stress applied on one edge of the shell (σz,

σϕ ), a zero normal displacement boundary condition is applied on

the opposite edges (uz = 0, uϕ = 0), so that the numerical model

is stable equivalent to the 2D analytical shell model. To ensure

that the stress is applied far away from the shell, the width of the

square shell is set 50 times larger than the short axis of the gap. (b)

The 2D numerical solution validates the 2D analytical solution for

relative flow resistance and area changes across various gap aspect

ratios. (c) With a positive pressure of 100 Pa applied in the PVS,

the stretched gap shape is calculated using the 2D numerical model

and the 2D analytical model. With the area of the gap at rest state

(p= 0) normalized to unity, the stretched shapes derived from these

methods are plotted. (d) A mesh convergence test is performed for

the Strokes flow simulation by comparing the flow resistance of

a stretched and constricted gap using different meshes. The mesh

size is normalized to the width of the gap’s short axis. (e,f) A mesh

convergence test is performed for the 3D simulations by comparing

the area and flow resistance of the stretched and constricted gap on

the cylindrical endfoot shell using different meshes. The maximum

mesh size (around the gap) is normalized to the width of the gap’s

short axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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4.1 Sketch of the model. (a) The model includes the exchange of

cerebrospinal fluid (CSF) between the perivascular space (PVS) of

the artery, modeled as an open space, and the extracellular space

(ECS), modeled as a porous medium. The upstream PVS of the

pial artery and the downstream PVS of a capillary are modeled as

flow resistances. (b) During artery dilation, hypothesized astrocytic

valves along the PVS outer boundary open, facilitating flow into

the ECS, which increases the ECS pressure. (c) During artery

constriction, astrocytic valves close. The constriction drives CSF

flow in the PVS and decreases ECS pressure. (d) The arterial radius

varies during cardiac pulsation according to equation (4.2). (e) The

asymmetric (n = 2) and symmetric (n = 1) arterial waveforms of

functional hyperemia generated by equation (4.3.) . . . . . . . . . 65



LIST OF FIGURES xxxiii

4.2 Flow and pressure driven by ten cycles of cardiac pulsation ( f = 3

Hz). (a), As the artery dilates and constricts, the volume flow

rate at the inlet of the penetrating perivascular space oscillates

symmetrically around zero if no valve mechanism is implemented

(k1/k0 = 1), but favors inflow when the valve mechanism is active

(k1/k0 = 5). (b), Net volume of fluid pumped into the penetrating

perivascular space, starting at the beginning of the fifth cycle to

avoid transients. The volume fluctuates but increases, on average,

at a rate depending on the permeability ratio k1/k0. (c), Pressure

fluctuations in the penetrating perivascular space, varying with

endfoot wall elasticity Eendft. In all cases, k1/k0 = 5. Softer walls

deform more, reducing pressure fluctuations. (d), Mean fluid ve-

locity in the perivascular space, over the last five cardiac cycles,

shows net inflow. (e), The mean flow rate at the inlet increases

with permeability ratio and wall elasticity. (f), The mean pressure

gradient at the pial PVS inlet (over five cycles) likewise increases

with permeability ratio and wall elasticity. . . . . . . . . . . . . . 70
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4.3 Modeling sleep-wake differences by varying the permeability of

the extracellular space (ECS). (a), The mean flow rate at the pial

entrance increases with ECS permeability. (b), The maximum

pressure in the perivascular space decreases ECS permeability.

(c), Instantaneous ECS pressure and PVS velocity, during artery

dilation by 5%, with ECS permeability kecs = 1×10−16 m2, corre-

sponding to points marked with circles in a–b. (d), Instantaneous

ECS pressure and PVS velocity, during artery dilation by 5%, with

ECS permeability kecs = 2× 10−17 m2, corresponding to points

marked with squares in a–b. Greater permeability, as expected

during sleep, leads to much lower pressure gradients in the ECS,

even for stronger artery dilation. . . . . . . . . . . . . . . . . . . 72
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4.4 The lumped parameter model simplified from the fluid dynamic

model and the frequency analysis. (a) Sketch of the lumped-

parameter model. The volume change due to arterial pulsation

is modeled as a flow source. Pathways to the pial PVS and the ECS

each have a hydraulic resistance, and the endfoot wall is compliant.

(b) In the absence of valve action, the fluid dynamical and lumped-

parameter models predict similar pial PVS inflow rates in response

to cardiac pulsations. (c) In the absence of valve action, the two

models predict similar phase difference between wall velocity and

qpial. In panels c-d, simulation results are plotted as circles, and pre-

dictions from the lumped-parameter model are plotted as curves. In

panels c-f, vertical dashed lines mark the characteristic frequencies

(ReffCendft)
−1. (d) In the absence of valve action, the two models

predict similar maximum pressure pmax, which is proportional to f

when f is small and approaches a constant value when f is large.

(e) With valve action, the lumped parameter model (dots) and the

fluid dynamical model (solid lines) predict that the mean flow rate

varies with f in much the same way as pmax does in the absence of

valve action. (f) With valve action, the lumped parameter model

(dots) and the fluid dynamical model (solid lines) predict that the

net inflow per cycle is maximum at low frequencies and decreases

rapidly as f exceeds (ReffCendft)
−1. . . . . . . . . . . . . . . . . . 73
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4.5 Modeling valve action during functional hyperemia. (a), the ar-

terial waveform that couples the cardiac pulsation and functional

hyperemia. (b), We observed an increased net inflow volume over

time for the coupled waveform compared to cardiac pulsation or

functional hyperemia acting alone. (c), Comparison between the

mean inflow rate driven by cardiac pulsation, functional hyper-

emia, the coupled waveform, and the superposition of the first two

mean flow rates (d) The mean flow rate driven by the coupled

waveform increases as with the dilation percentage, hfh/r1, and

the increase is more significant for Eendft = 104 Pa (e) The mean

flow rate driven by functional hyperemia acting alone increases

with hfh/r1 (f) Asymmetric variation includes a quick dilation that

greatly increases pressure. . . . . . . . . . . . . . . . . . . . . . 78
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5.1 Functional hyperemia increases neural activity, cerebral blood flow,

and CSF tracer influx in the stimulated hemisphere (a) Adult wild-

type mice were stimulated by whisker puffing (30 s each). (b) The

whisker stimuations (5 Hz, 10 ms, which means a 5Hz stimulation

protocol with 10 ms pulses (190 ms interval)) increase neural

activity (marked by Ca2+) and cerebral blood flow (marked by

hemodynamic signals (IOS)) in the stimulated hemisphere. (c)

Representative image of tracer influx around the middle cerebral

artery (MCA) (d) Fluorescence signal (MPI) of the tracer influx

(n=10 mice). Gray bars show 30 s whisker stimulation. The

intensity of the CSF tracers in the stimulated hemisphere increases

faster than in the unstimulated hemisphere. . . . . . . . . . . . . 95
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5.2 Partile tracking velocimetry (PTV) experiments reveal that func-

tional hyperemia causes changes in artery diameter and CSF ve-

locity. (a) Artery diameter changes were measured and averaged

across five lines spanning the artery lumen. The artery boundaries

were automatically registered based on fluorescence intensity (b)

Percentage artery diameter change (red) and vessel wall velocity

(brown) during functional hyperemia (n=7). (c) The time-averaged

velocity direction field (green arrows) shows net transport in the

downstream direction (d) Percentage change of downstream veloc-

ity (Vd) during functional hyperemia (n=7). (e) The time-averaged

velocity direction field (green arrows) shows the net transport in

the cross-stream direction. (f) Percentage change of cross-stream

velocity (Vc) during functional hyperemia (n=7). . . . . . . . . . 97

5.3 Vasodilation cycles cause dynamical change in the width of perivas-

cular space (PVS). (a) CSF tracer (3 kDa dextran) was injected

into the cisterna magna to visualize the PVS before exposure to

unilateral whisker stimulation. Two-photon imaging was used to

map width changes of artery and perivascular space. The width

changes were averaged across five lines. (b) Kymograph of artery

and PVS during a 90 s protocol with 30 s stimulation. (c) Change

of arterial radius and perivascular space width during functional

hyperemia (n=6) (d), Movement of the outer PVS wall. . . . . . . 99
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5.4 Optogenetic stimulations on smooth muscle cells can cause changes

in artery diameter (vasoconstriction cycle) in the brains of optoge-

netic mice without inducing neural activity. (a) Light stimulation

increases intra-cellular Ca2+ in the smooth muscle cells causing

depolarization and vasoconstriction. (b) Representative images

of CSF tracer intensity during 30 min circulation. Optogenetic

stimulations were given on one hemisphere (30 s stimulation peri-

ods with 60 s interval, following a 5Hz stimulation protocol with

10 ms pulses (190 ms interval)). The tracer accumulates faster in

the stimulated hemisphere compared to the unstimuated, indicating

a higher CSF inflow rate. (c) Representative images of CSF tracer

influx during 30 min circulation. (d) Average CSF flow velocity of

microspheres in response to optogenetic stimulation (n=5 mice). . 101
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5.5 Impedance pumping models reproduce characteristics of flows

driven by functional hyperemia and optogenetic stimulation. (a)

The first model is based on arterial dilation, which we experimen-

tally induced by unilateral whisker stimulation. (b) In the first

model, an arteriolar wall (red, shown in cross-section) actively

dilates and relaxes in a small region (shaded red), with wall motion

spreading in both directions along the artery, causing the flow of

CSF (arrows) in the surrounding perivascular spaces. (c) Local

wall motion across one dilatory cycle (enlargement of red shaded

area in b). (d) The volume flow rate through one cross-section of

the perivascular space (dashed line in b) varies over each dilation

cycle. Flow is decreased during local dilation, with a slight lag,

and increases during local relaxation. (e) Over many cycles, the

flow carries passive tracers to the right along the perivascular space

(enlargement of region marked in b). (f) The net flux (cumulative

volume of fluid moving rightward through the cross-section shown

in b) oscillates and increases steadily over time. Gray bars, whisker

stimulations. (g) The second model is based on local vasoconstric-

tion, which experimentally is obtained by optogenetic stimulation

of mice expressing ChR2 in smooth muscle cells. (h,i) In our sec-

ond model, the artery constricts instead of dilating, driving a flow

with different spatial structures and different volume flow rates.

(j-l), In the constriction model, as in the dilation model, tracer

moves to the right and net flux increases over time. The direction

of the tracer (to the right, not left) is determined by the location of

the active arterial diameter change, not by whether it is dilation or

constriction. Blue bars, laser stimulations. . . . . . . . . . . . . . 106



LIST OF FIGURES xli

5.6 Measurements of cardiac pulsation and functional hyperemia in

the penetrating arteries. (a) A penetrating artery of a mouse, from

depths 0 µm to 100 µm, as imaged in vivo. (b) Artery diameter

variation, measured from area changes. (c) Average normalized

artery diameter variation in the cardiac frequency band, at depths

0 µm and 100 µm, in N = 8 mice. Boxes show median and in-

terquartile range. (d) Cross-section of a penetrating artery of a

mouse. The shaded yellow mask represents the result of the seg-

mentation algorithm. (e) Artery diameter variation, measured from

area changes during functional hyperemia, averaged over N = 7

mice. (f) Average normalized artery diameter variation during car-

diac pulsation, in N = 8 mice, and functional hyperemia, at depths

0 µm and 100 µm, in N = 7 mice. Functional hyperemia causes

greater diameter variations than cardiac pulsation (p < 10−4 for an

unpaired t-test), and with both mechanisms, there is a trend toward

greater diameter variation at greater depths. . . . . . . . . . . . . 107
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6.1 When rectified by ideal valves, asymmetric pressure waveforms

with a longer duration of positive pressure (T+), result in a higher

pumping efficiency compared to the symmetric pressure waveform.

T represents the period of the waveform. (a) A symmetric binary al-

ternating pressure waveform and an asymmetric binary alternating

pressure waveform normalized to the maximum pressure ampli-

tude. In the asymmetric waveform, the positive pressure amplitude

is smaller than the negative pressure amplitude to maintain a zero

average pressure. (b) As T+/T increases, the maximum pumping

efficiency increases . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Solute transport in the brain. Panel (a),(b) adapted from Holstein-

Rønsbo et al. 2023, copyright the authors. Panel (c) adapted from

Jeffrey Tithof et al. 2022, copyright the authors. CSF tracers in-

jected into the mouse brain (a) are transported in the glymphatic

network by a combination of advection and diffusion (b). (c) The

CSF flow of the glymphatic network, including PVSs with bifurca-

tions and the parenchyma has been modeled numerically (K. A. S.
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1. Introduction

1.1 Cerebrospinal fluid and the glymphatic sys-

tem

The flow of cerebrospinal fluid (CSF) and interstitial fluid (ISF) in the brain is

important for the removal of metabolic waste products, which are relevant to cog-

nitive diseases, including Alzheimer’s disease (Maiken Nedergaard and Goldman

2020). The circulation of CSF and ISF in the brain is called the glymphatic system

(figure 1.1,Douglas H. Kelley and John H. Thomas 2023).

1.1.1 Structure and pathways of the glymphatic system

During sleep, the rapid inflow of CSF enters the brain through the perivascular

spaces (PVSs) surrounding the pial arteries Mestre, J. Tithof, et al. 2018. It

permeates deeper brain tissues through the PVSs of the penetrating arteries. The

outer boundary of the PVSs of the penetrating arteries is formed by astrocyte

endfeet, also decorated densely by aquaporin-4 (AQP4), a type of water channel
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Figure 1.1: The anatomy of cerebrospinal and interstitial fluid circulation (the glymphatic system) in the central
nervous system. Panel adapted from Douglas H. Kelley and John H. Thomas 2023, copyright 2023 the authors.
Large chambers, such as the ventricles and subarachnoid space, are contiguous with small chambers that
penetrate brain tissue, such as perivascular spaces, allowing for global circulation and solute transport.

protein. Gaps between endfeet allow flow exchange between the CSF in the PVSs

and the ISF in the extracellular space (ECS), where metabolic wastes produced

by the neural cells are cleared through the diffusion and speculated advection (see

subsection 1.1.3) , and collected to the efflux pathway of the glymphatic system

(the perivenous spaces and the lymphatic vessels).

1.1.2 The flow of CSF is suppressed by wakefulness

As mentioned, the circulation of CSF/ISF happens predominantly during sleep and

anesthesia. Xie et al. 2013 showed that during sleep/anesthetic states, the inflow

of CSF tracer increased significantly, compared to wakefulness. Consequently,

the clearance rate of metabolic waste is also higher during sleep compared to

wakefulness. The study also showed that, during sleep, the brain ECS volume
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Figure 1.2: CSF flows in the surface perivascular space in the same direction as the blood, as measured from
in-vivo particle tracking experiments. Panel adapted from Douglas H. Kelley and John H. Thomas 2023,
copyright 2023 the authors. (a) Micron-scale fluorescent tracer particles (green) injected at the back of the skull
are swept along by flowing cerebrospinal fluid (CSF) (blue) and pass through the perivascular space surrounding
a surface artery (red). Particle-tracking measurements of tracer particles’ positions and velocities make it
possible to overlay pathlines colored according to the instantaneous velocity of each. (b,c) The time-averaged
measurements show a mean flow field, which has the same direction as the blood flow. (d) The instantaneous
root-mean-square CSF velocity pulses in synchrony with the cardiac cycle and shows little correlation with the
respiratory cycle.

(porosity) increased by 60%, which leads to increased permeability in the ECS by

a factor of 5 compared to wakefulness. The increased ECS volume during sleep

provides a lower resistance pathway for the CSF/ISF circulation, which explains

why the rapid flow of CSF is only observed in sleep or sleep-like state. The

glymphatic flow reveals the importance of sleep in brain waste clearance, providing

new insights into the function of sleep.

1.1.3 The waste clearance cannot be explained by pure

diffusion, indicating a flow of ISF in the ECS

There are debates about the existence of the flow of ISF in the extracellular space

(ECS). Unlike the CSF flow in the PVSs of the pial arteries, which has been

observed and measured using particle tracking velocimetry in many studies, the

flow in the ECS and the flow in the PVSs of the penetrating arteries are hard to
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visualize and measure directly because of technical difficulties. For non-diffusive

particles, the particle size is too large to follow the flow along those spaces. On the

other hand, multiple studies have demonstrated that smaller, diffusive tracers do

spread and propagate along those spaces, but people debate whether it is caused

by the combination of advection and diffusion, or diffusion alone. Previously,

the removal of metabolic waste was attributed solely to diffusion. However, both

experimental evidence and theoretical analysis showed that the clearance would be

much slower if there were only diffusion in the extracellular space. Computational

modeling by V. Vinje et al. 2020 also showed a better fit to MRI tracer data when

such a flow is included than when it is not (pure diffusion) . There is also a

theoretical argument for ISF flow in the ECS based on the observed wake/sleep

variation in solute clearance. The clearance rate is faster during sleep (Xie et al.

2013), but with increased ECS volume during sleep, the clearance efficiency due

to only diffusion would slightly decrease while the clearance due to advection

would increase significantly (since the flow resistance decreases). These evidences

suggest that there exists a flow of ISF in the ECS which plays an important role in

clearing metabolic waste.

1.2 A mechanism for pumping cerebrospinal

fluid: arterial pulsation

Experiments reveal that CSF in surface pial arterial PVSs flows in the same direc-

tion as the blood flows, pulsing at the cardiac frequency, but the driving mechanism
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Figure 1.3: The arterial pulsation waveform of the cardiac pulsation and functional hyperemia, measured from
the penetrating arteries of mice. Panel adapted from Gan, Holstein-Rønsbo, et al. 2023, copyright 2023 the
authors. (a) The arterial pulsation waveform of the cardiac pulsation, which has a typical time scale of ∼ 0.3 s,
and a pulsation amplitude of ∼ 2%. (b) The arterial pulsation waveform of functional hyperemia
(neuralvascular-coupling), which has a typical time scale of ∼ 10 s, and a pulsation amplitude of ∼ 10%. Whisker
stimulations were applied at t = 30 s to induced functional hyperemia. The measurement was performed below
the cortical surface (at 0 µm) and 100 µm deeper. The waveform includes a fast dilation and a slow constriction
(relaxation from the dilated state).

is unknown (Bedussi et al. 2017; Mestre, J. Tithof, et al. 2018; Raghunandan et al.

2018). The pulsatile, directional flow has been attributed to peristaltic pumping by

arterial cardiac pulsations (Hadaczek et al. 2006), in which the peristalsis drives the

net flow in the same direction as the pulsation wave on the artery wall (P. Wang and

Olbricht 2011; Carr et al. 2021). However, the wavelength of the cardiac arterial

pulsations is ∼ 1 m (for mice), much greater than the length of any PVS segment

in a mouse’s brain (∼ 1 mm, Jeffrey Tithof et al. 2022). In such a sub-wavelength

domain, the peristaltic pumping mechanism alone likely does not drive CSF flow

at the speeds observed in experiments, ∼ 20 µm/s in pial PVSs of mice (R. T.

Kedarasetti, Drew P., and Costanzo 2020; Daversin-Catty et al. 2020).

Functional hyperemia (neurovascular coupling), the increase of blood flow due
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to neural activity in the brain, has also been shown to accelerate CSF flow (Veluw

et al. 2020; Holstein-Rønsbo et al. 2023). Functional hyperemia is associated with

artery dilations of longer time scale and larger amplitude (figure 1.3a, ∼ 10 s, ∼

10%) compared to cardiac pulsations (figure 1.3b, ∼ 0.3 s, ∼ 2%). How functional

hyperemia promotes CSF inflow is not well understood, either. R. T. Kedarasetti,

Drew, and Costanzo 2022 considered a poroelastic model that couples the axial

flow along the PVS of a penetrating cortical artery and a radial flow between

the PVS and the ECS. Their model suggests that functional hyperemia with a

temporally asymmetric waveform of arterial pulsation can drive a net radial flow

from the PVS into the ECS.

1.3 The astrocyte endfoot and the potential valve

mechanism

The presence of valves or valve-like structures could be a possible mechanism for

producing the bulk flow of CSF. While no valves have been found inside the PVSs,

the astrocyte endfeet, which form the outer boundary of the PVS of a penetrating

artery, are a possible candidate. Several studies using tracers indicate that fluid

exchange between PVSs and the ECS occurs mostly through the gaps between

endfeet (figure 1.4, M. X. Wang et al. 2021; Bohr et al. 2022). Bork et al. 2023 has

shown that if the endfoot gaps are slightly asymmetric, narrower at the interstitial

side than at the perivascular side, then the oscillating pressure in the PVS causes

endfoot deformation, and size/shape change of the gaps, which hence changes
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Figure 1.4: Astrocyte endfeet form the outer boundary the PVSs of penetrating arteries. Panel adapted from
M. X. Wang et al. 2021, copyright 2021 the authors. The astrocyte endfeet separate the PVSs of the penetrating
arteries from the ECS. Gaps between endfeet allow fluid communications between the CSF in the PVS and the
ISF in the ECS.

the flow resistance. The flow resistance change of the gaps can rectify the flow

and drive a bulk flow of CSF, similar to the action of a bicuspid valve. However,

in vivo gap shape measurements are difficult. Determining whether the gaps are

asymmetric requires ongoing work. Additionally, determining how the radial net

flow across the endfoot gaps relates to the axial flow observed in the pial PVSs

requires further studies.
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In this thesis, we study the potential valve-like function of the astrocyte endfoot

in the pumping mechanism of the glymphatic flow. In the first chapter, we show

that an endfoot valve mechanism can exist even without a geometric asymmetry

of the gaps. We consider the PVS as an axisymmetric, circular tube encircled by

the endfoot wall, assumed to act as a linear elastic solid. Oscillatory pressure in

the PVS causes expansion and shrinking of the outer wall. Increased pressure

in the PVS causes the outer wall to expand, enlarging the gaps, while decreased

pressure shrinks the gaps. As CSF passes through the gaps from the PVS into

the surrounding interstitium, this expansion and shrinking acts as a rectifying

valve because the fluid flows more easily when the gaps are larger. We present

an analytical hoop-stress model to estimate how much shrinking and expansion

can be expected in realistic conditions and how effective the rectification would

be without any prescribed asymmetry of the gaps. We include the flow resistance

change of the ECS to model the sleep/wake state, and find the flow suppressed by

wakefulness, which is consistent with previous experiments (Xie et al. 2013).

In the second chapter, we present work regarding the hoop-stress model. When

performing full three-dimensional fluid-solid interaction simulations to corroborate

the hoop-stress analytical model, we find good agreement when the endfoot gap

shape is square. However, the long slit (the rectangular shape with an extreme

aspect ratio) is the more realistic shape of endfoot gaps. Choosing extreme aspect

ratios of the gap to match the realistic geometry for the 3D simulation introduces

extra, uneven deformation and results in much better rectification, which cannot be

explained by the hoop-stress model alone. Hence, we develop a more complex ana-
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lytical model to describe the extra deformation and quantify the extra rectification

due to the realistic endfoot geometry.

In the third chapter, we couple the endfoot valve mechanism with fluid dynam-

ics simulations of CSF flow in the PVS and find a resulting axial net flow of CSF in

the PVS that is coupled with the net flow across the endfoot gaps due to the mass

conservation law, which matches the experiments. We find that cardiac pulsations

drive a net CSF flow consistent with prior experimental observations. Functional

hyperemia, acting together with cardiac pulsation, increases the net flow. During

artery dilation, the PVS shrinks, requiring fluid to be expelled, and the increased

permeability of the endfoot wall allows fluid to pass into the ECS. During artery

constriction, the PVS expands, requiring fluid intake, and reduced permeability of

the endfoot wall inhibits a reflux of fluid from the ECS, so the fluid must come

instead from the pial PVS connected to the penetrating PVS.

In the fourth chapter, we present experimental work that reveals the importance

of functional hyperemia (neuro-vascular coupling) in driving the CSF flow. Us-

ing whisker stimulation to induce functional hyperemia in the mouse brain, we

observed an increased influx of CSF tracer in the stimulated hemisphere through

two-photon imaging. Using image processing tools and particle tracking velocime-

try (Mestre, J. Tithof, et al. 2018), we simultaneously measured the diameter

change waveform of functional hyperemia in the pial artery and the CSF flow

velocity in the surrounding PVS, revealing a dynamical coupling between them.

Furthermore, through optogenetic stimulation to induce vasoconstriction cycles,

we find that vasomotion in the absence of neural activities increases CSF inflow,



CHAPTER 1. INTRODUCTION 10

which indicates that it is the vasomotion rather than the neural activities that drives

the CSF inflow, in addition to the cardiac pulsation. Compared to the pial arteries,

the diameter change of the penetrating arteries has not been well measured. We

develop a robust segmentation tool to segment and measure the cross-sectional area

of the penetrating arteries over time, based on which the diameter measurement is

obtained. We measure the diameter change of both cardiac pulsation and functional

hyperemia at various depths and find larger diameter change amplitudes in deeper

cross-sections of penetrating arteries compared to those at the brain surface.
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2. The hoop-stress model: A valve

model based on the stretching

and shrinking of the endfoot

gap

In this chapter, we discuss a rectification mechanism based on the stretching and

shrinkage of the endfoot gap. The results listed in this chapter have been published

in Gan, John H Thomas, and Douglas H Kelley 2024. It has been reformatted and

edited to fit within the thesis. The thesis author was the primary author on this

work.

2.1 Background

Valveless pumping mechanisms, such as peristaltic pumping, cannot explain the

CSF flow of the observed net flow rate by itself, which leads to the search of
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potential valves. While no valve has been found inside the perivascular spaces,

the astrocyte endfeet on the outer boundaries of PVSs may function as valves that

rectify the flow and drive a bulk flow of CSF.

Endfoot gaps allow flow exchange between the CSF in the PVS and the ISF in

the ECS. Endfeet deform as pressure oscillates, which may cause a shape and size

change of the gaps, which therefore causes a flow resistance change, and a rectifi-

cation. Bork et al. 2023 has shown that if the endfoot gaps are slightly asymmetric,

narrower at the interstitial side than at the perivascular side (figure 2.1a), then

the negative pressure in the PVS pushes the gaps towards closing (figure 2.1b(i))

compared to the relaxed state (figure 2.1b(ii)), and the positive pressure in the PVS

pushes the gaps towards opening (figure 2.1b(iii)). These closing and opening

actions act like valves that drive a net flow of CSF. Although it is hard to precisely

measure shape of the endfoot gaps in vivo, the study indicated that models of brain

fluid flow should explore the possibility that astrocyte endfoot gaps act as valves to

convert an oscillatory flow into a directed flow.

In this chapter, we show that an endfoot valve mechanism can exist without

assuming any geometric asymmetry of the gaps. We consider the PVS as an

axisymmetric, circular tube encircled by the endfoot wall, assumed to act as a

linear elastic solid. Oscillatory pressure in the PVS causes expansion and shrinking

of the outer wall. Increased pressure in the PVS causes the outer wall to expand,

enlarging the gaps, while decreased pressure shrinks the gaps. As CSF passes

through the gaps from the PVS into the surrounding ECS, this expansion and

shrinking acts as a rectifying valve because the fluid flows more easily when



CHAPTER 2. THE HOOP-STRESS MODEL: A VALVE MODEL BASED ON THE
STRETCHING AND SHRINKING OF THE ENDFOOT GAP 13

Figure 2.1: Asymmetry may make endfoot gaps function as valves that favour inwards over outwards fluid flow.
Panel adapted from Bork et al. 2023, copyright 2023 the authors (a) An astrocyte (green) near an artery will
extend processes with endfeet to form the outer boundary of the periarterial space (PVS) around the artery. (b)
The endfoot bends only little under reasonable pressure differences. (b(i)) When the surrounding ECS pressure
is greater than the pressure in the PVS, fluid will be driven out into the PVS and endfeet will be pushed together
towards closing. (b(ii)) When pressures are equal, there will be no bending and no flow. (b(iii)) When the PVS
pressure exceeds the ECS pressure, fluid will be driven into tissue in the ECS and endfeet will be pushed
together towards opening.

the gaps are larger. We present an analytical hoop-stress model, using realistic

estimates of parameter values to estimate how much expansion and shrinking can

be expected, and how effective the rectification would be without any prescribed

asymmetry of the gaps.

When we include the flow resistance of the ECS in the model, we find an

increased net flow during sleep, in agreement with experiments (Xie et al. 2013;

Holstein-Rønsbo et al. 2023), due to the known increase in porosity of the ECS

(decreased flow resistance) compared to the awake state. We also perform full

three-dimensional fluid-solid interaction simulations to corroborate the simpler

hoop-stress model and to examine the role of gap geometry and gap direction.
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2.2 The hoop-stress model

2.2.1 Description and formulation of the model

We model the PVS as a cylinder of relaxed radius r0 and length L, as sketched

in figure 2.2. The PVS outer wall is a cylindrical shell, composed of a linear

elastic solid having Young’s modulus E, Poisson ratio ν , and thickness T . The

pressure imposed upon the inner surface of the PVS wall by the CSF filling the

PVS, measured with respect to the pressure in the surrounding ECS, is p. In the

equilibrium case, the force due to pressure on the inside surface of the top half

of the PVS must be balanced by the force due to azimuthal stress σϕ in the PVS

wall (figure 2.2b). Assuming the wall is thin (T ≪ r0), the stress is approximately

uniform within the wall, so 2r0 pL = 2σϕT L and

σϕ =
pr0

T
. (2.1)

Similarly, the pressure force on the right half of the PVS must be balanced by the ax-

ial stress σz in the PVS wall (figure 2.2c). Again using the thin-wall approximation

leads to pπr2
0 = σz2πr0T and

σz =
pr0

2T
. (2.2)

This expression is valid regardless of the shape of the ends of the PVS; in particular,

they need not be flat. However, the right end is assumed to be closed, not open (to

model the high resistance capillary side of the glymphatic pathway). Finally, the

radial stress is σr = p.
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Using Hooke’s law, we can determine the azimuthal strain from the stress,

which describes how much the PVS outer wall and its gaps expand and shrink

εϕ =
σϕ

E
− ν

E
(σz +σr) =

p
E

(r0

T
− νr0

2T
−ν

)
≈ pr0

ET

(
1− ν

2

)
, (2.3)

where the rightmost expression arises because T ≪ r0 (Roylance 2001). The radius

of the PVS is

r = r0(1+ εϕ). (2.4)

As an elastic material (the endfoot tissue) expands and constricts, gaps in the

material do the same. Assuming that the expansion and the constriction are the

same for gaps as for tissue, a gap in the endfoot wall that is oriented in the axial

direction has width

g = g0(1+ εϕ), (2.5)

where g0 is the gap width when p = 0.

Endfoot, 

p=0 case

Endfoot

a b

Endfoot, 

p>0 case

Gage
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T

L

σ
z

σ
z
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space

Perivascular
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Figure 2.2: (a) A perivascular space lies between an arteriole and the tiled endfeet that form its outer wall, which
we idealize as a cylinder of length L. (b) Pressure in the perivascular space causes the wall radius to expand
from r0 to r, the width of the gaps between endfeet to grow from g0 to g, and the wall thickness to change from T0
to T . At equilibrium, forces due to stresses σϕ and σz within the wall must balance forces due to the pressure p
on its inner surface.



CHAPTER 2. THE HOOP-STRESS MODEL: A VALVE MODEL BASED ON THE
STRETCHING AND SHRINKING OF THE ENDFOOT GAP 16

Since the total volume of the endfoot wall is constant (for ν = 0.5), we have

2πrT L = 2πr0T0L, (2.6)

where T0 is the thickness of the endfoot wall when p = 0. Combining Eqs. 2.4, 2.5,

and 2.6, the thickness can be expressed as

T = T0
g0

g
, (2.7)

Knowing how the gap size relates to the strain, and therefore the pressure, we

can determine how the size of the gap affects the flow through it. The volumetric

rate at which fluid passes through a wall gap from PVS to the ECS (parenchyma) is

Q =
p
R
, (2.8)

where R is the hydraulic resistance of the gap. Neglecting small effects at the ends

of the gap, and entrance effects, the hydraulic resistance is that of fully developed

Poiseuille flow between infinite parallel flat walls, given by White 2006; Jeffrey

Tithof et al. 2022:

R =
12µT
g3L

=

(
g0

g

)4

R0, (2.9)

where R0 = 12µT0/g3
0L is the flow resistance when p = 0 and µ is the fluid

viscosity. A quantity closely related to the hydraulic resistance and considered in

prior studies is the wall permeability k, which is the inverse of the product of the
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resistance and the surface area of the PVS wall:

k =
1

2πr0LR
. (2.10)

Combining Eqs. 2.8, 2.9, 2.5, and 2.3 gives

Q(t) =
p(t)
R0

[
p(t)r0

ET

(
1− ν

2

)
+1
]4

, (2.11)

where the dependence on time t has been written explicitly, for emphasis. We can

rewrite equation 2.11 in terms of the strain,

Q(t) = Q0εϕ

(
1+ εϕ

)4
, (2.12)

where Q0 = ET R−1
0 r−1

0 (1− ν

2 )
−1 is a constant coefficient, or a characteristic flow

rate. For small deformations, εϕ ≪ 1, we can simplify equation 2.12 by neglecting

terms of third and higher order in εϕ , giving

Q(t) = Q0

(
εϕ +4ε

2
ϕ

)
. (2.13)

The first term in equation 2.13 is oscillatory, corresponding to a fluctuating flow

of zero mean, and the second term is never negative, corresponding to a net flow.

It is worth noting that to ensure the accuracy of equation 2.13, the amplitude

of the azimuthal strain |εϕ | has to be small. In particular, when εϕ = −0.25,

Q(t) = 0, which means that the shrunk gap becomes an ideal valve, preventing
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any backflow into the PVS. For εϕ <−0.25, we will observe that the shrunk gap

changes the original flow direction, which is not realistic, because the premise of

small azimuthal strain magnitude is not satisfied.

Having determined how the flow resistance and flow rate depend on pressure,

the final step is to determine how well this mechanism would produce net flow if

driven by pressure variations that are purely oscillatory. A perfect rectifier, driven

with a periodic and zero-mean pressure p(t), would eliminate all fluctuation and

produce a steady flow. A more realistic rectifier produces a flow that has both

a mean flow and a fluctuating component. For a pressure that fluctuates with

fundamental frequency f , the mean flow is

Q = f
∫ t0+ f−1

t0
Q(t)dt, (2.14)

where t0 is an arbitrary time. The amplitude of the fluctuating component can be

defined as

Q′ =

(
2 f
∫ t0+ f−1

t0
(Q(t)−Q)2 dt

)1/2

(2.15)

by scaling the root-mean-square amplitude. Then, the effectiveness of rectification

can be quantified with the pumping efficiency η = Q/Q′, whose value is large when

the net, directed flow is large compared to the fluctuations. (The inverse of η was

described as a fluctuation ratio and considered in Ladrón-de-Guevara et al. 2022.)

All of the parameters in the model and their assumed numerical values are

listed in Table 2.2.
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2.2.2 Results

Binary alternating pressure

As a first example, consider an alternating PVS pressure that is positive and constant

for the first half of each cycle and negative and constant for the second half:

p(t) =


p0, 0 ≤ t ≤ f−1/2,

−p0, f−1/2 ≤ t ≤ f−1,

(2.16)

where p0 > 0 is a constant. The mean volume flow rate is

Q = 4
p0

R0
ε0 = 4Q0ε

2
0 , (2.17)

where ε0 = p0r0(1−ν/2)E−1T−1 is a characteristic strain. The amplitude of the

fluctuating component is

Q′ =
√

2Q0ε0, (2.18)

and the pumping efficiency is

η = 2
√

2ε0. (2.19)

Now consider the parameter values listed in Table 2.1, which follow Jeffrey

Tithof et al. 2022 and Gan, Holstein-Rønsbo, et al. 2023 and are believed to be

reasonably realistic. With these parameter values, the pressure and volume flow rate

vary over time as shown in figure 2.3a,b. The characteristic strain is ε0 = 0.15. The

pumping efficiency, which depends only on the strain (equation 2.19), is η = 0.4
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Table 2.1: Parameter values of the hoop-stress model.

Parameter Value
Young’s modulus E *[103 5×104] Pa

Poisson’s ratio ν 0.5
pressure fluctuation amplitude p0 133 Pa (1 mmHg)

PVS outer radius r0 15 µm
PVS outer wall thickness T0 *[0.5 µm 2 µm]

viscosity µ 7×10−4 Pa·s
reference endfoot gap width g0 20 nm

arteriole length L 1 mm

(figure 2.3c). That is, this simple valve mechanism produces a mean volume flow

rate about 40% as great as that of the fluctuating flow, when the applied pressure

p(t) is purely an alternation.

The characteristic resistance is R0 = 2.10×1018 Pa ·s/m3. With the alternating

pressure, the endfoot gap width g alternates between 23 nm and 17 nm (we used

g0 = 20 nm), and the PVS radius r alternates between 17.3 µm and 12.3 µm (we

used r0 = 15 µm, for the PVS radius change, we refer to figure 3c in Bojarskaite

et al. 2023). The hydraulic resistance R therefore alternates between 8.4×1017 Pa ·

s/m3 and 3.35×1018 Pa · s/m3. The mean flow is Q = 3.79×10−17 m3/s. The

amplitude of the fluctuating component is Q′ = 8.96×10−17 m3/s.

Some of these predictions can be compared directly to prior studies. In one

study, neurons in the parenchyma, near the outer wall of a PVS surrounding a pene-

trating arteriole with diameter ∼ 10 µm, were observed to move by ∼ 1.5 µm during

functional hyperemia Ravi Teja Kedarasetti et al. 2020. Another study observed the

PVS wall to move by ∼ 1 µm, also during functional hyperemia Holstein-Rønsbo

et al. 2023. A study of natural sleep-wake variation found the PVS wall moving
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Table 2.2: Derived quantities of the hoop-stress model.

Derived quantities Expression Unit
azimuthal strain εϕ pr0(1−ν/2)/ET

characteristic strain ε0 p0r0(1−ν/2)/ET
PVS outer radius r (1+ εϕ)r0 m

endfoot gap width g (1+ εϕ)g0 m
PVS outer wall thickness T T0/(1+ εϕ) m
reference flow resistance R0 12µT0/g3

0L Pa/m3/s
flow resistance R R0/(1+4εϕ) Pa/m3/s

permeability k 1/2πr0LR m/Pa/s
flow rate Q(t) p/R m3/s

mean flow rate Q f
∫ t0+ f−1

t0 Q(t)dt m3/s
fluctuating rate Q′ (2 f

∫ t0+ f−1

t0 (Q(t)−Q)2 dt)1/2 m3/s
characteristic flow rate Q0 ET/R0r0(1−ν/2) m3/s

pumping efficiency η Q/Q′

Figure 2.3: Modeled flow in response to an alternating pressure. With pressure p alternating over time (a), the
volume flow rate Q also alternates, but with greater volume flow in the positive direction (from perivascular space
to extracellular space) than in reverse (b). The pumping efficiency η increases linearly with increasing
characteristic strain ε0 (c) .

∼ 2 µm (Bojarskaite et al. 2023). The typical permeability of the PVS wall was

estimated to be in the range 2×10−11 m/Pa/s to 3×10−10 m/Pa/s (Koch, Vegard

Vinje, and Mardal 2023), based on geometrical factors known from prior electron

microscopy (Mathiisen et al. 2010). The calculations above use quite different
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reasoning but result in a similar value of 5.05×10−12 m/Pa/s using equation 2.10

(Our result is about four times smaller than their lower limit as we only consider a

single gap). With the alternating pressure, the permeability k alternates between

3.72× 10−12 Pa · s/m3 and 1.10× 10−11 Pa · s/m3. Gan, Holstein-Rønsbo, et

al. 2023, without elucidating a mechanism in greater detail, modeled pressure-

dependent permeability fluctuations as a possible rectification mechanism, finding

realistic flows when the permeability was chosen to vary by a factor of 2–5 through

each alternation of pressure. The above example of alternating pressure results

in permeability varying by a factor of 2.93, within that range. Experimental mea-

surements find η = 2 (Ladrón-de-Guevara et al. 2022; Mestre, J. Tithof, et al.

2018), which implies rectification that is better than predicted in the above example

(η = 0.4) by a factor of five, suggesting that this mechanism could contribute but

could not single-handedly achieve the observed rectification.

Figure 2.4: Modeled flow in response to a sinusoidal pressure variation. With pressure p varying sinusoidally
with time (a), the volume flow rate Q also varies, but with greater volume flow in the positive direction (from
perivascular space to extracellular space) than in the reverse direction (b). The pumping efficiency η increases
monotonically with increasing characteristic strain ε0 (c).
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Sinusoidal alternating pressure

As a second example, we consider PVS pressure varying sinusoidally and having

amplitude p0: p(t) = p0 sin2π f t. The sinusoidal waveform better represents the

pressure waveform driven by the cardiac pulsation. Using equation 2.11 leads to

Q(t) = Q0
(
4ε

2
0 sin2 2π f t + ε0sin2π f t

)
, (2.20)

The mean flow is

Q = 2Q0ε
2
0 . (2.21)

The amplitude of the fluctuating component is

Q′ = Q0

√
ε2

0 +4ε4
0 . (2.22)

Now it becomes clear that the factor of 2 appearing in equation 2.15 ensures that

Q′ is the peak amplitude if p(t) varies sinusoidally. The pumping efficiency is

η = 1/

√
1+

1
4ε2

0
. (2.23)

Again using the parameter values listed in Table 2.1, the pressure and volume

flow rate vary over time as shown in figure 2.4a,b. The characteristic resistance and

strain remain unchanged. Accordingly, the gap size, PVS radius, resistance, and

permeability each also vary with the same amplitude as in the previous example,

but now sinusoidally. The mean flow is Q = 1.90×10−17 m3/s. The amplitude
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of the fluctuating component is Q′ = 6.62×10−17 m3/s. The pumping efficiency

is η = 0.3. In this case, then, the simple valve mechanism produces a mean flow

about one-third as fast as the fluctuating flow, though the applied pressure p(t)

is purely a fluctuation. Again, the predicted typical permeability and range of

variation of permeability are similar to prior estimates, but the rectification is not

as good as observed in vivo, suggesting this mechanism could contribute but others

may be at play as well.

According to equation 2.23, for sinusoidally-varying pressure, as for alternating

pressure, the pumping efficiency η depends only on the characteristic strain ε0. Its

variation is shown in figure 2.4c and is similar to the alternating case.

Asymmetrically alternating pressure

Figure 2.5: Modeled flow in response to an asymmetric pressure variation. With brief, high positive pressure
followed by longer-lived, gentler negative pressure (a), the volume flow rate Q also varies, but with greater
volume flow in the positive direction (from perivascular space to extracellular space) than in the reverse direction
(b). The pumping efficiency η increases monotonically with increasing characteristic strain ε0. (c)

While a sinusoidally-varying pressure waveform can well represent the arterial

pulsation driven by the cardiac cycle, it is not a robust model to describe the
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waveform of functional hyperemia, which is asymmetric. Functional hyperemia,

induced by neural activity, includes a fast arterial dilation and a slow artery con-

striction. Hence, as a third and final example, consider PVS pressure that varies

asymmetrically in time, a characteristic that has been proposed to aid in rectifica-

tion (Ravi Teja Kedarasetti et al. 2020). One simple asymmetric waveform, similar

to one proposed previously by Gan, Holstein-Rønsbo, et al. 2023 is

p(t) =


p0 sin(4π f t), 0 ≤ t < f−1/4

p0
3 sin

(4
3π f (t − f−1)

)
, f−1/4 ≤ t < f−1.

(2.24)

The volume flow rate is

Q(t)=


Q0(ε0 sin(4π f t)+4ε2

0 sin(4π f t)2), 0 ≤ t < f−1/4

Q0(
1
3ε0 sin

(4
3π f (t − f−1)

)
+ 4

9ε2
0 sin

(4
3π f (t − f−1)

)2
), f−1/4 ≤ t < f−1

(2.25)

The mean flow is

Q = Q0

(
2
3

ε
2
0

)
. (2.26)

In this case, the fluctuating flow rate is in a more complicated analytical form. Here

we show only the numerical solution. The amplitude of the fluctuating component

and the pumping efficiency are calculated numerically figure 2.5. The pumping

efficiency reaches 0.15 in the range of strains considered, putting it in the same

order of magnitude as in the two earlier examples, though a bit less. At least with

the mechanism considered here, this asymmetric pressure profile does not produce
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superior rectification.

Flow resistance in the extracellular space and wake/sleep variations

If fluid passes from the PVS to the ECS through valve-like endfoot gaps, then the

pumping efficiency of the system will depend, in part, on the hydraulic resistance

of the ECS. An oscillatory pressure variation will also drive a pressure response

in the ECS. To model these phenomena, we consider the case in which the ECS

has a nonzero but constant resistance and the pressure is allowed to vary across the

ECS but held constant at the outer boundary (which models the PVS of the nearest

vein). Equation 2.8 is then replaced by

Q =
p

R+Recs0
, (2.27)

where Recs0 is the flow resistance of the ECS between the outer wall of the arterial

PVS and the outer boundary. According to equation 2.12, the total flow resistance

can be written as

R+Recs0 = R0

[(
g0

g

)4

+
Recs0

R0

]
. (2.28)

The pressure drop across the endfoot wall is then

p′ =
R0

R0 +Recs0
p(t). (2.29)
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This pressure drop causes an azimuthal strain, which can be rewritten as

εϕ =

R0
R0+Recs0

p(t)r0

ET
(1− ν

2
). (2.30)

Combining equations 2.27, 2.29, and 2.28 gives the following expression for the

total flow rate:

Q(t) =
p(t)( R0

R0+Recs0

p(t)r0
ET (1− ν

2 )+1)4

R0(1+( R0
R0+Recs0

p(t)r0
ET (1− ν

2 )+1)4 Recs0
R0

)
. (2.31)

Again, we can rewrite equation 2.31 in terms of εϕ and neglect terms of third and

higher order in εϕ , giving

Q(t) = Q0

(
εϕ +4ε2

ϕ

)
1+4εϕ

(
Recs0

R0+Recs0

) . (2.32)

The denominator in this expression describes an improved estimate of flow rate,

taking into account the flow resistance of the ECS. For this model, we consider the

same sinusoidal pressure waveform as before (figure 2.6a). For different values of

Recs0/R0, we still observe a greater volume flow in the positive direction than in

the reverse direction, and a pumping efficiency that increases monotonically with

increasing characteristic strain (figure 2.6b,c). However, as Recs0/R0 increases,

the net flow volume and the pumping efficiency decrease (figure 2.6b,c,d,e,f). If

the flow resistance of the ECS is much smaller than the flow resistance of the

endfoot wall (Recs0/R0 ≪ 1), the model is equivalent to that in the previous model,
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where the pressure in the ECS is considered to be constant (the black lines in

figure 2.6b,c). If the flow resistance of the ECS is much larger than the flow

resistance of the endfoot wall (Recs0/R0 ≫ 1), the pumping efficiency is small and

the valve mechanism is ineffective (figure 2.6f).

Figure 2.6: (a) Modeled flow in response to a sinusoidal pressure variation, accounting for resistance in the
extracellular space (Recs0). (b) Increasing Recs0/R0 reduces the amount by which forward flow exceeds reverse
flow. (c) Increasing Recs0/R0 reduces the rate of increase of pumping efficiency with increasing characteristic
strain. (d) For the case where Recs0/R0 = 0.1 during sleep, the mean flow rate during wakefulness (the red dot,
Recs0/R0 = 0.5) is 75% of the mean flow rate during sleep (the blue dot). In the regime Recs0/R0 < 1, increasing
Recs0/R0 decreases the normalized mean volume flow rate. (e) For the case where Recs0/R0 = 1 during sleep, the
mean flow rate during wakefulness (the red diamond, Recs0/R0 = 5) is 39% of the mean flow rate during sleep
(the blue diamond). In the regime Recs0/R0 ≥ 1, increasing Recs0/R0 decreases the normalized mean volume flow
rate. (f) For both regimes, Recs0/R0 < 1 and Recs0/R0 ≥ 1, the pumping efficiency decreases monotonically with
increasing Recs0/R0. The pumping efficiency is smaller during wakefulness than during sleep for the cases
considered in panels d and e (the dots and the diamonds).

Less CSF flow is observed during wakefulness than during sleep. The perme-

ability of the ECS decreases by about a factor of five during wakefulness compared

to sleep (Xie et al. 2013; Nicholson and Hrabětová 2017; Jeffrey Tithof et al.
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2022; J. H. Thomas 2019b). Hence, the flow resistance of the ECS, which is

inversely proportional to the permeability (equation 2.10), is about five times larger

during wakefulness than during sleep. We can apply our present model to compare

the performance of the valve mechanism during wakefulness to its performance

during sleep. We consider two representative values of Recs0/R0 during sleep,

Recs0/R0 = 0.1 (figure 2.6d) and Recs0/R0 = 1 (figure 2.6e), and in each case the

value of Recs0/R0 is five times greater during wakefulness. For these two cases, we

find that the mean flow rate during wakefulness is either 75% or 39% of the flow

rate during sleep, for the same value of ε0. Note that for the case of Recs0/R0 = 1,

a threefold larger pressure in the PVS is needed to cause the same characteristic

strain (ε0) during wakefulness, according to equation 2.30. The pumping efficiency

decreases monotonically as Recs0/R0 increases (figure 2.6f), and hence, is always

smaller during wakefulness than during sleep.

We can estimate the possible range of values of Recs0/R0 from previous studies.

The flow resistance of the ECS derived by Holter et al. 2017 (see also Jeffrey Tithof

et al. 2022) is:

Recs0 =
µ ln([(1− la−v

rartery
)]2)

2πkecsl
, (2.33)

where la−v ≈ 200 µm is the median distance between an artery and the nearest

venule, rartery ≈ 8 µm is the radius of the artery, and kecs is the permeability of the

ECS, which falls in the range from 1.2×10−17 m2 (Holter et al. 2017) to 4.5×

10−15 m2 (Basser 1992) . Therefore, Recs0 is in the range from 3.5×1016 Pa ·s/m3

to 1.6× 1014 Pa · s/m3. A previous study estimates the endfoot permeability in
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the range 2×10−11 m/Pa/s to 3×10−10 m/Pa/s (Koch, Vegard Vinje, and Mardal

2023). According to equation 2.10, which relates the permeability and the flow

resistance, the endfoot flow resistance R0 is in the range 3.5× 1016 Pa · s/m3 to

5.3×1017 Pa · s/m3. Combining the ranges of both parameters, Recs0/R0 falls in

the range 2.8×10−4 to 1. If Recs0/R0 ≪ 1, the ECS resistance is negligible and the

model is equivalent to the previous model. Therefore, the two cases Recs0/R0 = 0.1

and 1 during sleep (figure 2.6d,e,f), should adequately supplement the previous

model.

2.3 The three-dimensional computational model

In order to corroborate the findings of our analytical hoop-stress model, we created

a corresponding three-dimensional (3D) computational model of the fluid-solid

interactions involved in the flow rectification (figure 2.7). The model employs the

software packages preCICE, OpenFOAM, and Fenics (Chourdakis et al. 2022;

Weller et al. 1998; Scroggs, Dokken, et al. 2022; Scroggs, Baratta, et al. 2022;

Alnaes et al. 2015). The preCICE package is used for the partitioned fluid-structure

interaction, coupling OpenFOAM, the fluid-domain solver, and Fenics, the solid-

domain solver. OpenFOAM solves for the laminar flow with a moving mesh,

and Fenics solves the solid mechanics of the wall using a finite element method.

A segment of the PVS with a length of 30 µm is considered. The endfoot wall,

immersed in the computational mesh, separates the outer ECS (at radius 25 µm)

from the inner PVS (at radius 15 µm) (figure 2.7a,d). The endfoot gaps are modeled
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as two square holes of side length 2 µm in the endfoot wall (figure 2.7a,b,c,d; only

one hole is shown, and the other is placed symmetrically, on the back of the PVS).

The thickness of the endfoot wall is 2 µm. The elastic modulus of the endfoot wall

is 30 kPa, and the Poisson ratio is 0.49. The density of the endfoot wall (solid

phase) is 100 kg/m3. The CSF density is 1000 kg/m3, and the dynamic viscosity

of the CSF is 10−3 Pa · s .

In figure 2.7c, a positive pressure (p= 100 Pa) is applied to both end boundaries

of the PVS, where the ends of the endfoot wall are clamped. Positive pressure in

the PVS causes a dilation of the endfoot wall and the gaps, pushing CSF from the

PVS into the ECS. In figure 2.7e, a negative pressure (p = −100 Pa) is applied

to both end boundaries of the PVS, causing constriction of the endfoot wall and

the gaps while pulling CSF from the ECS into the PVS. We vary the pressure and

measure the maximum azimuthal strain by calculating the maximum radial strain

ε = r/r0 −1 from the simulations (according to equation 2.4), and we get results

similar to those in the hoop-stress model, as shown in figure 2.7c. In figure 2.7f,

we calculate the pumping efficiency η using the steady-state solutions from each

group of simulations with pressure of the same amplitude but the opposite sign,

and compare it with the binary alternating hoop-stress model in figure 2.4c. We

find that the results compare favorably. The 3D simulations thus corroborate the

hoop-stress model and the basic flow rectification mechanism.

In figures 2.7g,h, we show how slit-shaped gaps (1 µm × 4 µm) deform

under the same conditions considered for square holes. Compared to the square

cases (figure 2.7c,d), we observe a more dramatic change in gap size due to
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bending in addition to uniform stretching, and therefore a higher pumping efficiency

(figure 2.7i).

The slit shape is a better model of the realistic geometry of the gaps, which are

long and narrow, so the pumping efficiency could be higher than that predicted by

the hoop-stress model (figure 2.7f). However, gaps do not always align with the

PVS axis. In figure 2.8, we compare the case where the gaps are placed axially

(figure 2.8a) and the case where the gaps are placed perpendicular to the axis

(figure 2.8b). With the same pressure applied (p = −100 Pa), we find that the

perpendicular gaps (figure 2.8b) deform less than the axial gaps (figure 2.8a). That

observation is consistent with the fact that simulations of perpendicular gaps more

closely match our analytical model (figure 2.8c), which does not account for the

extra deformation.
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Figure 2.7: (a) Axial view of the numerical model of a segment of the perivascular space. The solid endfoot wall
is immersed in the fluid domain, separating the outer extracellular space (ECS, radius 25 µm) from the inner
perivascular space (PVS, radius 15 µm). The axial length of the tube is 30 µm. (b), Lateral view of the numerical
model. The blue wire frame shows part of the internal mesh for the fluid domain. The endfoot gaps are modeled
as two square holes (width 2 µm) on the endfoot wall surface. The thickness of the endfoot wall is 2 µm. (c) A
positive pressure boundary condition (p = 100 Pa) applied to both end of the PVS causes a dilation of the
endfoot wall and the gaps in it. (d) A negative pressure boundary condition (p =−100 Pa) applied to both ends
of the PVS causes a constriction of the endfoot wall and the gaps in it. (e) Strain varies similarly with pressure in
simulations and in the analytical hoop-stress prediction. (f) Pumping efficiency varies similarly with strain in the
simulations and in the analytical hoop-stress prediction. (g) For the slit-shaped gaps, positive pressure
(p = 100 Pa) causes nonuniform deformation and more expansion of the gaps compared to the square gaps in
panel c. (h) For the slit-shaped gaps, negative pressure (p =−100 Pa) causes more shrinkage of the gaps
compared to the square gaps in panel d. (i) Strain varies similarly with pressure in simulations and in the
analytical hoop-stress prediction. We observed higher pumping efficiency in the slit-shaped gaps compared to
the square gaps, indicating the stronger rectification due to the extra, uneven deformation. Simulations with
pressure amplitudes of p0=[1,10,100] Pa are plotted.
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Figure 2.8: (a) The constriction of a slit-shaped gap (1 µm × 3 µm), aligned with the PVS axis, when negative
pressure (p =−100 Pa) is applied to both ends of the PVS. (b) The constriction of a slit-shaped gap (3 µm ×
1 µm), perpendicular to the PVS axis, when negative pressure (p =−100 Pa) is applied to both ends of the PVS.
An axial slit constricts and deforms more. In each case, the lower image is an enlargement of the upper image.
(c) Strain varies similarly with pressure in simulations and in the analytical hoop-stress prediction, and
agreement is closer for slits perpendicular to the PVS axis. Simulations with pressure amplitudes of
p0=[1,10,100] Pa are plotted.

2.4 Discussion

In this chapter, we provided a model of a PVS, with a simple annular configuration,

in which the endfoot gaps in the outer wall rectify the oscillatory flow of CSF

to produce a directed flow. The mechanism is based on the stretching and the

constriction of the endfoot wall, and it does not requires any geometric asymmetry

of the gaps, unlike a previous study by Bork et al. 2023. The rectification we discuss

here can be explained using simple scaling. The artery diameter change drives

pressure oscillation in the PVS, and causes radial displacement of the endfoot in

the same order of magnitude (≈ 1 µm, Bojarskaite et al. 2023). With a varying

radius, the surface area of the outer wall A is,

A = 2πrL, (2.34)
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and the flow resistance of the outer wall reads:

R =
1

kA
=

1
2πrLk

∝
1
r
, (2.35)

where k is the permeability of the endfoot wall, which we consider a constant here.

Based on the simple scaling equation 2.35, which does not require permeability

k to vary, we know that the flow resistance decreases as the radius r increases

(when positive pressure in the PVS causes an inward movement of the endfeet

wall), and it increases as r decreases (when negative pressure causes a outward

movement of the endfeet wall). How the flow resistance changes with respect to

the radius of the endfoot, which is well measured, indicates the gap size change,

which is not yet measured, and leads to the development of the valve mechanism.

As long as flow is passing through the gaps as they expand and constrict, the flow

is rectified. We therefore developed the hoop-stress model to quantify how much

the rectification could be, which is a more robust model, as it takes more factors

into account, such as the characteristics of the viscous flow through gaps, and the

thickness change of the endfoot wall.

Experiments have shown that functional hyperemia (neurovascular-coupled

artery motion) drives a radial displacement of the endfeet of ≈ 1.5 µm for a

penetrating artery PVS with a radius of ≈ 10 µm (Ravi Teja Kedarasetti et al. 2020;

Bojarskaite et al. 2023). Based on the hoop-stress model, we can estimate an

azimuthal strain of ε ≈ 0.15 and a pumping efficiency of ≈ 0.4 for the case of

binary alternating pressure, or ≈ 0.3 for the case of sinusoidally varying pressure.



CHAPTER 2. THE HOOP-STRESS MODEL: A VALVE MODEL BASED ON THE
STRETCHING AND SHRINKING OF THE ENDFOOT GAP 36

That said, this simple mechanism can produce a mean flow about 30% to 40% as

fast as the oscillatory flow, even though the pressure variation is a purely symmetric

alternation.

In contrast to functional hyperemia, the radial displacement of endfoot wall

due to cardiac pulsation is highly uncertain, and seems to be smaller than current

in vivo imaging can register. Due to smaller amplitude of the cardiac pulsation,

the pressure oscillation it drives, and hence the endfoot radial displacement (and

the azimuthal strain), should be smaller than that driven by functional hyperemia.

With that being said, we expect a smaller pumping efficiency from the hoop-stress

model. However, the extra deformation we observed from the slit-shape gaps in the

3D simulation indicates that the pumping efficiency could still be significant, even

though the radial displacement is small, which we will discuss in the next chapter.

With realistic pressure pulsation amplitudes, for either functional hyperemia

or cardiac pulsation, our model predicts pumping efficiency smaller than what is

measured in vivo. In fact, even in the case of an ideal valve, which blocks any

backflow from any symmetric pressure oscillation (when εϕ = 0.25 according to

equation 2.13), the pumping efficiency cannot exceed unity. For the symmetric

binary alternating pressure waveform, the maximum pumping efficiency for an

ideal valve is η = 1/
√

2 (when εϕ = 0.25 according to equation 2.19, it is also

calculated numerically in the next chapter). That said, this mechanism might

work in concert with others, such as the osmotic force, peristalsis pumping, and

impedance pumping (Holstein-Rønsbo et al. 2023). Modeling the flow that occurs

when other mechanisms are combined is important for future work.
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In additional to the radial displacement of the endfoot, the extent to which the

deformation changes the flow resistance of a layer of poroelastic tissue (the endfoot

wall, in this case) depends on several other factors, none of which are known to

high accuracy. Future experiments reducing the uncertainty in the size of the gaps

between endfeet, the thickness of the endfeet, their material properties E and ν ,

and the pressure fluctuations in PVSs would make models like ours more precise.

Many features of the endfoot geometry are too small to be resolved in vivo but are

likely to be altered during the fixation processes necessary for postmortem electron

microscopy, so inference from system dynamics may be necessary. Similarly, the

pressure can be estimated from observed stretching if the material properties are

well known.

Another important factor is the ECS resistance, which connects in series with

the flow resistance of the endfoot wall. The ECS resistance suppresses the valve

mechanism, but as long as the resistance of the ECS does not exceed that of the

endfoot wall by more than an order of magnitude, it does not greatly change the

results. That range of ECS resistances is reasonable, according to prior publications.

The astrocyte endfoot wall is two orders of magnitude less permeable than a

similarly thick layer of ECS (Koch, Vegard Vinje, and Mardal 2023), whereas the

ECS is two orders of magnitude thicker than the endfoot wall in our model (we

consider the distance between the arterial PVS and the nearest venule, an efflux

path in the glymphatic model, taking that distance to be 200 µm, following Holter

et al. 2017). Therefore, it is likely that the ECS and endfoot wall have resistances

of similar magnitude. However, values of both of these parameters have large
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uncertainty and require more precise measurements. During wakefulness, when the

resistance of the ECS increases five fold, our model predicts significantly less net

flow (61% less for Recs0/R0 = 1 if ε0 is left unchanged; see figure 2.6e) and lower

pumping efficiency. These predictions are consistent with in vivo observations,

which find little net CSF flow in PVSs during wakefulness (Xie et al. 2013). Note

that three times as much pressure is needed to cause the same characteristic strain

ε0 during wakefulness as during sleep, according to our model.

With ECS resistance included, the result matches the experimental observations

of suppressed CSF net flow during wakefulness due to increased ECS flow resis-

tance compared to sleep (Xie et al. 2013), indicating that the ECS is an important

flow pathway that connects with the PVS. It is necessary to point out that the ECS

flow resistance change suppresses the valve mechanism more strongly compared

to other driving mechanisms, such as a steady pressure difference. For a flow

that is only driven by a steady pressure gradient, the total flow resistance change

ratio (including the endfoot and the ECS) is (Recs,wake +R0)/(Recs,sleep +R0) = 3,

where Recs,sleep = R0 represents the ECS flow resistance during sleep, and the

Recs,sleep = 5R0 represents the ECS flow resistance during wakefulness. Since the

pressure difference is steady, the flow should be suppressed threefold, but not more.

However, for the valve mechanism, the pressure difference needed for to drive

the same amount of flow during wakefulness compared that during sleep is three

times larger (figure 2.6e). That is because the increased ECS resistance during

wakefulness not only hinders CSF flow, but also strongly suppress the efficiency of

the rectification, according to equation 2.32. Therefore, the fact that wakefulness
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nearly blocks any CSF flow indicates that valve mechanism may be one of the

main drivers of the flow (Xie et al. 2013).

An equation that relates the deformation and the axial flow resistance has been

used in previous work (Aldea et al. 2019; Markert 2005). Our model expresses how

the deformation changes the radial flow resistance based on the simplified, linear

hoop-stress relation and corroborates this dependence with 3D numerical simu-

lations. The model assumes linear elastic behavior of the endfoot wall, based on

experimental observations of small deformations (less than 20%): for larger defor-

mations, nonlinearity should be considered for better accuracy. Future experiments

are needed in order to validate various aspects of the model.

The mechanism we have considered always favors an outward radial flow,

because high pressure in the PVS simultaneously expands the gaps in the endfoot

wall and pushes CSF outward through those gaps. Fluid is known to flow outward

from arterial PVSs. It is believed, however, that in venous PVSs or nerve sheaths,

fluid flows inward through their walls on its way out of the brain. Our mechanism

would not favor that inward radial flow, but also would do little to oppose it, because

veins and nerves do not pulse appreciably. This sort of valve action, then, would

be limited to arterial PVSs.

In the model of sinusoidal alternating pressure, which involves dynamical

wall motions, the wall velocity is neglected for simplicity. When the wall is

moving, the velocity driven by the pressure difference across the wall is actually

the fluid velocity relative to the wall velocity, yet the model remains valid. In

experiments, the wall velocity due to cardiac pulsation is ≈ 10 µm/s, and that due
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to slow neurovascular coupling is ≈ 1 µm/s. The CSF flow velocity relative to

the endfoot wall (which represents the net flow transport) is expected to be less

than ≈ 1 µm/s (Holter et al. 2017). Since the wall velocity could be an order of

magnitude greater than the CSF relative velocity, it would be difficult to measure

the latter.

We consider the flow through the endfoot gap as fully developed Poiseuille flow

through a channel, neglecting any entrance effect. The flow cannot be considered

fully developed if the length of the gap (that is, the thickness of the endfoot wall)

is smaller than the entrance length (White 2006). For laminar flow, the entrance

length Le is

Le ≈ 0.06×Re×d (2.36)

, where Re≤ 10−4 is the Reynolds’ number, and d ≤ 1 µm is the diameter of the

channel (that is, the gap width). The flow velocity through the endfoot gap has

not been directly measured from experiments, but is expected to be much smaller

than the flow velocity in the PVSs of the pial artery. Given that Re ≈ 0.01 in those

PVSs, it is reasonable to estimate that Re ≤ 10−3 for the flow through the endfoot

gap. Using equation 2.36, we can estimate an entrance length of Le ≤ 6×10−5 µm,

which is much smaller than the typical length of the endfoot gap channel (≈ 1 µm).

Hence, we conclude that neglecting the entrance effect will not severely reduce the

accuracy of the model.

In our 3D simulation, we model the gaps as two holes in the endfoot wall, with

a hole width of ≈ 2 µm. In reality, there are numerous gaps along the endfoot wall,
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and the gap width in vivo could be as small as 20 nm, while the radius of the wall is

on the scale of microns (M. X. Wang et al. 2021; Koch, Vegard Vinje, and Mardal

2023). Thus, although the pumping efficiency in our models is meant to estimate

the efficiency in vivo, the volume flow rates are not.

Though following the same trend, the hoop-stress model and the 3D simulations

differ noticeably in terms of pumping efficiency (figure 2.7f,i). In the hoop-

stress model, the flow resistance of the gaps is proportional to T g3, according to

equation 2.9, which is based on the realistic slit shape of the gaps Jeffrey Tithof

et al. 2022. Yet in the 3D simulation, where the gaps are modeled as square or

rectangular holes, the flow resistance is proportional to T g4, according to the

solution of Stokes flow passing through a tube of rectangular cross-section (White

2006). Therefore, the flow resistance for the 3D simulation is more sensitive to the

value of the gap width g. The pumping efficiency calculated from 3D simulations

is always higher than that predicted by the hoop-stress model. Therefore, we do

not expect the 3D simulation to match the hoop-stress model exactly.

In reality, gaps are slit-shaped (M. X. Wang et al. 2021). Choosing extreme

aspect ratios of the gap to match the realistic geometry for the 3D simulation

introduces extra deformation, as discussed in section 3 (figure 2.7i). For the

same pressure oscillation waveform, slit-shaped gaps stretch and constrict more

dramatically compared to square gaps, causing a better rectification and a higher

pumping efficiency. The 3D simulations reveal that the direction of the gaps, like

aspect ratio, also plays a role. A lateral gap (the gap with its long edge aligned

with the axial direction of the PVS) stretches and constricts more compared to a
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perpendicular gap (the gap with its long edge perpendicular to the axial direction

of the the PVS). Since the hoop-stress model is limited to uniform deformations, a

more complex model is needed to describe and explain these phenomena, which

we will discuss in the next chapter.
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3. The deformation and the flow

resistance change of the slit-

shape endfoot gaps under pres-

sure oscillation

The hoop-stress model, which discusses a rectification mechanism based on the

stretching and shrinkage of the endfoot gap, is corroborated by three-dimensional

fluid-solid interaction simulations. These simulations also provide new insights

into the valve mechanism regarding the shape and direction of the gaps. For slit-

shaped gaps, a more dramatic change in size and shape is observed compared to the

uniform stretching and constriction described in the hoop-stress model, resulting

in higher pumping efficiency than square gaps. The lateral gap, with its long

edge oriented along the axial direction of the PVS, deforms more compared to the

perpendicular gap, where the long edge is perpendicular to the axial direction of

the PVS. Since the slit shape is more realistic endfoot gap shape, and the extra
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deformation cannot be explained by the hoop-stress model alone, we propose a

new model to describe, explain, and quantify the uneven deformation and changes

in flow resistance.

The thesis author was the primary contributor of this work.

3.1 Background

Astrocyte endfoot encircles the outer boundary of the penetrating arteries’ perivas-

cular spaces (PVSs). Pressure fluctuation inside the PVS causes stretching and

constriction of endfoot wall, altering the size and shape of gaps on its surface. These

changes in the size and shape of the gaps cause a flow resistance change, which

potentially rectify the flow through it (described in chapter 2, Bork et al. 2023; Gan,

John H Thomas, and Douglas H Kelley 2024). We provided a hoop-stress model in

the previous chapter to quantify rectification, assuming that the gaps stretch and

constrict uniformly, in the same way as the elastic tissue on the endfoot wall, which

is modeled as a cylindrical one. The 3D numerical simulations, used to validate

the hoop-stress model, revealed two additional observations. Firstly, the change

in gap size and the resulting alteration in flow resistance are more pronounced

for slit-shaped gaps compared to square gaps. Secondly, gaps oriented with their

long edge aligned along the axial direction of the PVS (lateral gaps) deform more

than those oriented with their long edge perpendicular to the axial direction of

the PVS (perpendicular gaps). Microscopic imaging shows that the gaps between

the endfeets are of long slit shape, which are long and narrow (M. X. Wang et al.
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2021). The orientation of the long axis of these gaps appears to vary rather than

align uniformly in a single direction. Hence, it is important to understand how the

shape (the aspect ratio) and the direction of the gap influence its potential valve-like

action, including its deformation and changes in flow resistance.

A new mathematical model is needed to investigate the observations mentioned

above. The method of perturbation is commonly used to determined the stress and

deformation of a cylindrical shell with gaps (cutouts) on it (Van Dyke 1965). That

is, the gap only influences the stress state in its vicinity. Hence, the stress state far

away from the gap can be estimated from the hoop-stress model, while the stress

state near it is determined by the boundary condition along the rim of the gap,

which can be considered as free of stress (the shear stress applied by the CSF flow

is neglected for simplicity). Since there exists no stress on the boundary of the gap

to resist the gap from deformation, it stretches and constricts more compared to the

endfoot tissues, which is not accounted in the hoop-stress model. Consequently,

the long edge of the gap deforms more compared to the short edge, which explains

why slit-shaped gaps demonstrate increased and higher pumping efficiency than

square gaps.

The model can also explain the effects of gap direction. For a lateral gap,

the long edge is stretched and constricted by the azimuthal stress (equation 2.1)

whereas the long edge of a perpendicular gap is stretched and constricted by the

axial stress (equation 2.2). Since the axial stress is two times smaller than the

azimuthal stress, the lateral gap deforms more compared to the perpendicular gap,

resulting in higher pumping efficiency.
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Using the method of perturbation, Van Dyke 1965 solved the stress and the

displacement field of a cylindrical shell with a circular gap on it subjected to

various loading conditions, including axial tension, torsion, and internal pressure.

The solution, expressed as an infinite series of Hankel functions, is accurate

within a wide range of curvature parameters, which evaluates how the curved

surface influences the deformation of the circular gap. In subsequent work, Savin,

Kosmodamianskii, and Guz 1967 employed conformal mapping techniques to

analyze the deformation and stress distribution in gaps of arbitrary shapes, including

square gaps, rectangular gaps (of specific aspect ratios), and elliptical gaps. While

the rectangular gap can model the slit-shaped endfoot gap with a long edge, it is

confined to certain aspect ratios and the accuracy is constrained by the limitation

of conformal mapping. In contrast, Murthy 1969 provides exact solutions for an

elliptical gap of any eccentricity (i.e. aspect ratio between the long and short axis)

using the elliptical coordinates instead of approximating solutions with conformal

mapping. We can vary the aspect ratio and the direction of an elliptical gap, making

it ideal for studying problems related to slit-shaped endfoot gaps, as discussed

above. In addition, using elliptical gaps instead of rectangular gaps avoids sharp

corners, making the model more biologically realistic.

Having decided to use the elliptical gap to study the deformation of the endfoot

gap, we further employ some simplifications. While Murthy 1969 provides solu-

tions for the elliptical gap on a cylindrical shell under axial tension and torsion, it

questions the existence of a closed perturbation solution for the case of internal

pressure loading, except for an axial crack (an elliptical gap with length but zero
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width). Furthermore, the general solutions, regardless of the loading condition,

consist of infinite series and hence may not be as intuitive. Given that the width of

the endfoot gap (≈ 20 nm to 1 µm) is relatively small compared to the radius of the

cylindrical endfoot wall (≈ 10 µm), we neglect the effect of surface curvature and

simplify the problem to that of a two-dimensional planar shell with an elliptical

gap. The boundary stress conditions far away from the gap are estimated using

the hoop-stress model Gan, John H Thomas, and Douglas H Kelley 2024. The

lateral stress far away from the gap is estimated by the axial stress (equation 3.2),

while the stress in the perpendicular direction far away from the gap is estimated

by the azimuthal stress (equation 3.3). The boundary (rim) of the elliptical gap is

considered free of any stress. Now that the problem is simplified to a bi-stretching

planar shell with an elliptical gap under positive internal PVS pressure and a

bi-constricting shell under negative internal PVS pressure, a straightforward and

elegant general solution is provided Pollard 1973 in two-dimensional complex

plane.

In this chapter, we employ the elliptical gap model on a planar shell to study

the slit-shaped endfoot gaps of varying aspect ratios and directions. Using the

analytical solutions from Pollard 1973, we quantify the deformation of the elliptical

gap of any aspect ratio and any direction. We extract the deformed shape of the

gap and calculate the flow resistance change using two-dimensional Strokes flow

simulations. Our findings align with previous conclusions that slit-shaped gaps

with more extreme aspect ratios exhibit stronger rectification compared to square

gaps, and that lateral gaps demonstrate stronger rectification than gaps oriented
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in other directions. In addition to changes in gap size, we observe that stretched

elliptical gaps exhibit decreased eccentricity, while constricted elliptical gaps show

increased eccentricity. Since a less eccentric (more circular) gap has a smaller flow

resistance (White 2006), this shape change strengthens the rectification. Lastly, we

perform three-dimensional simulations to corroborate the two-dimensional model.

3.2 The 2D shell model

Figure 3.1: The stress boundary conditions for the endfoot tissues (on four edges of the square shell) around
the elliptical gap, oriented with its long axis along the axial direction of the PVS (z-direction). (a) When the
pressure in the PVS is positive, the axial stress and the azimuthal stress far away from the gaps stretch the
endfoot tissue and the gap in both directions. The black curve at the center represents the original gap shape.
The blue curve represents the stretched gap. (b) When the pressure in the PVS is negative, the axial stress and
the azimuthal stress far away from the gaps constrict the endfoot tissue and the gap. The black curve at the
center represents the original gap shape. The blue curve represents the constricted gap shape.

The analytical hoop-stress model approximates that the gaps deform uniformly

as the endfoot tissue, neglecting the boundary effect of the gaps, which leads to

deviation from the 3D simulation.

Since the gap size is ≈ 20 nm, much smaller than the radius of the endfoot wall
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(≈ 15 µm), we can consider the vicinity of the gap as a flat plane (0 curvature).

The governing equation for the problem is:

∇
4
φ(z,ϕ) = 0 (3.1)

, where φ is the stress function, z represents the axial coordinate and ϕ represents

the azimuthal coordinate.

Since the existence of the gap primarily affects the stress state in its vicinity,

it has negligible impact on the stress state far away (at infinity), which can be

estimated by the hoop-stress model (Gan, John H Thomas, and Douglas H Kelley

2024). The azimuthal stress reads:

σϕ =
pr0

ET
(1− ν

2
) (3.2)

where p is the internal pressure in the PVS, E is the young modulus, T is the

thickness of the endfoot wall, ν is the poisson ratio, and r0 is the radius. The axial

stress reads:

σz =
pr0

2ET
(1− ν

2
) (3.3)

The boundary (rim) of the gap is free of stress, which reads:

σϕ = 0, σz = 0, τϕz = τzϕ = 0 (3.4)

, where τϕz and τzϕ represent the shear stress. Since the boundary of the gap is free
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of stress, it’s easier to deform compared to the tissue far away from the gap.

We use the elliptical gaps to represent the slit-shape endfoot gaps, with its

long axis representing the long-edge direction of the gap (figure 3.1a,b). The

in-plane stress state of the subregion for the case of positive PVS pressure (endfoot

expansion) and negative PVS pressure (endfoot shrinkage) are plotted respectively

in figure 3.1a,b. The stretched shape and the contricted shape of the gap are plotted

in blue color respectively in figure 3.1a,b, using the analytical solutions detailed

below.

With the governing equation (equation 3.1) and the boundary conditions (equa-

tion 3.2,3.3,3.4), the analytical solution for the circular gap that is bi-directional

stretched or constricted is solved, based on which the solution for the rectangular

gap is estimated using the method of conformal mapping (Lei, Ng, and Rigby

2001). For the elliptical gap being bi-directional stretched or constricted, the

analytical solution is given by Pollard 1973. Which reads:

φ(z,ϕ) = φ(Z) = Re(Z̄ψ(Z)+χ(Z)) (3.5)

, where Z = z+ iϕ is the spatial coordinate in the complex domain, ψ and χ are

harmonic functions, provided by Pollard 1973. The displacement field reads:

uz + iuϕ = u(Z) =
3−4ν

1+ν
ψ −Z dψ̄

dZ̄ − dχ̄

dZ̄
2G

(3.6)

, where G = E/2(1+ν), is the shear modulus. The analytical results are validated



CHAPTER 3. THE DEFORMATION AND THE FLOW RESISTANCE CHANGE OF THE
SLIT-SHAPE ENDFOOT GAPS UNDER PRESSURE OSCILLATION 51

using the two-dimensional finite-element simulations in Matlab.

Based on the displacement field, we calculate the resistance per unit length for

flow through straight channels with cross sections corresponding to the geometry

of the deformed gap using numerical simulations (J. Tithof et al. 2019).

3.3 Results

For simplicity, the hoop-stress model assumes that the gap deforms uniformly, and

the relative flow resistance change between a constricted gap and a stretched gap

for a given pressure amplitude reads:

∆R
R0

≈ 8ε0 = 8
p0r0

ET
(1− ν

2
) (3.7)

, where R0 is the flow resistance at relaxed state, and ∆R represents the flow

resistance difference between a constricted gap and a stretched gap (the former

is larger than the latter in most of situations), ε0 = p0r0(1 − ν/2)/ET is the

characteristic strain.

In our 2D shell model, the gap stretches/constricts more dramatically in a

nonuniform way, which includes a size change and a shape change, and hence

causes a significant flow resistance change. In figure 3.1a, the stretched gap has

a larger area and a less eccentric shape, both contributing to a decreased flow

resistance. In contrast, the constricted gap exhibits a reduced cross-sectional

area and an increased eccentricity, both of which contribute to increased flow
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resistance. Therefore, for the 2D shell model, the flow resistance is significantly

higher compared to the hoop-stress model, for the same characteristic azimuthal

strain, which is proportional to the applied pressure, and the radial displacement of

the endfoot wall (figure 3.1b).

Figure 3.2: The deformation and the flow resistance change of a stretched gap and a constricted gap (a)
Deformation of the stretched gap (in blue) and the constricted gaps (in orange). The deformation involves
changes in size and shape, causing the flow resistance change. (b) The flow resistance change relative to the
original is plotted for various values of the azimuthal strain, which is proportional to the pressure amplitude. For
the 2D shell model (the black curve), the flow resistance change is much larger than that compared to the
hoop-stress model (the red curve). (c) The pumping efficiency is plotted for various values of the azimuthal strain
and compared with the hoop-stress model. The dashed line represents the case of ideal rectification, where the
constricted gap prevents any backflow from reentering the PVS.

3.3.1 On the direction of the gap

According to the hoop-stress model, the stress (σz) in the lateral direction is smaller

than that in the perpendicular direction (σϕ ). The direction of the endfoot gaps

(the long axis of the elliptical gap) could be arbitrary (M. X. Wang et al. 2021),

and the inhomogeneous stress state suggests an optimal angle β between the long

axis direction of the gap and the axis of the PVS. In figure 3.3a, where the gap

direction is β = π/3, the deformation of the stretched and constricted gaps is less

pronounced compared to the lateral gap shown in figure 3.2a. In figure 3.3b, the
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change in flow resistance and the change in area are plotted at different angles

between the lateral stress and the direction of the gap. Unlike the flow resistance

change, the area change is defined as the difference between a stretched gap and a

constricted gap, as the former is larger than the latter. In figure 3.3c, the pumping

efficiency decreases as β increases. It reaches maximum values when beta equals

0 (corresponding to the direction of the lateral gap), and it is minimum when beta

equals β = π/2 (the perpendicular gap). Therefore, the lateral gaps are optimal

for rectifying fluid flow compared to gaps oriented in any other direction. When β

is small, the value of pumping efficiency is close to that of an ideal valve (dashed

line), which prevents any backflow from reentering the PVS.

Figure 3.3: The relative flow resistance change between a stretched gap and a constricted gap across different
gap directions. The amplitude of the positive and negative pressure in the PVS is 100 Pa. (a) For a gap direction
of β = π/3, deformation of the stretched gap and the constricted gaps is less dramatic compared to the lateral
gap in figure 3.2a. (b) The relative flow resistance change and area change across different angles between the
lateral axial stress and the direction of the gap (β in the range of [0 π/2]). Both decrease as beta increases,
showing that the flow resistance and the area change are maximum when the β = 0 (the lateral gap), and they
are minimum are β = π/2, the perpendicular gap. (c) The pumping efficiency across different angles between
the lateral axial stress and the direction of the gap. The dashed line represents the case of ideal rectification,
where the constricted gap resists any backflow from reentering the PVS.
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3.3.2 On the aspect ratio of the gap

In this section, we study how varying the aspect ratio of the elliptical gap affects

the change in flow resistance. In figure 3.4a, we find that the deformation of the

nearly circular gap is smaller than that of a more elliptical gap (figure 3.2a). In

figure 3.4b, the flow resistance change increases as the aspect ratio increases (l/t),

where t is the length of the axis in the perpendicular direction, l is the length of the

axis in the lateral direction). In figure 3.3c, the pumping efficiency increases as the

aspect ratio increases. When l/t is large, the value of pumping efficiency is close to

that of an ideal valve (dashed line). Therefore, we conclude that the more eccentric

gaps, with the long axis in the lateral (axial) direction, are optimal for rectifying

fluid through it compared to gaps that are not as eccentric.

Figure 3.4: The relative flow resistance change ratio and area change between a stretched gap and a
constricted gap across different aspect ratios. The amplitude of the positive and negative pressure in the PVS is
100 Pa. (a) For a gap aspect ratio of nearly 1 (essentially a circular gap), deformation of the stretched gap and
the constricted gaps is less dramatic compared to the more elliptical gap in figure 3.2a. (b) The relative flow
resistance change across different aspect ratios of the gap (l/t), where t is the length of the short axis of the gap,
l is the length of the long axis of the gap. (c) The pumping efficiency across different aspect ratios of the gap (l/t),
where t is the length of the short axis of the gap, l is the length of the long axis of the gap. The dashed line
represents the ideal rectification, where the constricted gap prevents any backflow from reentering the PVS.
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3.3.3 The 3D simulation

To validate the 2D model, we conducted 3D finite element method (FEM) simu-

lations comparing the deformation and flow resistance change. The endfoot wall

was modeled as a cylindrical shell with a thickness of 2 µm, a radius of 15 µm,

and a length of 100 µm (figure 3.5a). In figure 3.5a, the elliptical gap has a long

axis (l) of 2 µm and a short axis (t) of 0.5 µm. One end of the cylindrical shell is

clamped and open, representing the inlet of the PVS, while the other end is free

to deform but closed to represent the capillary end of the PVS. The geometry is

meshed using the FEM toolbox of Matlab (figure 3.5b). We directly compare the

results of the 2D analytical model and 3D simulations. Since the 2D shell model

does not depend on the size of the gap compared to the endfoot wall (which was

modeled as an infinite flat plane), we performed two sets of 3D simulations, with

one of them using larger gaps and the other using smaller gaps (a four-time smaller

area compared to the larger gap). By varying the angle and the aspect ratio of the

gap respectively, we find good agreement regarding the area change of the gap

between them (figure 3.5d,g), which suggests that the 2D shell model is robust in

calculating the deformation of the gaps although it is a simplified model. In terms

of flow resistance, which is sensitive to the length change of the gap to the fourth

power, the agreement between the 2D model and the 3D simulations is generally

good but less satisfactory when dealing with significant deformations, such as the

deformation of lateral gaps with extreme aspect ratios (figure 3.5e,g). When the

flow resistance change is large, the value of pumping efficiency converges to the

pumping efficiency of an ideal valve (dashed line in figure 3.5f,i). Therefore, the
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agreement of pumping efficiency between the 2D model and the 3D simulations

is good even when dealing with extreme aspect ratios (figure 3.5f,i). Instead, the

discrepancy between the analytical model and the simulations is larger when the

long axis of the gap is in the perpendicular direction (β = π/2, figure 3.5f), because

the flat-plane approximation for the analytical model is less accurate in that curved

direction.

3.3.4 Code validations and mesh convergence

A numerical 2D finite element analysis is performed to directly validate the ana-

lytical solution of the 2D shell model. The mesh used for the numerical analysis

and boundary conditions are illustrated in figure 3.6a. The 2D numerical solution

validates the 2D analytical solution for relative flow resistance and area changes

across various gap aspect ratios figure 3.6b. The stretched gap shapes calculated

using the 2D numerical model and the 2D analytical model also matches each other

figure 3.6c.

A mesh convergence test is performed for the Strokes flow simulation by

comparing the flow resistance of a stretched and constricted gap using different

meshes (figure 3.6d). The mesh size is normalized to the width of the gap’s short

axis. A mesh convergence test is performed for the 3D simulations by comparing

the area and flow resistance of the stretched and constricted gap on the cylindrical

endfoot shell using different meshes (figure 3.6e,f).
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Figure 3.5: Direct 3D simulations that validate the 2D shell model. (a) The setup of the 3D simulations includes
a cylindrical shell, which represents the endfoot wall, with an elliptical gap (F2) on it, where stress-free conditions
apply. One end of the shell is clamped and open (F1), while the other end is free and closed to simulate the
capillary end (F3). Positive pressure or negative pressure is uniformly applied to the inner surface of the shell to
model the pressure oscillation in the PVS. The amplitude of the positive and negative pressure is 100 Pa (b) The
mesh used for the finite element analysis of the endfoot wall is shown, with a denser distribution of mesh points
around the gap. c With a positive pressure of 100 Pa applied in the PVS, the stretched gap shape is calculated
using the 2D analytical shell model and the 3D FEM simulations using a larger and a smaller gap. The smaller
gap configuration has an area four times smaller than the larger gap. With the area of the gap at rest state
(p = 0) normalized to unity, the stretched shapes derived from these methods are plotted. (d) The relative area
change across different gap directions β is presented and compared between the 2D analytical shell model and
the 3D FEM simulations using larger and smaller gaps. The smaller gap configuration has an area four times
smaller than the larger gap for the same value of β . (e) The relative flow resistance change across different gap
directions is presented and compared between the 2D analytical shell model and the 3D simulations. f The
pumping efficiency across different gap directions is presented and compared between the 2D analytical shell
model and the 3D simulations. The dashed line represents the case of ideal rectification, where the constricted
gap prevents any backflow from reentering the PVS. (g) The relative area change across different aspect ratios
is presented and compared between the 2D analytical shell, the 3D FEM simulations model using larger gaps
and smaller gaps. The smaller gap configuration has an area four times smaller than the larger gap for the same
value of l/t (h) The relative flow resistance change across different aspect ratios is presented and compared
between the 2D analytical shell model and the 3D simulations. (I) The pumping efficiency across different aspect
ratios is presented and compared between the 2D analytical shell model and the 3D simulations. The dashed
line represents the case of ideal rectification, where the constricted gap prevents any backflow from reentering
the PVS.
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Figure 3.6: Validation of the analytical solution and mesh convergence. (a) A numerical 2D finite element
analysis is performed to validate the analytical solution of the 2D shell model. The mesh used for the numerical
analysis is shown, with an elliptical gap at the center of a square shell. With stress applied on one edge of the
shell (σz, σϕ ), a zero normal displacement boundary condition is applied on the opposite edges (uz = 0, uϕ = 0),
so that the numerical model is stable equivalent to the 2D analytical shell model. To ensure that the stress is
applied far away from the shell, the width of the square shell is set 50 times larger than the short axis of the gap.
(b) The 2D numerical solution validates the 2D analytical solution for relative flow resistance and area changes
across various gap aspect ratios. (c) With a positive pressure of 100 Pa applied in the PVS, the stretched gap
shape is calculated using the 2D numerical model and the 2D analytical model. With the area of the gap at rest
state (p = 0) normalized to unity, the stretched shapes derived from these methods are plotted. (d) A mesh
convergence test is performed for the Strokes flow simulation by comparing the flow resistance of a stretched
and constricted gap using different meshes. The mesh size is normalized to the width of the gap’s short axis.
(e,f) A mesh convergence test is performed for the 3D simulations by comparing the area and flow resistance of
the stretched and constricted gap on the cylindrical endfoot shell using different meshes. The maximum mesh
size (around the gap) is normalized to the width of the gap’s short axis.
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3.4 Discussion

In this chapter, we introduce a two-dimensional shell model that fully solved the

deformation of the elliptical gap under various aspect ratios and directions during

stretching or constriction. In the context of the endfoot gap and the CSF flow,

the stretching and constriction are caused by the internal pressure oscillation in

the PVS due to the artery pulsations. The model provides precise descriptions of

how the gap changes its size, shape, and the flow resistance. It elucidates why

gaps with more extreme aspect ratios or gaps aligned with the PVS axis exhibit

stronger valve-like properties for rectifying CSF flow when the pressure oscillates,

as previously discussed in three-dimensional simulations in the preceding chapter.

For the slit-shape gap, the extra deformation and the change in eccentricity of the

gap synergistically enhance the rectification and the pumping efficiency.

The extent of the extra deformation of the slit shape gap is much larger than the

uniform deformation described by the hoop-stress model, which is proportional

to the radial displacement of the endfeet and the azimuthal strain. Hence, the

rectification induced by the extra deformation of the slit-shaped gap is significant

even with small radial displacement. Functional hyperemia typically induces radial

displacements on the order of 1 µm, whereas the cardiac pulsation drives smaller

radial displacements. Consequently, the valve mechanism considered by the hoop-

stress model does not rectify the flow pumped by cardiac pulsation efficiently (Gan,

John H Thomas, and Douglas H Kelley 2024).

However, our study regarding the extra deformation of the elliptical gaps
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demonstrates rectification occurs even with small radial displacements of the

endfeet. For example, an azimuthal strain (which can be expressed as the ratio

between the radial displacement and the radius of the endfoot at rest) as small

as 0.05 causes a relative flow resistance change of 20 (2000%) and a pumping

efficiency close to that of an ideal valve that resists any backflow, as shown in

figure 3.2b,c. The valve mechanism works efficiently with cardiac pulsation, which

is crucial as cardiac pulsation consistently pumps CSF flow forward (Mestre, J.

Tithof, et al. 2018). In contrast, functional hyperemia and the slow vasomotion

happen only intermittently, during neural activation. In other words, the directional

CSF flow persists in the absence of functional hyperemia, but is consistently

pumped by cardiac pulsation.

We have theoretically demonstrated that the presence of gaps in the endfoot

wall can function as efficient valves through deformation, controlling net flow

across the gaps during both functional hyperemia and cardiac pulsations. However,

we have not yet explained how the flow across these gaps relates to the axial

cerebrospinal fluid (CSF) flow observed in experiments (Mestre, J. Tithof, et al.

2018; Raghunandan et al. 2018), which is parallel to the direction of the blood flow.

Our model does not directly couple the artery motion with the flow, but instead

uses pressure waveforms to represent them.

In the next chapter, we propose a fluid-solid interaction model that integrates

the valve mechanism, the arterial pulsation, the CSF flow in the PVS and the ISF

flow in the ECS. This model aims to demonstrate that net flow through the gaps

can be directly related to net flow in the axial direction observed in experiments.
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4. A perivascular pumping fluid-

dynamic model with the valve

mechanism

In the preceding chapters, we demonstrated that deformable gaps on the endfoot

wall could theoretically function as valves, rectifying the directional flow of cere-

brospinal fluid (CSF) across these gaps, which is in the radial direction of the

annular perivascular spaces (PVS). However, experiments reveal that CSF flows

along the axial direction relative to pial arteries. This chapter introduces a perivas-

cular pumping model that connects the rectified radial flow and the observed axial

CSF flow. This model integrates artery pulsations and CSF flow using lubrication

theory, providing a comprehensive understanding of the fluid dynamics in this

system. The results listed in this chapter have been published in Gan, Holstein-

Rønsbo, et al. 2023. It has been reformatted and edited to fit within the thesis. The

thesis author was the primary author on this work.
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4.1 Background

Gaps between astrocyte endfeet, which form the outer boundary of the PVSs of

the penetrating arteries, can theoretically act as valves that rectify the flow through

them (Bork et al. 2023; Gan, Holstein-Rønsbo, et al. 2023; Gan, John H Thomas,

and Douglas H Kelley 2024). However, the mechanism by which the net flow

generated by the valve action could be linked with the experimentally observed

flow remains unclear.

Particle tracking velocimetry (PTV) experiments, which directly measure CSF

flow velocities, are currently constrained to the PVSs surrounding surface pial

arteries due to technical challenges. Within these surface PVSs, the CSF flow

is usually in the axial direction, moving in the same direction as the blood flow

(anterograde).

In this chapter, we propose a perivascular pumping model demonstrating that

the flow across the gaps and the axial flow observed in experiments could be

directly coupled. Unlike the hoop-stress model (Gan, John H Thomas, and Douglas

H Kelley 2024), which uses prescribed pressure waveforms to represent the effects

of artery motions, our model incorporates actual pulsations of the arteries into the

valve mechanism. During artery dilation, the PVS shrinks, requiring fluid to be

expelled, and increased permeability (decreased flow resistance) of the endfoot

wall due to the valve mechanism allows fluid to pass into the ECS. During artery

constriction, the PVS expands, requiring fluid intake, and reduced permeability

(increased flow resistance) of the endfoot wall inhibits a backflow of fluid from
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the ECS, so the fluid must instead come from the pial PVS connected to the

penetrating PVS. Therefore, the flow in the axial direction is driven in the upstream

PVS of the pial artery. In our study, we adopt the lubrication approximation

to simulate cerebrospinal fluid (CSF) flow within the perivascular space (PVS)

surrounding a penetrating artery, influenced by arterial motions, similar to the

approach described in Romanò et al. 2020. The PVS is considered to be an open,

unobstructed space, and the outer wall of the PVS (the endfoot wall) is permeable

to CSF and deformable. We set the permeability of the outer wall to be a step

function of the pressure to model the valve function (Gan, Holstein-Rønsbo, et al.

2023; Bork et al. 2023). We couple the CSF flow in the PVS with the pressure

response in the ECS, which is modeled as a porous medium. We find that cardiac

pulsations drive a net CSF flow from the upstream pial PVS into the penetrating

PVS. Functional hyperemia, acting in addition to the cardiac pulsation, enhances

the net flow. We further simplify our model by employing lumped parameters to

gain a comprehensive understanding of the pumping mechanism, considering the

varied arterial-pulsation frequencies and the elasticities of the endfoot wall.

Again, the perivascular pumping model with our proposed valve mechanism

provides insight into how wakefulness suppresses CSF inflow. During wakefulness,

the permeability of the ECS is lower by a factor of five than compared to sleep

and sleep-like states (Xie et al. 2013). Although cardiac pulsations and functional

hyperemia occur in both states, CSF inflow in the PVSs is rarely observed during

wakefulness. Solute measurements show that perivascular CSF tracer influx and

interstitial solute efflux, including the clearance of amyloid beta, are more rapid
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in the sleeping brain compared to the awake brain (Xie et al. 2013). During

wakefulness, our model finds a higher ECS pressure response and suppression of

CSF inflow in PVSs, consistent with experiments. Few theories of perivascular

pumping consider how wakefulness can suppress CSF inflow as they do not include

fluid exchange between the PVS and the ECS. Because the astrocytic valves we

model here control the net CSF flow transported into the ECS, it is natural to expect

that the decreased permeability of the ECS during wakefulness will suppress the

valve mechanism.

4.2 The model

Here we describe the idealized computational model of our proposed valve mecha-

nism. Details of the governing equations and numerical methods, based on those

of (Romanò et al. 2020), are described in Appendix A. We model the flow of CSF

in two connected, axisymmetric domains, as shown in figure 4.1a. The PVS of a

penetrating artery is modeled as a circular annular tube of length l and width b,

lying between the impermeable, deformable artery and the permeable, deformable

endfoot wall. The width of the PVS is taken to be b = 10 µm, the radius of the

artery is taken to be r1 = 10 µm, and the length is taken to be l = 1000 µm, typical

values for a penetrating artery in the mouse brain. (Values of all of the dimen-

sional parameters of the model are listed in Table 4.1.) The PVS is an open space

(Min Rivas et al. 2020; Jeffrey Tithof et al. 2022), and the flow there obeys the

Navier-Stokes equation, in its approximate form for low Reynolds number flow in
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Figure 4.1: Sketch of the model. (a) The model includes the exchange of cerebrospinal fluid (CSF) between the
perivascular space (PVS) of the artery, modeled as an open space, and the extracellular space (ECS), modeled
as a porous medium. The upstream PVS of the pial artery and the downstream PVS of a capillary are modeled
as flow resistances. (b) During artery dilation, hypothesized astrocytic valves along the PVS outer boundary
open, facilitating flow into the ECS, which increases the ECS pressure. (c) During artery constriction, astrocytic
valves close. The constriction drives CSF flow in the PVS and decreases ECS pressure. (d) The arterial radius
varies during cardiac pulsation according to equation (4.2). (e) The asymmetric (n = 2) and symmetric (n = 1)
arterial waveforms of functional hyperemia generated by equation (4.3.)

a thin tube (the lubrication approximation) and quasi-steady flow (low Womersley

number). The aspect ratio of the PVS, ε = b/l, is of order 0.01, justifying the use

of the lubrication approximation.

At the inlet (the upstream pial PVS) and the outlet (a precapillary PVS) we spec-

ify a hydraulic resistance to model the inflow and outflow and require conserved

flow rates across each interface. The inner boundary of the PVS (the artery wall) is

assumed to be impermeable, and we apply a no-slip boundary condition there. The
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outer boundary of the PVS (formed by the astrocyte endfeet) is modeled as a thin,

deformable, elastic layer of permeable tissue, with a no-slip boundary condition.

The Young’s modulus of this elastic layer, Eendft, lies in the range [104 106] Pa Ro-

manò et al. 2020. To represent the proposed valve mechanism, the permeability

kendft of the outer boundary of the PVS is modeled as a step function of the pressure

difference:

kendft =


k1 if p(z, t)> pecs

k0 if p(z, t)≤ pecs

(4.1)

where k1 > k0 and k0 = 10−10 m/Pa/s (Koch, Vegard Vinje, and Mardal 2023).

Thus, during artery dilation, the increased pressure in the PVS increases the perme-

ability, effectively opening a valve and allowing fluid to enter the ECS (figure 4.1b).

During artery constriction, the pressure in the PVS drops, permeability is decreased,

the valve closes, and CSF flow is confined to the PVS (figure 4.1c). According

to the hoop-stress model, the permeability change is k1/k0 ≈ 2.93, for a pressure

amplitude of p = 133 Pa. Therefore, we will examine the permeability change,

k1/k0 within the range of 1 to 5.

The ECS surrounding the PVS is modeled as a large porous, circular annular

tube of length l and width becs, filled with a porous medium composed of a

deformable but incompressible solid phase and an incompressible fluid phase

(interstitial fluid) that flows according to Darcy’s law. The annular width of the

ECS, becs, is taken to be a typical distance to the nearest venule, which is 100 µm for

the mouse brain (Schreder et al. 2022; Jeffrey Tithof et al. 2022). The permeability



CHAPTER 4. A PERIVASCULAR PUMPING FLUID-DYNAMIC MODEL WITH THE
VALVE MECHANISM 67

of the ECS during wakefulness has been measured as [2×10−17m2 1×10−16m2]

(Holter et al. 2017; Neeves et al. 2006; Smith and Humphrey 2007). To model

sleep, we set the permeability to its maximum value, kecs = 1×10−16 m2, about

five times greater than the value we use to model wakefulness (Xie et al. 2013).

The flow velocity is kept continuous across the outer boundary of the PVS, where it

meets the endfoot wall and the ECS. The pressure difference across this boundary

depends on both the elasticity of the thin membrane and the flow rate through it, as

described in Appendix A. The fluid pressure is set to zero at the outer boundary of

the ECS. The fluid axial pressure gradient is set to zero at the distal and proximal

ends of the ECS in z direction,

The motion of the impermeable artery wall is specified as an input, representing

cardiac pulsations or functional hyperemia. Given that the wave speed of arterial

pulsations is of order c ≈ 1m/s, the cardiac frequency is f ≈ 3Hz, and the length

of the domain is l = 1000 µm, we have l f/c ≈ 0.003, and hence we can neglect the

phase difference in the pulsations along length of the tube. (This phase difference is

also negligible for the slower arterial motions associate with functional hyperemia).

Thus we model the cardiac pulsations as

h(t) = hcp sin(2π f t), (4.2)

(figure 4.1d), independent of the axial coordinate z. hcp is the pulsation amplitude.

For functional hyperemia, we model an individual pulsation as a quick dilation
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followed by a slow constriction and relaxation, in the form

h(t) =



hfh
2 (1− cos(2nπ f t)) if t ≤ 1

2n f

hfh
2

(
1− cos(2( 1

2− 1
n
)π( f t −1))

)
if 1

2n f < t ≤ 1
f

0 if t > 1
f

(4.3)

with f ≈ 0.1Hz, where hfh is the dilation amplitude, and n determines the fraction

of dilation time and constriction time. We use n= 1 to model temporally symmetric

vasomotion and n = 2 to model temporally asymmetric vasomotion. In both cases,

the waveform is smooth, with a continuous wall velocity (figure 4.1e).
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Table 4.1: Dimensional Parameters of the perivascular pumping model

u axial CSF velocity
w radial CSF velocity
r radial coordinate
z axial coordinate
t time
p pressure in the PVS
q axial flow rate in the PVS
f the arterial pulsation frequency
µ dynamic viscosity of CSF 9×10−4 Pa · s
r1 artery radius 10 µm
l length of the penetrating artery 1000 µm

hcp artery pulsation amplitude of the cardiac pulsation ∗[0.01r1,0.025r1]
hfh artery dilation amplitude of functional hyperemia ∗[0.1r1,0.2r1]
h arterial waveform of cardiac pulsation or functional hyperemia
b width of the PVS 10 µm

apvs equilibrium cross-sectional area of the PVS 940 µm2

Eendft elasticity of the PVS outer boundary ∗[104,106] Pa
kendft permeability of the PVS outer boundary 10−10 m/Pa/s
kpial conductivity of the pial PVS 1000kendftapvs
kcap conductivity of the capillary PVS kendftapvs
kecs permeability of the ECS ∗[10−16,2×10−17] m2

becs width of the ECS domain/distance between
the artery and the venules 10−4 m

u∗ axial CSF velocity relative to the endfeet motion

4.3 Results

4.3.1 With the valve mechanism, cardiac pulsations drive

a net CSF influx

We modeled flow driven by cardiac pulsations, which have high frequency (2-6

Hz) but small amplitude (1% to 5%). We first tested the model using an essentially
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Figure 4.2: Flow and pressure driven by ten cycles of cardiac pulsation ( f = 3 Hz). (a), As the artery dilates and
constricts, the volume flow rate at the inlet of the penetrating perivascular space oscillates symmetrically around
zero if no valve mechanism is implemented (k1/k0 = 1), but favors inflow when the valve mechanism is active
(k1/k0 = 5). (b), Net volume of fluid pumped into the penetrating perivascular space, starting at the beginning of
the fifth cycle to avoid transients. The volume fluctuates but increases, on average, at a rate depending on the
permeability ratio k1/k0. (c), Pressure fluctuations in the penetrating perivascular space, varying with endfoot
wall elasticity Eendft. In all cases, k1/k0 = 5. Softer walls deform more, reducing pressure fluctuations. (d), Mean
fluid velocity in the perivascular space, over the last five cardiac cycles, shows net inflow. (e), The mean flow rate
at the inlet increases with permeability ratio and wall elasticity. (f), The mean pressure gradient at the pial PVS
inlet (over five cycles) likewise increases with permeability ratio and wall elasticity.

rigid endfoot wall with elasticity Eendft = 106 Pa, roughly an order of magnitude

higher than measured for artery walls Messas, Pernot, and Couade 2013. In the
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k1/k0 = 1 case, where wall permeability remains constant and no valve action

occurs, the inflow and backflow rates for each cycle were the same, resulting in

zero net flow (figure 4.2a,b). With k1/k0 > 1, however, we observed less backflow

than inflow and hence a net flow.

For a more compliant endfoot wall, we expect increased wall deformation

that would absorb more of the arterial pump energy. To test this expectation, we

performed simulations varying Eendft. We measured the mean flow rate
∫ t0

0 qdt/t0

(where q is the instantaneous volume flow rate) and the pressure difference be-

tween the two ends of the PVS. Both increased with k1/k0 and decreased for a

more compliant endfoot wall, as expected (figure 4.2c-e). We observed a mean

pressure gradient at the pial entrance on the order of 100 Pa/m (figure 4.2f), which

matches experimental measurements (K. A. Boster et al. 2023) and other numerical

models (Daversin-Catty et al. 2020; Ravi Teja Kedarasetti et al. 2020).

4.3.2 The valve mechanism is suppressed during wake-

fulness

In vivo experiments show that, compared to sleep or anesthesia, wakefulness

results in smaller ECS permeability and reduced CSF influx (Xie et al. 2013; L. M.

Hablitz et al. 2019). In this section, we show that our model likewise predicts

reduced net flux during wakefulness. We modeled the difference between sleep

and wakefulness by varying kecs from 2×10−17m2 to 1×10−16m2. For small kecs

(wakefulness), we found an increased pressure response in the ECS and a reduced
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net flow of CSF (figure 4.3a,b). Higher pressure in the ECS during wakefulness

(figure 4.3c-d) hinders CSF entering across the endfoot wall, resulting in less axial

CSF influx.

Figure 4.3: Modeling sleep-wake differences by varying the permeability of the extracellular space (ECS). (a),
The mean flow rate at the pial entrance increases with ECS permeability. (b), The maximum pressure in the
perivascular space decreases ECS permeability. (c), Instantaneous ECS pressure and PVS velocity, during
artery dilation by 5%, with ECS permeability kecs = 1×10−16 m2, corresponding to points marked with circles in
a–b. (d), Instantaneous ECS pressure and PVS velocity, during artery dilation by 5%, with ECS permeability
kecs = 2×10−17 m2, corresponding to points marked with squares in a–b. Greater permeability, as expected
during sleep, leads to much lower pressure gradients in the ECS, even for stronger artery dilation.
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Figure 4.4: The lumped parameter model simplified from the fluid dynamic model and the frequency analysis.
(a) Sketch of the lumped-parameter model. The volume change due to arterial pulsation is modeled as a flow
source. Pathways to the pial PVS and the ECS each have a hydraulic resistance, and the endfoot wall is
compliant. (b) In the absence of valve action, the fluid dynamical and lumped-parameter models predict similar
pial PVS inflow rates in response to cardiac pulsations. (c) In the absence of valve action, the two models predict
similar phase difference between wall velocity and qpial. In panels c-d, simulation results are plotted as circles,
and predictions from the lumped-parameter model are plotted as curves. In panels c-f, vertical dashed lines mark
the characteristic frequencies (ReffCendft)

−1. (d) In the absence of valve action, the two models predict similar
maximum pressure pmax, which is proportional to f when f is small and approaches a constant value when f is
large. (e) With valve action, the lumped parameter model (dots) and the fluid dynamical model (solid lines)
predict that the mean flow rate varies with f in much the same way as pmax does in the absence of valve action.
(f) With valve action, the lumped parameter model (dots) and the fluid dynamical model (solid lines) predict that
the net inflow per cycle is maximum at low frequencies and decreases rapidly as f exceeds (ReffCendft)

−1.
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4.3.3 A lumped-parameter model and the frequency anal-

ysis

We further simplify our model in terms of lumped parameters (details of the

simplified model are included in Appendix). There are two pathways by which

fluid can enter or exit the penetrating PVS, as sketched in figure 4.4a: fluid can be

exchanged with the pial PVS or the extracellular space, via the endfoot wall. Rpial,

Recs, and Rendft represent the flow resistance in the pial PVS, ECS, and endfoot

wall, respectively. Since the value of Rendft depends on the pressure difference

(analogous to voltage) across it according to equation 4.1, we represent it as a

Zener diode, a circuit device whose resistance is much higher (though not infinite)

for reverse flow than forward flow. Flow through the capillary PVS is negligible

because their resistance far exceeds that of the ECS and endfoot wall. The flow

resistance within the penetrating PVS itself is negligible.

Fluid motion induced by the prescribed arterial pulsation is modeled as a flow

source (analogous to a current source) with a volume flow rate equal to the rate of

change of the artery volume:

qart =
∂

∂ t

(
π(r1 +h)2l

)
≈ 2πr1l

∂h
∂ t

. (4.4)

Here, the final expression results from neglecting terms that are second-order small,

given that h ≪ r1. In addition to the change of the artery volume, the pressure-

dependent deformation of the endfoot wall (analogous to capacitance) also causes
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a change of PVS volume, which can be represented as a source with flow rate

qcompliance =
∂

∂ t

(
πl((r1 +b+d)2 − (r1 +b)2)

)
≈ 2π(r1 +b)l

∂d
∂ t

=Cendft
∂ p
∂ t

,

(4.5)

where Cendft = 2πl(r1+b)2Eendft
−1, given that the deformation of the endfoot wall

is proportional to pressure (equation A.8 in Appendix A). The system is then a

parallel circuit (figure 4.4a) governed by

p
Rendft +Recs

+
p

Rpial
+Cendft

∂ p
∂ t

= qart. (4.6)

For convenience, we define qpial =−pRpial
−1 (the inflow rate from the pial PVS)

and qecs = p(Rendft +Recs)
−1 (the outflow rate to the ECS).

Figure 4.4b shows that the value of qpial predicted by the lumped-parameter

model is close to that of the fluid dynamical model. Since the lumped-parameter

model is simple, we can quickly study analytically how the system responds to

arterial pulsations of different frequencies. Using equation 4.2 in the absence of

the valve mechanism (Rendft = 0) and neglecting transients, we can solve for qpial

analytically:

qpial =
4π2r1lhcp f

RpialCendft

√
4π2 f 2 +( 1

ReffCendft
)2

e2πi( f t− arctan(2π f ReffCendft)
2π

), (4.7)

where Reff is the effective flow resistance of the lumped parameter model (Reff
−1 =

(Rendft +Recs)
−1 +Rpial

−1). Though equation 4.7 does not account for the valve
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mechanism, it fully describes how the arterial pulsation frequency f and the endfoot

wall elasticity Eendft influence the flow rate.

The exponential term in equation 4.7 describes the phase of qpial, from which

we can calculate the phase difference between the arterial wall velocity and the

inflow rate. In figure 4.4c, we calculate the phase difference for various pulsation

frequencies f and Eendft and find that it matches the simulation result. Based on

equation 4.7, the phase difference increases as we increase f or decrease Eendft,

eventually converging to −π/2. The phase difference changes most rapidly when

the pulsation timescale f−1 is similar to the characteristic relaxation time ReffCendft

of the compliant system.

The initial factor in equation 4.7 describes the maximum value of qpial and

the maximum value of p. In figure 4.4d, we plot the maximum value of p for

various pulsation frequencies f and Eendft, which also matches the simulation result

with the valve. When f is small or Eendft is large, the maximum value of p is

proportional to f , whereas when f becomes large or Eendft becomes small, the

maximum value of p approaches a constant. Both limiting cases are consistent with

our expectations from the lumped-parameter model. First, equation 4.4 implies that

qart ∼ ∂h/∂ t ∼ f h. Then, when f is small, the compliance term in equation 4.6

becomes negligible, so that p ∼ qart ∼ f . On the other hand, when f is large, the

compliance term dominates because ∂ p/∂ t ∼ f p, so p ∼ qart/ f , a constant. The

small and large frequency ranges are separated by (ReffCendft)
−1, the inverse of the

characteristic relaxation time.

In figure 4.4e, we show the mean inflow rate per cycle with the valve mechanism
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in effect (with k1/k0 = 2), which follows the same trend as the maximum p in

figure 4.4d, again increasing with f at low frequencies but saturating at high

frequencies, with the two frequency regimes separated by (ReffCendft)
−1. The

increase with f at low frequencies can be explained by the higher wall velocities

that occur at higher frequencies (for constant amplitude). Saturation at higher

frequencies can be explained by rapid endfoot deformations damping the pumping.

In the same way, as f increases, the net inflow volume per one cycle is nearly

constant for large Eendft but gradually decreases for small Eendft, still depending on

(ReffCendft)
−1 (figure 4.4f). The numerical solutions of the lumped parameter model

(solid line) and the full fluid dynamic model (dots) in figure 4.4e and figure 4.4f

match very well.

4.3.4 With the valve mechanism, functional hyperemia

drives a net CSF influx in addition to that produced

by cardiac pulsation

Next, we model flow driven when functional hyperemia, which has a longer time

scale (5 to 20 s) but a larger oscillation amplitude (10 to 20%), occurs in addition

to cardiac pulsation (figure 4.5a). We observe an increased net inflow volume

for the coupled waveform compared to that of cardiac pulsation acting alone

(figure 4.1d, figure 4.5b). We can also consider the hypothetical situation, which is

physiologically impossible but nonetheless informative, of functional hyperemia

acting in the absence of cardiac pulsation (figure 4.1e). We observe that acting
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Figure 4.5: Modeling valve action during functional hyperemia. (a), the arterial waveform that couples the
cardiac pulsation and functional hyperemia. (b), We observed an increased net inflow volume over time for the
coupled waveform compared to cardiac pulsation or functional hyperemia acting alone. (c), Comparison
between the mean inflow rate driven by cardiac pulsation, functional hyperemia, the coupled waveform, and the
superposition of the first two mean flow rates (d) The mean flow rate driven by the coupled waveform increases
as with the dilation percentage, hfh/r1, and the increase is more significant for Eendft = 104 Pa (e) The mean flow
rate driven by functional hyperemia acting alone increases with hfh/r1 (f) Asymmetric variation includes a quick
dilation that greatly increases pressure.

alone, functional hyperemia drives less net inflow than either cardiac pulsation

alone or their combination (figure 4.5b).

In figure 4.5c, we show the mean inflow rates driven by cardiac pulsation

alone, functional hyperemia in combination with cardiac pulsation, and functional
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hyperemia alone. Though the mean flow rate for the coupled waveform is larger

than for either mechanism acting alone, it is also smaller than the sum of the

mean flow rates induced independently by the two mechanisms. Valve action is a

nonlinear process, so superposition does not hold; the rectified, summed flow is

smaller than the sum of the rectified flows (see Appendix A).

We also observe that the mean flow rate driven by the cardiac pulsation is larger

than the mean flow rate driven by functional hyperemia for large Eendft, which

is consistent with figure 4.4e. That is because there are many cycles of cardiac

pulsation during one episode functional hyperemia (figure 4.5a). However, when

the compliance of the endfoot wall is relatively low (Eendft = 104 Pa), functional

hyperemia drives a larger mean flow rate than cardiac pulsation because the more

compliant endfoot wall filters the high-frequency pulsation (figure 4.4d-f).

In figure 4.5d, we plot the mean flow rate for the coupled waveform. The

mean flow rate increases as hfh increases. When Eendft is large, the increase is less

significant because the cardiac pulsation (the high frequency pulsation) dominates

the pumping mechanism. In contrast, for smaller Eendft, functional hyperemia

dominates, and the increase of mean flow rate with hfh is significant. In figure 4.5e,

we plot the mean flow rate for the functional hyperemia waveform acting alone.

The mean flow rate increases as hfh increases and is less affected by Eendft (the

mean flow rate for Eendft = 106 Pa is nearly identical to that for Eendft = 105 Pa).

A previous study by R. T. Kedarasetti, Drew, and Costanzo 2022 found that a

more realistic, asymmetric artery pulsation waveform, composed of a fast dilation

and a slow constriction, increased the net flux across the endfoot wall, perhaps
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because fast dilation pushes more fluid into the ECS. We compared the effects of a

simple pulsation waveform to those of the more realistic, asymmetric waveform

(figure 4.1e) considered in R. T. Kedarasetti, Drew, and Costanzo 2022. Pres-

sure in the PVS increased rapidly during fast dilation, reaching a large maximum

value(figure 4.5f). During slow constriction, however, the reverse pressure am-

plitude change was weaker but slower. On the other hand, the simple pulsation

waveform induced pressures of nearly equal amplitude during dilation and constric-

tion. We also observed an 8% increase in the axial net flux for the more realistic,

asymmetric waveform, as compared to the simple waveform, given k1/k0 = 2,

Eendft = 105 Pa.

4.4 Discussion

Gaps between astrocyte endfeet may theoretically act as valves that produce net

flow across them, regulating the flow exchange between the CSF in the PVS and

the ISF in the ECS (Gan, John H Thomas, and Douglas H Kelley 2024; Bork

et al. 2023). Here we propose the perivascular pumping model, demonstrating

that existence of valve-like action at the astrocyte endfeet as an explanation for

the observed directed net flow in PVSs of the pial arteries. Our simulations model

that action as a pressure-dependent permeability and predict that flow from PVS to

ECS during artery dilation exceeds flow in the reverse direction during constriction,

resulting in net fluid motion over time in the direction parallel to blood flow. Hence,

it provides strong evidence that the net flow rectified by the endfoot gaps can
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directly result in the axial CSF flow that previous studies observed in the PVS of

the pial artery.

The pumping mechanism proposed here is based on the assumption that kendft

is larger when p > pecs than when p ≤ pecs (equation 4.1), which is supported by

the hoop-stress model (Gan, John H Thomas, and Douglas H Kelley 2024) and a

recent study of the mechanics of the endfoot gaps (Bork et al. 2023). One might,

alternatively, imagine that kendft or kecs is smaller when p > pecs, which would lead

to a reverse flow (opposite the direction of blood flow) in our model (Diem et al.

2017). The gaps between end feet and poles in the ECS might conceivably shrink

when being squeezed by the pressure difference, causing reduced permeability.

However, given the consistent experimental observations of forward CSF flow, we

adopt the former assumption for our pumping model.

We find that greater variation of permeability with pressure leads to greater

net flow. Greater rigidity of the endfoot wall and the surrounding brain tissue

also increases net flow, along with instantaneous pressure fluctuations in the PVS.

Reduced permeability (increased flow resistance) of surrounding brain tissue, as

expected during wakefulness, leads to reduced net flow and increased mean pressure

in the ECS, consistent with prior observations that glymphatic function is reduced

during wakefulness. Net flow is driven by artery wall motions with frequency and

amplitude characteristic of cardiac pulsation or functional hyperemia, although

some frequencies pump more effectively than others (figure 4.5e), and by either

symmetric or asymmetric pulsation waveforms.

Thus, the presence of valve-like action at the endfeet is consistent with many
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phenomena observed previously, including strong pumping by functional hyper-

emia (Ravi Teja Kedarasetti et al. 2020; Veluw et al. 2020; Holstein-Rønsbo et

al. 2023) and pumping by cardiac pulsations in the absence of functional hyper-

emia (Bedussi et al. 2017; Mestre, J. Tithof, et al. 2018; Raghunandan et al. 2018).

Because our model assumes artery dilation and constriction to be uniform along

the penetrating PVS, the observed effects do not depend on wavelength, wave

speed, or the presence of traveling waves, in contrast to proposed peristalsis-like

mechanisms (Hadaczek et al. 2006; Carr et al. 2021). Nor do the observed effects

require temporal asymmetry of the artery pulsation waveform, though rapid dilation

does increase net flow, consistent with prior modeling (R. T. Kedarasetti, Drew, and

Costanzo 2022). In our simulations, that effect can be explained by the concomi-

tantly higher instantaneous pressure, which coincides with increased permeability

(and therefore lower resistance) at the endfoot wall. We also point out that flow

rectification is a nonlinear phenomenon, and by definition, nonlinearity is amplified

as magnitudes (of velocity and pressure, in this case) grow. That said, the presence

of valve-like action does not exclude other proposed pumping mechanisms, such

as impedance pumping (Avrahami and Gharib 2008; Holstein-Rønsbo et al. 2023).

The pressures predicted by our model depend sensitively on the elasticity of

the endfoot wall and the elasticity and permeability of the surrounding tissue. In

some cases, PVS pressure reached -1000 Pa = -7.5 mmHg (figure 4.2c). Though

measurements of the pressure distribution in the brain in vivo are quite difficult,

these values are much higher than the expected ∼ 1 mmHg maximum pressure

difference across the glymphatic system (Jeffrey Tithof et al. 2022; Penn and
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Linninger 2009). Those extreme pressures, however, occurred only when the wall

elasticity was Eendft = 106 Pa, much stiffer than we would expect (K. A. Boster et al.

2023; Ravi Teja Kedarasetti et al. 2020). With a smaller elasticity (Eendft = 105 Pa),

PVS pressure reaches 200 Pa = 1.5 mmHg, more reasonably. The pressure gradient

at the PVS inlet was around 100 Pa/m. Recent work using artificial intelligence

velocimetry K. A. Boster et al. 2023 reports a time-averaged pressure gradient of

275 Pa/m in pial (not penetrating) PVS, which is of the same order of magnitude.

Similar values were found in recent simulations (Ravi Teja Kedarasetti et al. 2020;

Daversin-Catty et al. 2020). In the ECS, maximum pressure ranged from about

50 Pa = 0.38 mmHg when the permeability was kecs = 10−16 m2 to 200 Pa =

1.5 mmHg with kecs = 2×10−17 m2 (figure 4.3b).

An effective valve mechanism does not necessarily require discrete, localized

valves: it can be produced by an asymmetry along the flow pathway. Candidates

for valves may include the astrocyte endfeet and valves along the perivenous space

or the lymph vessels (the exit of the CSF pathway). Besides valves, the volume

change of the brain during sleep may also contribute to that asymmetry. One

important model proposed that, because a functional hyperemia cycle includes a

rapid dilation and a slow constriction, it may push more CSF into the poroelastic

ECS than it pulls back Ravi Teja Kedarasetti et al. 2020. We consider a penetrating

artery of length 1000 µm, a typical length for the mouse brain (Schreder et al.

2022). Owing to the small aspect ratio ε , solving the creeping flow equations

numerically is more challenging than solving the thin-film equations (Romanò

et al. 2020). More importantly, since p scales with 1/ε2 for creeping flow, a longer
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penetrating artery can drive a larger pressure change that pumps the flow.

In our model, a pressure difference between the periarterial space and the

perivenous space is the driver for advective flow in the ECS Schreder et al. 2022,

which is necessary for our valve mechanism. According to Darcy’s Law, the flow

speed in the ECS is proportional to the pressure difference partery − pvenule and

the permeability kecs, and inversely proportional to the distance becs between the

periarterial space and the perivenous space. While the distance is constant, and

the arterial pump determines the pressure difference, the ECS permeability varies

from sleep to wake. From sleep to wakefulness, the porosity of the brain decreases

from 0.234 to 0.141, while the tortuosity increases only very slightly, from 1.176

to 1.196. From these values, we estimate a ≈ 4.82 times greater ECS permeability

during sleep than during wakefulness based on the Kozeny-Carman equation Xie

et al. 2013; J. H. Thomas 2019b. The lower ECS permeability during wakefulness

creates higher flow resistance, suppressing the entire glymphatic circulation. The

ECS is treated as a homogeneous medium in our model. We could incorporate

spatial-dependent porosity, toruosity, and permeability, which would be valuable

in future modeling to incorporate the inhomogeneities in the ECS Nicholson and

Hrabětová 2017. The mechanical properties of the endfeet might also vary between

sleep and wakefulness, potentially influencing our model. Future experimental

measurements are needed to address this aspect.

The flow rates predicted by our model are broadly consistent with prior values

obtained from experiments and simulations. In the cardiac pulsation simulation,

we find a mean volume flow rate of order 1000 µm3/s (for k1/k0 = 2, Eendft =



CHAPTER 4. A PERIVASCULAR PUMPING FLUID-DYNAMIC MODEL WITH THE
VALVE MECHANISM 85

1×105 Pa, figure 4.2e). A mouse has around 320 penetrating arteries branching

from the middle cerebral artery (MCA) (Adams et al. 2018), from which we can

estimate a total volume flow rate of 320× 1000µm3/s = 3.2× 105µm3/s in the

PVS of an MCA. An experimental measurement reported a volume flow rate of

∼ 4.5× 104µm3/s for an MCA (K. A. Boster et al. 2023; Ray and Heys 2019).

Our simulation thus gives a fairly close prediction, given that some key parameters,

such as Eendft, kendft, k1/k0, and kecs, have large uncertainty.

Various experimental studies indicate that the elastic modulus of the endfeet,

Eendft, lies in the range 102 −104 Pa (Greiner et al. 2021; Lu et al. 2006; Messas,

Pernot, and Couade 2013; Benveniste et al. 2019). For the softest endfoot wall,

the pressure difference across the wall is limited to small values that would not

admit any significant through flow with the assumed values of the permeability

kendft (Romanò et al. 2020).

The astroglial aquaporin-4 water channels (AQP4) in the endfeet allow faster

fluid transport: AQP4 knock-out mice have lower CSF influx Mestre, L. M. Hablitz,

et al. 2018. This might be due to an effect of AQP4 on the properties of the endfoot

wall. Thus, the range of values of kendft might change, compared to previous

estimations, if the role of AQP4 is considered (Koch, Vegard Vinje, and Mardal

2023). It has been suggested that AQP4 might affect the stiffness and flexibility of

the endfoot wall (Bork et al. 2023).

The lumped-parameter model reveals what determines the portion of cardiac

pulsation and functional hyperemia in pumping the CSF inflow. While the former

is 50 times more rapid, the latter is five times larger in amplitude. Both factors
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can contribute to a higher inflow rate (figure 4.4e, figure 4.5e,f). The model

points out that deformation of the endfoot wall plays a role as a low-pass filter (the

compliance) that limits the pumping efficiency of the cardiac pulsation figure 4.4e,f).

In the simulations, for Eendft > 104 Pa, cardiac pulsation dominates the inflow

(figure 4.5b,c,d), but functional hyperemia gradually becomes a comparable driver

as Eendft decreases (figure 4.5c). Besides, our model reveal that the phase difference

between the artery motion and the flow rate is significant at high frequency domain,

and insignificant at low freqency domain. At the ultra low freqency domain (with

ultra slow vasomotion ≈ 0.05 Hz), Fultz et al. 2019 observe a correlation between

CSF flow up the fourth ventricle and the cerebral blood volume with nearly zero

phase difference, which is consistent with our findings. Based on our model, future

experiments may observe larger phase difference and smaller pumping efficiency

as the frequency of the artery motion increases. Understanding how frequency

influences the CSF flow is vital, as it could help us reveal and compare the role of

the fast artery pulsation (such as the cardaic pulsation) and the slow vasomotion

(such as functional hyperemia) in the glymphatic transport. In addition, Ye et al.

2023 find that glymphatic transport can be mechanically manipulated by ultra sound

(≈ 1 MHz). Understanding how the glymphatic transport is enhanced in such ultra

high frequency domain is interesting and important. The numerical solutions of

the lumped-parameter model and the fluid-dynamic model match each other very

well (figure 4.4e,f). While the fluid-dynamic model resolves the flow spatially and

temporally, the lumped parameter model represents a pure time-varying system

without spatial resolution and is therefore computationally inexpensive and quite
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suitable for vascular network modeling (Jeffrey Tithof et al. 2022).

Another important observation is that although coupling functional hyperemia

and cardiac pulsation drives more flow than either mechanism acting alone, it drives

less than the superposition of them pumping independently (figure 4.5c). That said,

the coupled waveform is more realistic, as functional hyperemia never occurs in

the absence of cardiac pulsation. On the other hand, while functional hyperemia

happens only occasionally, cardiac pulsation, CSF inflow is consistently observed

as a continual process in experiments (Bedussi et al. 2017; Mestre, Kostrikov, et al.

2017; Raghunandan et al. 2018; K. A. Boster et al. 2023; Holstein-Rønsbo et al.

2023). The fact that cardiac pulsation is ∼30 times more rapid than functional

hyperemia, and occurs all the time, makes it a much stronger driver of CSF flow

(figure 4.5b,c,d), at least in the context of our model.

For given values of kecs and becs, the flow speed is determined by the pressure

gradient driven by the arterial motion. The cardiac pulsation amplitude for a pial

artery is usually about 1% of the artery diameter and 0.5% of the PVS width (M. X.

Wang et al. 2021). For penetrating arteries, a time-averaged pressure difference of

10 Pa over an axial distance of 1000 µm can drive a 1 µm/s net interstitial flow in the

ECS. Because flow measurements in the ECS are exceptionally challenging, it has

long been debated whether there is any significant flow there. A recent theoretical

analysis (J. H. Thomas 2019b) demonstrates that the permeability increase from

wake to sleep reduces diffusive transport slightly but would increase advection

significantly (due to reduced hydraulic resistance), suggesting that a flow in the

ECS might help explain the observed increase in brain clearance from wakefulness
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to sleep. Our valve model shows that a flow in the ECS might also be an important

part of the mechanism that produces the net flow in the system of perivascular

spaces.

It is also important to point out that when there is an influx from the PVS

to the ECS there must be a nearly simultaneous efflux somewhere, because the

volume of the brain is nearly constant, and the fluid inside (CSF, interstitial fluid)

is incompressible. The poroelasticity of the brain might allow a slight time lag

between the influx and efflux, but they have to happen on the same time scale.

The predictions of our model are subject to additional caveats. First, we have

modeled penetrating PVSs as open spaces, where flow is governed by the Navier-

Stokes equation, but they may contain enough tissue that they should be modeled

as a porous medium, with flow governed instead by the Darcy equation. Recent

imaging of penetrating PVSs suggests this may be the case (Mestre, Verma, et al.

2022), although pial PVSs are known to be open (Min Rivas et al. 2020). In fact,

whether penetrating PVSs are porous and what their permeability might be has

been identified as the source of greatest uncertainty for brain-wide modeling of

glymphatic flows (K. A. S. Boster et al. 2022). That said, other modeling suggests

a useful constraint: good perfusion throughout the brain seems to require that the

resistance of penetrating PVSs (which is proportional to their permeability) be

much greater than that of pial PVSs but much less than that of the ECS (Jeffrey

Tithof et al. 2022). Regardless of the permeability of penetrating PVSs, valve

action of the sort we suggest here would rectify oscillations and produce a net

flow. Whether the potential poroelasticity of the PVSs plays a role in the valve
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mechanism will be addressed in further studies.

Second, we have modeled the penetrating PVS as a circular annulus, concentric

with the artery, but in vivo measurements show that large eccentricity is common,

with the artery positioned against one wall of the PVS (J. Tithof et al. 2019).

We expect that accounting for this eccentricity would lead to slightly different

predictions. For an open PVS, eccentricity reduces the hydraulic resistance, tending

to increase flow and reduce axial pressure gradients. On the side of the artery where

the PVS is narrowest, dilation and constriction would cause larger local pressure

fluctuations (J. H. Thomas 2019a; Carr et al. 2021) and presumably stronger valve

action. On the other side of the artery, however, pressure fluctuations would be

smaller and valve action weaker. Future simulations might incorporate eccentric

PVSs to explore the effect of these adjustments.

A penetrating artery, along with its PVS, branches into smaller arterioles and

smaller PVSs as it goes deeper into the brain tissue. These smaller PVSs likely

will not contribute significant pumping because of their high hydraulic resistance,

but they are still of interest for future brain-scale vascular network modeling.

Jeffrey Tithof et al. 2022 incorporates the hydraulic resistance of PVSs all along

the vascular network in a lumped parameter model. Our local lumped-parameter

model can be extended to a full vascular network model in the similar way, but

with the proposed pumping mechanism included. This approach could also be

applied to flow in the lymphatic vessel network, which is driven by artery wall

motion and rectified by valves.

Third, we have not considered PVSs around veins in any detail, although they
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have been proposed as a route for fluid to leave brain tissue (Iliff, M. Wang, Liao,

et al. 2012). If fluid is passing from a higher-pressure ECS to a lower-pressure

perivenous space, by the same reasoning discussed above, we would expect the

endfoot wall to be compressed, shrinking gaps between endfeet and hindering flow.

That is, we would naively expect valve action at the endfoot wall of a perivenous

space to promote net flow in the direction opposite to that which has been observed

in vivo. The valve mechanism proposed by Bork et al. 2023, if acting at perivenous

spaces, would also promote flow in the opposite direction, unless the wedge-shaped

edges of endfeet were reversed. However, pulsatility, pressure, and its gradients

are much lower in veins (Bohr et al. 2022), so both sorts of valve action may be

negligible there. Generally, far less is known about glymphatic efflux than about

influx, making it a worthy topic for future studies.
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5. Experimental measurements of

functional hyperemia and car-

diac pulsation, and their impacts

on the CSF flow

This chapter presents experimental work and a numerical model of impedance

pumping conducted by the author, which has been published in Holstein-Rønsbo

et al. 2023 and Gan, Holstein-Rønsbo, et al. 2023. It has been reformatted and

edited to fit within the thesis. The thesis author was the second prime author of

Holstein-Rønsbo et al. 2023, and the prime author of Gan, Holstein-Rønsbo, et al.

2023. The author did the diameter measurements for both the artery and the PVS,

along with the particle velocity velocimetry (PTV) measurements of the CSF flow,

and built the model of impedance pumping. Stephanie Holstein-Rønsbo, as the

prime author of Holstein-Rønsbo et al. 2023, performed the in-vivo experiments,

CSF tracer intensity measurements, and carried out the remaining analysis.
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5.1 Background

The experimental exploration of the relationship between cerebrospinal fluid and

artery pulsations has been a fascinating and winding journey. In the study by Iliff,

M. Wang, Liao, et al. 2012, the visualization of cerebrospinal fluid (CSF) tracer

dye along the perivascular network revealed the propagation of the dye from the

surface pial perivascular spaces (PVSs) to the PVSs of deep penetrating arteries.

This finding confirmed the existence of directional CSF flow. Using the particle

tracking velocimetry (PTV), Mestre, J. Tithof, et al. 2018 quantified the mean

flow velocity, pulsatility, and Reynolds number of the CSF flow in the PVSs of

the surface pial arteries. The study demonstrated a strong correlation between

the flow velocity and the cardiac pulsation, indicating that cardiac pulsation is

a primary driver of the directed flow. The conclusion was further supported by

observations of suppressed flow after injection of hypertension drugs that reduce

arterial pulsatility.

In addition to cardiac pulsation, Fultz et al. 2019 demonstrated that slow

vasomotion, synchronized with the ultra-slow EEG wave and neural activity, also

drives the CSF flow. During natural sleep, CSF influx into the ventricles and

the change in blood volume show an anti-correlation, with blood volume change

reflecting the vasomotion-induced artery diameter change. However, the study

uses fMRI to quantify flow dynamics, which has limitations in time and spatial

resolution. It measured the blood-oxygen level dependence (BOLD) to label blood

volume change, instead of directly measuring the artery diameter change, which
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is challenging. The slow vasomotion driven by neural activity, also known as

functional hyperemia, can be manually induced through stimulations. Studies

by Veluw et al. 2020 and Williams et al. 2023 demonstrated enhanced clearance

rates during functional hyperemia induced by visual stimulations in awake mice.

However, simultaneous direct measurement of the slow vasomotion, CSF flow, and

potential coupling between them remains a challenge in this field.

This chapter investigates functional hyperemia in mouse brain induced by

whisker stimulations, focusing on measuring the artery diameter change waveform,

and quantifying the CSF inflow. The stimulations activate functional hyperemia in

specific regions in a hemisphere of the anesthetized mouse’s brain. By measuring

CSF tracer intensity over time, we observe increased CSF influx and clearance rates

in the stimulated hemisphere compared to the unstimulated hemisphere. In the pial

PVSs, we measure the diameter change waveform and the simultaneous CSF flow

dynamics (Holstein-Rønsbo et al. 2023). We find that the artery dilation decreases

the width and volume of the PVS, hindering the CSF inflow velocity, whereas the

consecutive artery constriction increases PVS width and volume, accelerating the

CSF velocity.

Through optical stimulations of local cerebrovasculature, we induced vasocon-

striction without activating neural activity and observed increased CSF inflow in

the PVSs and increased CSF tracer influx in the stimulated hemisphere. Therefore,

we conclude that it is the vasomotion, rather than neural activations, that enhances

the CSF inflow.

We suggest that the mechanism of impedance pumping enables both vaso-
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dilation and vaso-constriction to propel cerebrospinal fluid (CSF) in the same

direction as blood flow, and we present a simulation that supports this idea.

Current measurements of the glymphatic system, including artery pulsations

and CSF dynamics, are limited to PVSs of the pial arteries (Mestre, J. Tithof,

et al. 2018). Measuring the artery diameter change of the penetrating arteries is

challenging. Since we can only image the circular cross-section of the penetrating

arteries, traditional diameter measurement techniques, such as line scans, become

more sensitive to the error in image registration, particularly due to the in-plane

shift of the camera, leading to significant variations in diameter measurements as

artifacts. Here, we used an algorithm designed to segment the cross-sectional area

of penetrating arteries and measure their change over time, which is less sensitive

to registration errors. We derived the diameter change over time from the area

change measurement.

5.2 Results

5.2.1 Whisker stimulations induce functional hyperemia

in mouse’s brain, causing an increased CSF influx

We used whisker puffing to stimulate a mouse hemisphere (30 s stimulation periods

with 60 s interval, as shown in figure 5.1a). The simulation causes increased neural

activity (marked by the Ca2+) and cerebral blood flow (marked by hemodynamic

signals measured through intrinsic optical imaging (IOS)) in the stimulated hemi-
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Figure 5.1: Functional hyperemia increases neural activity, cerebral blood flow, and CSF tracer influx in the
stimulated hemisphere (a) Adult wild-type mice were stimulated by whisker puffing (30 s each). (b) The whisker
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Fluorescence signal (MPI) of the tracer influx (n=10 mice). Gray bars show 30 s whisker stimulation. The
intensity of the CSF tracers in the stimulated hemisphere increases faster than in the unstimulated hemisphere.

sphere (figure 5.1b). By measuring the CSF tracer intensity, we find increased CSF

influx in the stimulated hemisphere (figure 5.1c).

5.2.2 Coupling between the CSF flow velocity and the

vasomotion induced by whisker stimulation

In the previous section, we showed that whisker stimulations induce functional

hyperemia, which increases CSF influx. Functional hyperemia is associated with

slow vaso-dilation cycles. We further hypothesized that the vaso-dilation is coupled
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with the CSF flow, and that it is the vaso-dilation that enhances the net flow. We in-

jected tracers to visualize the pial arteries and measure the vaso-dilation waveform

(figure 5.2a). We found that whisker stimulation led to an increase in the MCA

diameter of 3.3±0.7 µm (resting baseline diameter: 58±3.5 µm, corresponding to

5.7±1% dilation (figure 5.2b)). We injected and tracked illuminated particles to

measure the CSF flow of the PVSs of those arteries (figure 5.2c). During arterial

dilation, the downstream velocity of the microspheres transiently decreased (from

17.1±3.5 µm/s to 8.8±3.2 µm/s, or a decrease of 48.5% (figure 5.2d)), indicating

that CSF inflow in the PVSs of the pial arteries is transiently hindered as whisker

stimulation expands the arterial diameter. Forward flow rapidly continues as the

dilated vessel wall constricts back. The change in downstream velocity peaks

(figure 5.2d) appears shortly after the velocity peak of the vessel wall (figure 5.2b),

supporting the idea that flow is driven by the artery wall motion. In parallel, as the

downstream velocity decreases, the cross-stream velocity increases because micro-

spheres move in the direction of the arterial wall motion (figure 5.2e,f). In general,

this demonstrates that dynamic fluctuations in arterial diameter are mirrored by

changes in the velocity of perivascular CSF inflow. The pressure exerted by arterial

dilation appears to transiently reduce the forward movement of the microspheres

while driving an increase in cross-stream velocity.
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5.2.3 Coupling between the PVS width and the vasomo-

tion induced by whisker stimulation

We speculated that changes in CSF flow velocity were caused by changes in

PVS volume induced by arterial dilation. Through cranial windows, we obtained

high-resolution two-photon imaging of the PVSs as they were filled with CSF

tracer (cyan in figure 5.3a). In the imaged segments around the pial arteries, the

average PVS width was 23.6±2.4 µm before stimulation. As the artery dilates

during hyperemia, the width of the PVS decreases by -1.5±0.6 µm (corresponding

to -5.9±2%), demonstrating that the change in artery radius directly affects the

PVS width (figure 5.3b,c), consistent with a recent report in head-fixed awake

and naturally sleeping mice (Bojarskaite et al. 2023). Parallel to arterial dilation,

a small outward movement of the outer membrane of the PVS of approximately

1 µm was noted (figure 5.3d).

The measurements of the PVS width change (figure 5.3) and the velocity

(figure 5.2) corroborate each other. As the dilating artery decreases the PVS volume,

the CSF flow is hindered by the constricted PVS, and therefore the downstream

velocity transiently decreases. As the dilated artery constricts back and the PVS

volume increases, the CSF flow increases to fill the expanding PVS. It is worth

noting that there exists the question whether the flow is driven by some arterial

pumping mechanisms, or a naturally existing, constant pressure difference, or both.

R. T. Kedarasetti, Drew P., and Costanzo 2020 pointed out that a small constant

pressure difference is sufficient to drive the CSF flow of the observed magnitude
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in experiment (Mestre, J. Tithof, et al. 2018). However, if the constant pressure

is dominant, the flow rate should be inversely proportional to the fourth power of

the PVS width (J. H. Thomas 2019a; J. Tithof et al. 2019; White 2006). In other

words, the valley of the CSF velocity (figure 5.2d) should be in phase with the peak

of the artery diameter (figure 5.2b) instead of being in phase with the wall velocity

(figure 5.2b,d). On the other hand, the velocity should be in phase with the wall

velocity if the pressure change is driven by the vasodilation cycle itself. Therefore,

we can conclude that the constant pressure, if it exists, should not be larger than

the pressure oscillation amplitude driven by the vasodilation cycle.
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5.2.4 Arterial diameter changes and not neural activation

increases CSF inflow

To test the importance of artery diameter change (vaso-motion) as a driver of

CSF flow, we used optogenetic mice expressing channelrhodopsin-2 (ChR2) in

vascular smooth muscle cells (genetically modified mice whose arteries constrict

when exposed to colored light). ChR2-gated cation channels drive an increase in

cytosolic Ca2+ along with membrane depolarization, which induces arterial con-

striction, unlike whisker stimulations that induce neural activity and vasodilation.

After injection of the CSF tracer, we induced repeated vasoconstrictions of the

middle cerebral artery (MCA) by transcranial optogenetic stimulation of the arterial

trunk (30 s stimulation periods with 60 s interval, figure 5.4a). The optogenetic

stimulation did not allow simultaneous tracer recording, so imaging was restricted

to intervals between stimulations. Over the course of the experiment, the tracer

signal in the PVS of the MCA exposed to optogenetic stimulation increased faster

compared to the unstimulated hemisphere (figure 5.4b), which suggests that it is

not the neural activity that drives perivascular CSF inflow, but rather the dynamic

changes in arterial diameter. Furthermore, the observations point to the conclusion

that it is not specifically the positive (dilation) or negative (constriction) change

in diameter but rather vasomotion that propels forward CSF flow along the PVSs.

Again, we performed PTV experiments to measure the CSF flow velocity. The

vasoconstriction initially caused a transient decrease in CSF flow velocity, likely

a consequence of distal microspheres being pulled toward the stimulation site,
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where vasoconstriction transiently increased PVS volume. However, the CSF flow

velocity quickly increased as the artery dilated back, and the overall effect of

vasoconstriction was thus an increase in CSF flow velocity (between t= 30–60 s,

figure 5.4c).
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Figure 5.4: Optogenetic stimulations on smooth muscle cells can cause changes in artery diameter
(vasoconstriction cycle) in the brains of optogenetic mice without inducing neural activity. (a) Light stimulation
increases intra-cellular Ca2+ in the smooth muscle cells causing depolarization and vasoconstriction. (b)
Representative images of CSF tracer intensity during 30 min circulation. Optogenetic stimulations were given on
one hemisphere (30 s stimulation periods with 60 s interval, following a 5Hz stimulation protocol with 10 ms
pulses (190 ms interval)). The tracer accumulates faster in the stimulated hemisphere compared to the
unstimuated, indicating a higher CSF inflow rate. (c) Representative images of CSF tracer influx during 30 min
circulation. (d) Average CSF flow velocity of microspheres in response to optogenetic stimulation (n=5 mice).
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5.2.5 Impedance pumping models reproduce flow char-

acteristics

Setting aside, for now, the idea of valves in the glymphatic system, we speculated

which valveless pumping mechanism might explain the flow characteristics ob-

served in vivo, particularly the counterintuitive fact that CSF influx is increased

both by vasodilation and by vasoconstriction or opposite motions. We found that

impedance pumping models reproduce our observations, including the fact that

microspheres are transiently pulled toward the site of vasoconstriction. Impedance

pumping can occur when a fluid-filled vessel with flexible walls, such as a PVS, is

subjected to active, repeating dilation and/or constriction in a local region (Avra-

hami and Gharib 2008; Hickerson and Morteza Gharib 2006), such as in the

embryonic heart, where impedance pumping is important for unidirectional for-

ward flow (Forouhar et al. 2006). Those motions displace fluid locally while also

propagating in both directions along elastic vessel walls as waves, which eventually

encounter wall features that cause partial or total wave reflection, such as bifurca-

tions, connections to a different fluid chamber or sudden changes in wall stiffness,

density or diameter. Primary and reflected waves then interfere constructively or

destructively, and if their interference causes a net flow, impedance pumping is said

to occur. The flow speed and direction (downstream or upstream) are determined

primarily by the wave speed, locations of reflectors, and repetition frequency. Flow

direction is not strongly affected by changing dilation to constriction.

We built numerical models of impedance pumping in a simplified PVS (Ap-
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pendix B). First, we modeled functional hyperemia induced by whisker stimulation.

To do so, we drove periodic dilation of the artery wall near the left side of a simu-

lation domain by applying a periodic force there (figure 5.5a,c). Dilation caused

pulsatile CSF flow in the surrounding PVS (figure 5.5b,d). At a cross-section near

the left end of the PVS domain, flow proceeded primarily to the left during dilation

and to the right when the artery diameter was unperturbed. The flow, however,

was not entirely symmetric, and simulated flow tracers moved to the right over

time (figure 5.5e). Similarly, the net flux (normalized cumulative volume of CSF

moving to the right through the same cross-section) oscillated with each dilation

cycle but increased steadily over long times (figure 5.5f).

Next, we modeled vasoconstriction caused by optogenetic stimulation. To do

so, we drove periodic constriction of the artery wall (figure 5.5g,i). Constriction,

like dilation, caused alternating flow in the surrounding PVS, but with opposite

direction—at the same cross-section, flow proceeded primarily to the right during

constriction and to the left when the artery diameter was unperturbed (figure 5.5h,j).

Nonetheless, tracers again moved to the right over time, and the net flux of CSF

again increased steadily (figure 5.5k,l). Future studies should explore whether

the valve mechanism and impedance pumping act in concert to orchestrate the

unidirectional CSF flow in the periarterial space.
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5.2.6 Experimental measurements of penetrating artery

motions due to cardiac pulsations and functional

hyperemia

Compared to the surface pial arteries, experiments for penetrating arteries and the

CSF flow there are limited. Fast line scans provide high temporal resolution (Iliff,

M. Wang, Zeppenfeld, et al. 2013; Kress et al. 2014; Bojarskaite et al. 2023) but

are sensitive to errors in image registration. A slight shift in the cross-sectional

plane, perhaps due to motion artifacts during an experiment, can cause a large

variation in the measurement. Here, we present 2-photon measurements of the

cross-sectional plane of the penetrating artery.

In the experiments, mice were head-plated and a cranial window was carefully

inserted above the middle cerebral artery under ketamine/xylazine anesthesia,

before transferring the mice for 2-photon in vivo imaging. Before imaging, an

intravascular tracer (0.1 ml FITC-labeled 2,000 kDa dextran, 1%; Sigma-Aldrich,

FD2000S) was injected in order to visualize the artery. A penetrating branch of the

middle cerebral artery was located and unilateral whisker stimulations Holstein-

Rønsbo et al. 2023 were applied to record arterial diameter changes. Imaging

was performed just below the cortical surface (at 0 µm) and 100 µm deeper. We

alternated between the upper and lower depth (5 stimulations each). The imaging

was performed at 128×128 pixels, 4× zoom, 59 or 113 frames per second.

To measure the area change of the artery over time, we used a custom segmen-

tation code that is insensitive to artifacts of in-plane shifts (figure 5.4d). Since
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the cross-section of the penetrating artery is essentially circular, we can calcu-

late an effective diameter d = 2(Aartery/π)1/2, where Aartery is the measured area

(figure 5.6b,e).

It has been reported that a penetrating artery has pulsatility that increases from

the surface to deeper brain regions (Iliff, M. Wang, Zeppenfeld, et al. 2013; Kress

et al. 2014). To confirm this, we compared observations at depths 0 µm and 100 µm.

When observing pulsation due to the cardiac cycle, we applied a bandpass filter

in the range 2 Hz to 6 Hz to the diameter signal (figure 5.6b shows 5 seconds of

the signal). The pulsation percentage was calculated as the interquartile range of

the bandpass diameter signal times
√

2 divided by the mean diameter. From the

measurements of eight mice, we observed a mean pulsation percentage around 1%

for the 0 µm deep plane and a mean pulsation percentage of 1.5% for the 100 µm

deep plane (figure 5.6c).

To observe pulsation due to functional hyperemia, we activated neural activity

via whisker stimulations (Holstein-Rønsbo et al. 2023). We measured the dilation

waveform induced by functional hyperemia in both planes over the 90 s of the

recording (figure 5.6e). Over the 30 s stimulation period (from 30 s to 60 s in

figure 5.6e), we observed several dilation peaks. By dividing the peak diameter

change by the mean diameter of the baseline (from 0 s to 30 s in figure 5.6e), we

obtained a pulsation percentage of 6% for the 0 µm deep plane and 11% for the

100 µm deep plane (figure 5.6f). Our experiments thus demonstrate that functional

hyperemia induces larger dilation amplitudes in the deep cross-section of the

penetrating arteries compared to the surface cross-section.
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(a) (b)

(c) (e) (f)(d)

(g) (h)

(j)(i) (k) (l)

Figure 5.5: Impedance pumping models reproduce characteristics of flows driven by functional hyperemia and
optogenetic stimulation. (a) The first model is based on arterial dilation, which we experimentally induced by
unilateral whisker stimulation. (b) In the first model, an arteriolar wall (red, shown in cross-section) actively
dilates and relaxes in a small region (shaded red), with wall motion spreading in both directions along the artery,
causing the flow of CSF (arrows) in the surrounding perivascular spaces. (c) Local wall motion across one
dilatory cycle (enlargement of red shaded area in b). (d) The volume flow rate through one cross-section of the
perivascular space (dashed line in b) varies over each dilation cycle. Flow is decreased during local dilation, with
a slight lag, and increases during local relaxation. (e) Over many cycles, the flow carries passive tracers to the
right along the perivascular space (enlargement of region marked in b). (f) The net flux (cumulative volume of
fluid moving rightward through the cross-section shown in b) oscillates and increases steadily over time. Gray
bars, whisker stimulations. (g) The second model is based on local vasoconstriction, which experimentally is
obtained by optogenetic stimulation of mice expressing ChR2 in smooth muscle cells. (h,i) In our second model,
the artery constricts instead of dilating, driving a flow with different spatial structures and different volume flow
rates. (j-l), In the constriction model, as in the dilation model, tracer moves to the right and net flux increases
over time. The direction of the tracer (to the right, not left) is determined by the location of the active arterial
diameter change, not by whether it is dilation or constriction. Blue bars, laser stimulations.
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Figure 5.6: Measurements of cardiac pulsation and functional hyperemia in the penetrating arteries. (a) A
penetrating artery of a mouse, from depths 0 µm to 100 µm, as imaged in vivo. (b) Artery diameter variation,
measured from area changes. (c) Average normalized artery diameter variation in the cardiac frequency band,
at depths 0 µm and 100 µm, in N = 8 mice. Boxes show median and interquartile range. (d) Cross-section of a
penetrating artery of a mouse. The shaded yellow mask represents the result of the segmentation algorithm. (e)
Artery diameter variation, measured from area changes during functional hyperemia, averaged over N = 7 mice.
(f) Average normalized artery diameter variation during cardiac pulsation, in N = 8 mice, and functional
hyperemia, at depths 0 µm and 100 µm, in N = 7 mice. Functional hyperemia causes greater diameter variations
than cardiac pulsation (p < 10−4 for an unpaired t-test), and with both mechanisms, there is a trend toward
greater diameter variation at greater depths.
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5.3 Discussion

The artery diameter variation is an important driver of the directed CSF flow.

Mestre, J. Tithof, et al. 2018 demonstrated that the cardiac pulsation pumps the

directed flow consistently observed in the anesthesia mice. Although cardiac

pulsations have a small amplitude and a long wavelength, which decrease the

efficiency of peristaltic pumping, their high frequency can contribute to increased

flow rates. However, the compliance of the brain tissue, including astrocytes,

may act as a low-pass filter, attenuating high-frequency pumping. On the other

hand, functional hyperemia, or neural-vascular coupling, characterized by its large

amplitude and slow frequency, may efficiently pump the CSF flow. Spontaneous

neural-vascular coupling often occurs during sleep, when CSF flow is active.

Therefore, it is crucial to study how functional hyperemia may enhance the CSF

flow.

In this chapter, we use whisker stimulation to induce functional hyperemia in

the mouse brain, observing an enhanced influx of CSF in the stimulated hemisphere.

Simultaneously measuring the diameter change waveform in the pial artery and

CSF dynamics in the surrounding PVS reveals a direct coupling between them.

Furthermore, through optogenetic stimulation to induce vasoconstriction cycles,

we find that vasomotion in the absence of neural activity increases CSF inflow.

Hence, we find the vaso-motion a secondary driver of the CSF inflow, in addition

to the cardiac pulsation.

Although the optogenetic experiments demonstrate that vaosomotion increases
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CSF in the absence of neural activity, they do not exclude the possibility that

neural activity itself can increase CSF inflow without inducing vasomotion. As

demonstrated by Jiang-Xie et al. 2024, neural activity-induced ionic waves can

also drive glymphatic flow through the brain parenchyma, which is independent of

vasomotion. It is also worth noting that the vasomotion induced by optogenetic

stimulations is usually stronger (faster) than functional hyperemia, which results in

a larger change in CSF flow speed.

Our experiments further demonstrate the importance of the artery diameter

change in driving the directed CSF inflow, contrary to arguments suggesting

that diameter changes cause only oscillatory flow back and forth without driving

directed flow. Through manually inducing artery diameter changes (vasomotion)

via functional hyperemia or optical stimulation, we see an increased influx of CSF

tracers, suggesting that the change in the diameter of the arteries indeed drives a

net flow of CSF.

Cardiac pulsation is in the sub-wavelength domain, in which peristaltic pumping

cannot drive significant flow. Due to a longer time scale, the wavelength of

functional hyperemia is smaller (≈ 1000µm/s) compared to cardiac pulsation.

In such wavelength domain, peristaltic pumping could be efficient. However,

functional hyperemia often propagates in the reversed direction of the CSF flow,

traveling from the deep penetrating artery to the surface pial in the mouse brain

(Munting et al. 2023). As peristalsis pumps the flow in the same direction as

the traveling direction of the pulsation wave, the increased CSF inflow cannot be

explained by peristaltic pumping itself. These findings urge further studies of the
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arterial pumping mechanism, such as the impedance pumping mechanism and the

endfoot valve mechanism we discussed in previous chapters.

The diameter change of the penetrating arteries has not been well measured.

We developed a segmentation tool to segment and measure the cross-sectional area

of the penetrating arteries over time, based on which the diameter measurement is

obtained. Compared to traditional methods, the method provides a more accurate

diameter change measurement, as it is less sensitive to translational camera shifts.

We measure the diameter change of both cardiac pulsation and functional hyperemia

at various depths. Our findings reveal larger diameter change amplitudes in deeper

cross-sections of penetrating arteries compared to those at the brain surface. This

suggests that the deep penetrating artery could play a more important role in

pumping the CSF flow, as a larger diameter change often pumps more fluid.

The increased tracer influx during functional hyperemia (figure 5.1) is unlikely

to be attributed solely to the dispersion of the purely oscillatory flow (mixing), as

a purely oscillatory flow enhances dispersion only weakly and does not produce

significant transport (Troyetsky et al. 2021). Therefore, the increased tracer influx

strongly suggests that functional hyperemia drives an increased net flow of CSF,

which enhances solute transport more effectively. Although our particle tracking

velocimetry (PTV) data captures the transient velocity change during functional

hyperemia, this increased flow is not directly observed, probably because PTV

can only measure flow velocity in a single focal plane, not the volumetric flow

rate. Also, since the flow in the stimulated hemisphere and that in the unstimulated

hemisphere cannot be measured simultaneously using PTV, we cannot directly
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quantify the flow change for the same animal. New methodologies, such as artificial

intelligence velocimetry (K. A. Boster et al. 2023), should be adopted to directly

measure the volumetric flow rate during the vaso-dilation cycles of functional

hyperemia or other types of vasomotion.
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6. Discussion and future work

Arterial pumping is a key driver of the directed cerebrospinal fluid in the perivascu-

lar space. In this thesis, I have examined how arterial pumping could produce net

flow considering the potential valve action of the astrocyte endfoot. In Chapter 2, I

discussed the potential valve mechanism based on the stretching and constriction

of the astrocyte endfeet gaps. In Chapter 3, I modeled long slit-shaped endfoot

gaps as elliptical gaps to study how the aspect ratio and orientations of the gap

influenced the potential valve mechanism. In Chapter 4, I demonstrated that the

valve mechanism can explain how the arterial diameter change pumps the directed

CSF flow in the pial artery in the same direction as the blood flow. In Chapter 5, I

presented experimental work that shows that slow vasomotion, including functional

hyperemia, enhances CSF inflow.

The driving mechanism of cerebrospinal fluid flow is not single-handed. In

addition to the valve mechanism we proposed here, valveless pumping mechanisms,

such as peristaltic pumping (Carr et al. 2021) and impedance pumping (Hickerson

and Morteza Gharib 2006), may also explain how artery pulsations produce the

net flow of CSF. In addition to arterial pumping, the osmotic force created by the
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concentration difference of solutes can produce a steady pressure gradient that

drives CSF net flow. In this chapter, we will explore the characteristics of each

mechanism, hoping to inspire future research in this field.

6.1 Valve Mechanism

Candidates for valve actions include stretching and constriction of the endfoot gaps

(Gan, Holstein-Rønsbo, et al. 2023), bending of wedge-shape endfeet (Bork et al.

2023), and deformation of the poroelastic brain tissue (Ravi Teja Kedarasetti et al.

2020). Some valve candidates may be more effective at rectifying the flow than

others, but there is a limitation.

For a given pressure waveform, the pumping efficiency is maximum when the

flow is rectified by an ideal valve, which blocks all backflow and only permits inflow.

For a binary alternating pressure waveform that is symmetric in time (figure 6.1a).

The maximum pumping efficiency is η ≈ 0.71 or 1/
√

2 (T+/T = 0.5, where T+

is the duration of the positive pressure and T is the total duration of the waveform,

(figure 6.1b, red dot)). For a sinusoidal pressure waveform, the maximum pumping

efficiency is 0.58.

The realistic pressure waveforms of the arterial pulsations are not symmetric

in time. Figure 6.1b shows that pumping efficiency increases with T+/T = 0.8.

For example, when T+/T = 0.8, the maximum pumping efficiency is η ≈ 1.41 or
√

2 (blue dot). The same conclusion applies to any other asymmetric waveforms

that are not binary. If the duration of the positive pressure covers the entire period
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(T+/T ≈ 1), the alternating pressure waveform becomes a steady constant positive

pressure waveform, which drives a steady flow with a pumping efficiency of η = ∞.

A positive pressure in the PVS drives an inflow into the ECS but results in an

axial backflow in the PVS, whereas a negative pressure drives a backflow across

the gaps and an axial CSF inflow (as demonstrated in the perivascular pumping

model in Gan, Holstein-Rønsbo, et al. 2023). Therefore, an asymmetric pressure

waveform, with a shorter duration of positive pressure and a longer duration

of negative pressure, could generate an axial CSF flow in the PVS with higher

pumping efficiency, aligning more closely with experimental observations. The

arterial diameter change waveform during functional hyperemia, characterized by

a fast dilation and slow constriction, can generate such an asymmetric pressure

waveform in the PVS and a higher pumping efficiency, whereas the symmetric

cardiac pulsation cannot.
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Figure 6.1: When rectified by ideal valves, asymmetric pressure waveforms with a longer duration of positive
pressure (T+), result in a higher pumping efficiency compared to the symmetric pressure waveform. T
represents the period of the waveform. (a) A symmetric binary alternating pressure waveform and an
asymmetric binary alternating pressure waveform normalized to the maximum pressure amplitude. In the
asymmetric waveform, the positive pressure amplitude is smaller than the negative pressure amplitude to
maintain a zero average pressure. (b) As T+/T increases, the maximum pumping efficiency increases

6.2 Valveless pumping

6.2.1 Peristaltic pumping

Peristalsis generally drives a pulsatile flow with both an oscillatory component

and a steady component in the direction of the traveling pulsation wave in the

artery wall. Multiple models have predicted steady flow components with similar

magnitudes to those observed in vivo but usually accompanied by a much stronger

oscillatory component than is observed (Hadaczek et al. 2006; Douglas H. Kelley

and John H. Thomas 2023). The ratio of the fluctuating flow rate and the mean flow

rate is approximately 1000, while in vivo measurement of that ratio is at the order

of 1. The discrepancy can be resolved by applying proper boundary conditions

that account for the resistance and compliance of the entire CSF circulation system
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(Ladrón-de-Guevara et al. 2022).

Additionally, the wavelength of cardiac pulsations (≈ 1 m), is far greater than

the length of a PVS segment (≈ 200 µm), and the diameter change amplitude is

≈ 1%. With such a short wavelength and small diameter change amplitude, the

peristaltic pumping cannot drive a flow of the observed magnitude (≈ 20 µm/s,

Daversin-Catty et al. 2020).

In contrast to cardiac pulsation, Gjerde, Rognes, and Sanchez 2023 demon-

strates that the peristaltic wave of slow vasomotion, including functional hyperemia,

which has a much smaller wavelength (≈ 1000 µm) and larger diameter change

amplitude (≈ 10%) can induce a non-negligible net perivascular fluid flow at the

order of some µm/s in the perivascular networks. The model neglects the reflections

of peristaltic waves at the arterial bifurcations. However, the wave of vasomotion

does not always travel in the same direction as the CSF flow Munting et al. 2023;

Yao et al. 2019. As peristaltic pumping cannot explain how vasomotion drives a

flow in its reverse travelling direction, other mechanisms must be considered, such

as the valve mechanism considered by this thesis, the poroelasticity considered by

Ravi Teja Kedarasetti et al. 2020, and impedance pumping considered by Holstein-

Rønsbo et al. 2023. It is also necessary to note that, since the CSF flow in PVSs has

been observed even in the absence of vasomotion (Mestre, J. Tithof, et al. 2018),

the peristalsis of vasomotion is unlikely to be the only driving mechanism.
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6.2.2 Impedance Pumping

Impedance pumping can occur when a vessel, such as PVS, with a flexible wall,

such as the artery wall, is subjected to repeating dilation and/or constriction cy-

cles in a local region (Hickerson and Morteza Gharib 2006). Those artery wall

motions propagate in both directions along elastic vessel walls as waves, which

eventually encounter wall features that cause wave reflection, such as bifurcations

or sudden changes in wall stiffness. Primary and reflected waves then interfere

constructively or destructively, which can drive a net flow. The flow speed and

direction (downstream or upstream) are determined primarily by the wave speed,

the locations of the reflectors, and the repetition frequency (Avrahami and Gharib

2008). Since wave reflection is non-linear, a small amplitude of artery pulsation

can drive a significant amount of flow. Flow direction is not strongly affected by

changing dilation to constriction. Impedance pumping may, in part, explain how

cardiac pulsation, functional hyperemia, and vaso-constrictions cycles induced by

opto-stimulations drive the directed CSF flow (Holstein-Rønsbo et al. 2023).

It is important to model arterial wave reflection in the perivascular network with

physiological parameters. Wave reflection may occur at bifurcations of the PVSs

and cause impedance pumping. Additionally, pulsatility in a penetrating artery

increases from the surface to deeper brain regions (Iliff, M. Wang, Zeppenfeld,

et al. 2013; Kress et al. 2014; Gan, Holstein-Rønsbo, et al. 2023), indicating that

the arterial section at the surface is stiffer than that in deeper brain regions (Mestre,

J. Tithof, et al. 2018). This stiffness change could also cause wave reflection and

impedance pumping.



CHAPTER 6. DISCUSSION AND FUTURE WORK 118

Impedance pumping drives maximum net flow when the arterial segment pulses

at its harmonic frequency (Zislin and Rosenfeld 2018; Avrahami and Gharib

2008; Hickerson and Morteza Gharib 2006). The wave speed of an artery is

c =
√

Eh/ρr0 ≈ 1 m/s, where E ≈ 105 Pa is the Young’s modulus of the artery,

ρ ≈ 1000 kg/m3 is the estimated density of the artery (or the CSF&Blood fluid

phase), and h/r0 ≈ 10 is the ratio between the thickness of the artery wall and the

radius of the artery. The harmonic frequency is therefore f = c/2L ≈ 2500 Hz

(Olufsen et al. 2000; Zislin and Rosenfeld 2018), where L ≈ 200 µm is a typical

length of a PVS segment. If reflection occurs on the length scale of the entire

PVS network (≈ 2 mm, K. A. S. Boster et al. 2022), the harmonic frequency is

f ≈ 250 Hz. These harmonic frequencies are much higher than the frequency

of cardiac pulsation ( f ≈ 5 Hz), the frequency of vasomotion (≈ 0.1 Hz), or

other physiological frequencies. However, stimulations at higher frequencies

can enhance CSF influx, which may be related to the mechanism of impedance

pumping at the harmonic frequencies. Murdock et al. 2024; Chan et al. 2022

find that multi-sensory gamma stimulations at f ≈ 40 Hz promote the influx of

cerebrospinal fluid, the efflux of interstitial fluid, and glymphatic clearance of

amyloid. Ye et al. 2023 demonstrated that stimulations at ultrasound frequency

increase glymphatic net flow ( f ≈ 105 Hz). Investigating whether stimulations at

the harmonic frequency of the glymphatic network can significantly enhance CSF

net flow is a promising direction for future research.



CHAPTER 6. DISCUSSION AND FUTURE WORK 119

6.3 The osmotic force

The osmotic force, created by the concentration difference of solutes, could gener-

ate a steady pressure gradient that drives CSF flow. During stroke, the spread of

depolarization creates a strong concentration gradient across the extracellular space

(ECS), causing a pressure gradient that pumps significant CSF flow (Mukherjee,

Mirzaee, and Jeffrey Tithof 2023). Injecting hyperosmotic solutes into mouse’s

arteries enhances CSF inflow during sleep, sleep-like state and wakefulness (Plog

and M. Nedergaard 2018).

The production of CSF also, in part, depends on regulated ion transport that

generates osmotic gradients and water transport. The transcellular movement of

Na+ is primarily driven by the Na+/K+-ATPase expressed at the luminal membrane

facing the CSF. The movement of Na+ is accompanied by water that follows the

solute gradient (Wichmann, Damkier, and Pedersen 2022). The production of CSF

may also create a steady pressure gradient, driving the directed CSF flow.

Characterizing the role of osmotic force in driving CSF flow is crucial not

only for understanding the glymphatic system but also for advancing drug delivery

techniques for brain diseases. Traditional drug delivery relies on blood circulation;

However, due to the blood-brain barrier, drugs carried by blood flow cannot be de-

livered into the brain parenchyma efficiently, whereas drug delivery is much easier

through the glymphatic pathway. Hyperosmotic solutes that enhance glymphatic

flow could accelerate drug delivery via the glymphatic pathway, which is important

for treating brain diseases.
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6.4 Modeling advection and diffusion in the

glymphatic network

Solute transport in the brain is accomplished by a combination of advection and

diffusion. Solving solute transport based on the CSF flow information helps reveal

the processes of brain waste removal, drug delivery, and tracer (dye) injection

(figure 6.2a,b, Holstein-Rønsbo et al. 2023) in the glymphatic network, which

includes perivascular spaces with bifurcations and the parenchyma. It can also

help interpret CSF tracer measurements in the PVSs of the penetrating arteries and

MRI measurements in the parenchyma (Y. Zhu et al. 2023). The basic equation

governing the concentration C of a solute is the advection-diffusion equation.

∂C
∂ t

+u ·∇C = D∇
2C+ f , (6.1)

where u is the local CSF/ISF flow velocity, D is the local diffusion coefficient, and

f is the local source term (the rate of generation of the solute per unit volume per

unit time). Based on a reduced order network model that solves the CSF flow field

numerically (figure 6.2c, Jeffrey Tithof et al. 2022) , the process of time-dependent

solute transport (equation 6.1) can be implemented and solved. The author of

the thesis and his colleague, Keelin Quirk, are working on building such a solver.

Some examples of the spatially and temporarily resolved tracer concentration are

presented in figure 6.2d. Due to artery motion, the pulsatility of CSF flow increases,

which may also slightly enhance solute influx and clearance (mixing, Troyetsky
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et al. 2021). Having functional hyperemia acting over cardiac pulsation increases

flow pulsatility, which may also promote waste clearance in the aspect of mixing.

Incorporating pulsatile flow profiles into the model can help us better understand

the role of mixing in solute transport and clearance in the brain.

Figure 6.2: Solute transport in the brain. Panel (a),(b) adapted from Holstein-Rønsbo et al. 2023, copyright the
authors. Panel (c) adapted from Jeffrey Tithof et al. 2022, copyright the authors. CSF tracers injected into the
mouse brain (a) are transported in the glymphatic network by a combination of advection and diffusion (b). (c)
The CSF flow of the glymphatic network, including PVSs with bifurcations and the parenchyma has been
modeled numerically (K. A. S. Boster et al. 2022), based on which we are building a solver to model
time-dependent solute transport. By setting a concentration value of 100 at the inlet pial artery’s PVS and a
concentration value of 0 at the outlets of the network, we calculate and present spatially-resolved tracer
concentration at three instants (d).

6.4.1 Estimating the amplitude of the pressure difference

driven by functional hyperemia

Although K. A. Boster et al. 2023 measured the pressure difference between the

inlet and outlet of a PVS segment using artificial intelligence velocimetry, this

approach has not yet been applied to assess the pressure driven by functional

hyperemia. In this section, I attempt to estimate this pressure difference based on
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the flow velocity measurement during functional hyperemia (figure 5.2) in Chapter

5.

We divide the pressure difference between two ends of the PVS into two parts

∆p(t) = ∆p+∆p̃(t), (6.2)

where ∆p is a steady pressure difference component, and ∆p̃ is the transient

pressure difference component driven by the artery motion.

The flow rate can be represented in the same way:

Q(t) =
∆p(t)
R(t)

=
∆p

R(t)
+

∆p̃(t)
R(t)

= Q(t)+ Q̃(t), (6.3)

where R(t) is the flow resistance of the local PVS segment, which also changes

transiently with the diameter change (inversely proportional to the fourth power

of the PVS diameter). If ∆p ≫ ∆p̃(t), that the flow rate is dominated by the

steady pressure, and the PVSs do not connect with any high resistance pathway, we

have Q(t)≈ Q(t), which scales as r4(t), where r(t) is the artery radius. The flow

rate change should theoretically be in phase with the changes in artery diameter.

However, experiments show that the mean flow velocity is actually in phase with

the wall velocity, rather than the changes in diameter (Holstein-Rønsbo et al. 2023).

Given that wall velocity should be in phase with the transient pressure, the transient

pressure difference caused by artery motion is at least as significant as any steady

pressure difference that may exist.

According to the lumped parameter model (figure 4.4), the phase of the transient
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pressure driven by artery motion should align perfectly with the wall velocity when

the brain is rigid. However, as the arterial pumping frequency exceeds the cutoff

frequency, determined by the compliance of the brain tissue and the resistance

of the flow pathway, a phase shift occurs. At the frequency of slow vasomotion,

our experiments indicate that the peak of the wall velocity and the trough of the

flow velocity are almost perfectly in phase Holstein-Rønsbo et al. 2023. At the

frequency of cardiac pulsation, the phase difference is more pronounced (Mestre,

J. Tithof, et al. 2018).

Based on the discussion above, the change in flow resistance of PVSs due to

the change in the diameter of the arteries can be neglected, allowing equation 6.3

can be simplified to

Q(t) =
∆p(t)

R
=

∆p
R

+
∆p̃(t)

R
= Q+ Q̃(t), (6.4)

Using equation 6.4, we can estimate the ratio between the magnitude of the

steady pressure difference and the magnitude of the transient pressure difference.

During functional hyperemia, a 60% change in flow velocity is recorded compared

to the baseline velocity (Holstein-Rønsbo et al. 2023). 1+max(Q̃(t)/Q) = 1+

max(∆p̃(t)/∆p) = 0.6, which yields max |∆p̃(t)/∆p| = 2.5. That is, between

two ends of a pial PVS segment, the transient pressure difference driven by the

functional hyperemia component is 2.5 times greater than the steady pressure

difference component, smaller than the ratio of oscillatory-to-net pressure of

cardiac pulsation (a ratio of 3.3), measured from artificial intelligence velocimetry
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(K. A. Boster et al. 2023). Since artificial intelligence velocimetry reveals the

steady axial pressure difference per unit length of a PVS segment 2.75× 102

Pa/m, we can estimate that the maximum pressure difference amplitude driven by

functional hyperemia is 6.88× 102 Pa/m. In future work, artificial intelligence

velocimetry method could be extended to measure the pressure waveform driven

by functional hyperemia.
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A. Mathematical details of the perivas-
cular pumping models

The section includes mathematical details of the perivascular pumping models in
Chapter 4. It has been published in Gan, Holstein-Rønsbo, et al. 2023

The lubrication-theory model
The PVS domain

The PVS is an open space, and the flow there, assumed to be axisymmetric, obeys
the Navier-Stokes equations and continuity equation in cylindrical coordinates
(r,z):

∂u
∂ t

+u
∂u
∂ r

+w
∂u
∂ z

=− 1
ρ

∂ p
∂ r

+
µ

ρ

(
1
r

∂u
∂ r

+
∂ 2u
∂ r2 +

∂ 2u
∂ z2

)
, (A.1)

∂w
∂ t

+u
∂w
∂ r

+w
∂w
∂ z

=− 1
ρ

∂ p
∂ z

+
µ

ρ

(
1
r

∂w
∂ r

+
∂ 2w
∂ r2 +

∂ 2w
∂ z2

)
, (A.2)

1
r

∂ (ru)
∂ r

+
∂w
∂ z

= 0, (A.3)

where u = (u,w) is the velocity field in cylindrical coordinates, p is the pressure,
t is time, ρ is the density of the fluid, and µ is the dynamic viscosity. These
equations are subject to the following boundary conditions:

z = 0 : qpvs = qpial, qpial = kpial(ppial − p), ppial = 0, (A.4)

z = l : qpvs = qcap, qcap = kcap(p− pcap), pcap = 0, (A.5)

r = r1 +h : u ·n = 0, u · t = 0, (A.6)
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r = r1 +b+d : u ·n =
∂d
∂ t

+ kendft(p− pecs), u · t = 0, (A.7)

where
d = (r1 +b)

p− pecs

Eendft
(A.8)

is the deformation of the PVS outer wall (measured from d0 = r1 +b). Here, r1 is
the radius of the artery at rest, b is the width of the PVS, l is the length of the pene-
trating artery, h is the amplitude of artery pulsation, Eendft is the Young’s modulus
of the PVS outer boundary, qpvs is the flow rate at the end of the penetrating artery
PVS, qpial is the flow rate in the pial PVS, qcap is the flow rate in the precapillary
PVS, kpial and kcap are the conductivities of the pial and precapillary inlet and
outlet, and finally, ppial and pcap are the pressure in the pial and precapillary PVS
(set to zero). The unit vectors normal and tangential to the artery wall are n = (0,1)
and t = (1,0), respectively. We have used the lubrication approximation Romanò
et al. 2020.

At the upstream pial PVS and the downstream precapillary PVS, we set a
hydraulic resistance boundary condition to model the inflow and outflow (equations
(A.4), (A.5)), assuming a conserved flow rate across each interface. At the artery
wall, we set non-slip and non-permeable boundary conditions (equation (A.6)).
The outer boundary of the PVS, formed by the astrocyte endfeet, is modeled as a
thin, deformable, elastic layer of permeable but non-slip tissue (equation (A.7)). A
linear elastic law is used to relate the deformation of this boundary to the pressure
difference across it (Romanò et al. 2020).

The artery motion of cardiac pulsation is modeled by equation (4.2). The artery
motion of functional hyperemia is modeled by equation (4.3), where h0 is the
amplitude and f is the frequency. This waveform ensures that h and dh/dt are
continuous (see figure 4.1e).

At the valve-like PVS outer boundary, formed by astrocyte endfeet, the perme-
ability kendft is modeled by equation (4.1). During artery dilation, the increased
pressure in the PVS opens the valve, allowing fluid to enter the ECS (figure 4.1b).
During artery constriction, the valve closes and CSF motion is confined to the PVS
(figure 4.1c).

To put the equations in nondimensional form, we use the scalings

r = bR, z = lZ, t =
T
f
, u = b fU, w = l fW, p =

µ f
ε2 P, (A.9)

where each uppercase symbol signifies a dimensionless version of the correspond-
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ing lowercase symbol. Applying the lubrication theory, we obtain the following
equations:

∂P0

∂T
+A0

∂ 2P0

∂Z2 +A1
∂P0

∂Z
+A2P0 =

[
E(R1 +H)

R1 +1+D0

]
∂H
∂T

+A2PECS +
∂PECS

∂T
,

(A.10)

W0 =
R2

4
∂P0

∂Z
+C1 ln(R)+C2, (A.11)

U0 =
C3

R
− R3

16
∂ 2P0

∂Z2 − R
4
[2ln(R)−1]

∂C1

∂Z
− R

2
∂C2

∂Z
, (A.12)

where P0, W0, and U0 are the leading order terms of P, W , and U , respectively. A0,
A1, A2, C1, C2, and C3 are known functions of Z and T . These equations are solved
numerically using the Chebyshev spectral method (Romanò et al. 2020).

Integrating the axial velocity (equation A.11) over the cross-section of the
annulus, we obtain an expression for the volume flow rate:

Q0(Z,T ) =
∫ 2π

0

∫ 1+R1+D

R1+H
W0RdRdθ

= 2π[
R4

16
∂P0

∂Z
+C1(

R2 ln(R)
2

− R2

4
)+

C2R2

2
]|R=1+R1+D

R=R1+H (A.13)

We model a hydraulic resistance at the PVS of the pial boundary, with a conserved
flow rate across the interface:

Z = 0 : Q0(0,T ) = Qpial, Qpial = Kpial(0−P0(0,T )). (A.14)

In the same way, we model a hydraulic resistance at the PVS of the capillary site:

Z = 1 : Q0(1,T ) = Qcap, Qcap = Kcap(P0(1,T )−0). (A.15)

At the artery site, we have

R = R1 +H : U ·n =
∂H
∂T

, U · t = 0, (A.16)

where H is the amplitude of artery pulsation. At the PVS outer boundary we have

R = R1 +1+D : U ·n =
∂D
∂T

+Kendft (P0(Z,T )−PECS) , U · t = 0, (A.17)
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where

D =
P0(Z,T )−PECS

E
, (A.18)

is the (dimensionless) displacement of the PVS outer boundary, Kendft = kendftµ(bε2)−1,
and E = Eendftε

2(µ f (R1 +1))−1.

The ECS domain

The ECS is modeled as an incompressible porous medium, with incompressible
flow governed by Darcy’s law. The governing equations are

u∗
ecs =−kecs

µ
∇pecs, u∗

ecs = uecs −
∂decs

∂ t
, (A.19)

∇ · (φuecs +(1−φ)
∂decs

∂ t
) = 0, ∇ ·decs = 0, (A.20)

where uecs = (uecs,wecs) is the velocity of the fluid phase in the ECS, φ is the
porosity, decs is the deformation of the solid phase in the ECS, u∗

ecs is the velocity
field relative to the solid phase velocity, and p is the pressure inside the ECS. The
dynamic viscosity µ of the CSF and the permeability kecs of the ECS are both
assumed to be uniform. Applying all four of the above equations, we have

∇
2 pecs = 0. (A.21)

Across the PVS outer boundary, CSF enters or leaves the ECS from the PVS, and
the velocity must be continuous there:

r = r1 +b : u∗ecs = u∗, (A.22)

where u∗ = kendft(p− pecs) is the velocity across the PVS endfoot wall measured
relative to the deformation velocity of the endfoot wall.

For the boundary at the outer radius of the ECS, corresponding to efflux at the
nearest venule, we assume free surfaces and require

r = r1 +b+becs : p = 0. (A.23)

For the boundaries at the two ends, we assume zero axial pressure gradient:

z = 0 , z = 1 :
∂ pecs

∂ z
= 0. (A.24)
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Table A.1: Dimensionless Parameters of the perivascular pumping model

U axial CSF velocity U = u
b f

W radial CSF velocity W = f w
εb

R radial coordinate R = r
b

Z axial coordinate Z = ε
z
b

T time T = f t
RECS axial coordinate for the ECS RECS = r

becs

P pressure in the PVS P = pε2

µ f

Re Reynolds number Re = ερ f b2

µ

Q axial flow rate Q = q
b2l f = ε

q
b3 f

R1 artery diameter R1 =
r1
b

D displacement of the PVS outer boundary D = d
b

APVS PVS cross-section area APV S =
apvs
b2

ε aspect ratio of the PVS ε = b
l

H artery dilation amplitude H = h
b

E elasticity of the PVS outer boundary E = Eendftε
2

µ f (R1+1)

Kendft permeability of the PVS outer boundary Kendft =
µkendft

bε2

Kpial conductivity of the pial pvs inlet Kpial =
kpial

b2 b
ε

f
· µ f

ε2

Kcap conductivity of the capillary pvs outlet Kcap =
kcap

b2 b
ε

f
· µ f

ε2

Krecs permeability of the ECS Krecs =
kecs

b2
ecsε

2

Kzecs permeability of the ECS Kzecs =
kecs
l2ε2

Pecs pressure in the ECS Pecs =
pecsε

2

µ f
Uecs radial velocity in the ECS Uecs =

uecs
becs f

Wecs radial velocity in the ECS Wecs =
wecs
l f

Uecs radial velocity in the ECS Uecs =
uecs

becs f

U∗ radial velocity relative to the endfoot wall motion U∗ =
u− ∂d

∂ t
b f

W ∗
ecs radial velocity in the ECS relative to the solid phase motion

U∗
ecs radial velocity in the ECS relative to the solid phase motion

Since the deformation of the endfeet is only in the r direction and the venule
site is a free surface, if we also assume negligible displacement in the z direction,
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we obtain the analytical solution

decs(r,z, t) = [d(z, t)(
r1 +b

r
),0]. (A.25)

To put the equations in dimensionless form, we use the scalings

recs = becsRecs, u∗ecs = becs fU∗
ecs, w∗

ecs = l fW ∗
ecs, pecs =

µ f
ε2 Pecs, (A.26)

The equations in dimensionless form are then

U∗
ecs =−Krecs

∂Pecs

∂Recs
, (A.27)

W ∗
ecs =−Kzecs

∂Pecs

∂Z
, (A.28)

Krecs(
1
R

∂Pecs

∂R
+

∂ 2Pecs

∂R2
ecs

)+
becs

l0
Kzecs

∂ 2Pecs

∂Z2 = 0, (A.29)

where Krecs = kecs(b2
ecsε

2)−1 and Kzecs = kecs(l2
0ε2)−1, and the boundary conditions

in dimensionless form are

Recs =
r1 +b
becs

: U∗
ecs =

b
becs

U∗, (A.30)

Recs =
r1 +b+becs

becs
: Pecs = 0, (A.31)

Z = 0 and Z = 1 :
∂Pecs

∂Z
= 0. (A.32)

The flow in the ECS domain is computed using a custom-developed Poisson
equation solver.

The lumped-parameter model
Lumped parameters

We further simplify our model in terms of lumped parameters. All coefficients
in equation 4.6 can be identified from the coefficients in the fluid dynamical
equation A.10, neglecting some higher-order infinitesimal terms. Here, we present
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another way to derive the coefficients through direct analysis of the pressure-
flowrate lumped-parameter model (equation 4.6).

Fluid motion induced by the prescribed arterial pulsation is modeled as a flow
rate source (analogous to the current source in figure 4.4a) with a volume flow rate
equal to the rate of change of the artery volume, described by equation 4.4.

There are three pathways by which fluid can enter or exit the penetrating PVS,
as sketched in figure 4.4a. Fluid can be exchanged with the pial PVS or the
extracellular space, via the endfoot wall. Due to high resistance, flow through the
capillary PVS is negligible. Each pathway has a hydraulic resistance, and ultimately
connects to a place where the pressure(analogous to voltage) is zero. By calculation,
the resistance of the pial pathway is Rpial = k−1

pial = 1.06×1016 kg m−4 s−1.
Though the resistance of the endfoot wall and that of the extracellular space

depend on the surface area change of the endfoot wall (due to the deformation), they
are small terms and we neglect them here for simplicity. Therefore, the resistance
of the endfoot wall is inversely proportional to its area and its area-normalized
permeability kendft, which is pressure-dependent:

Rendft =
1

2πl(r1 +b)kendft
=

{
4.0×1016 kg m−4 s−1 p > pecs

8.0×1016 kg m−4 s−1 p ≤ pecs,
(A.33)

for k1/k0 = 2. We only consider the resistance of the extracellular space Recs in
the radial direction, which is

Recs =
µ

2πlkecs
ln

r1 +b+becs

r1 +b
= 2.56×1015 kg m−4 s−1 (A.34)

for kecs = 10−16 m2. The logarithmic term in equation A.34 is derived from
equation A.21 in the annular ECS domain Schreder et al. 2022; Holter et al. 2017.

The deformation of the endfoot wall can be modeled as the capacitance in
the circuit, described by equation 4.5, with a value Cendft = (2.51 × 10−12 ×
Eendft

−1) m3s kg−1, inversely proportional to Eendft.

Time dependent solution of the lumped-parameter model in the ab-
sence of the valve

In complex domian equation 4.4 can be written as:

q̃art ≈ 2πr1lhcp2π f e2πi f t , (A.35)
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In the absence of the valve, equation 4.6 can be rewritten as:

2πr1lhcp2π f e2πi f t+ t
ReffCendft =Cendft

∂ (pe
t

ReffCendft )

∂ t
, (A.36)

where Reff
−1 = (Rendft +Recs)

−1 +Rpial
−1. Integrating equation A.36 over time,

we have:
2πr1lhcp2π f

2π f i+ 1
ReffCendft

e2πi f t+ t
ReffCendft =Cendft pe

t
ReffCendft . (A.37)

Therefore, we have the analytical solution for the pressure:

p =
4π2r1lhcp f

Cendft(2π f i+ 1
ReffCendft

)
e2πi f t =

4π2r1lh̄cp f e2πi( f t− arctan(2π f ReffCendft)
2π

)

Cendft

√
4π2 f 2 +( 1

ReffCendft
)2

, (A.38)

From equation A.38 we can derive equation 4.7, given that p =−Rpialqpial.
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B. Impedance pumping models

The section includes mathematical details of the impedance pumping models in
Chapter 5. It has been published in Holstein-Rønsbo et al. 2023

Flows driven by arterial diameter changes were modeled via IB2D, an open-
source, 2D immersed boundary method code for fluid simulation (Battista, Baird,
and Miller 2015; Battista, Strickland, and Miller 2017). Approximating arterial
diameter changes and flow to be axially symmetric, we modeled an axial plane of
the artery and PVS. In a 5×5 nondimensional computational domain with periodic
boundary conditions, we modeled each tissue (upper and lower artery wall, upper
and lower PVS boundary) as a single layer of solid nodes spanning 1≤ x≤ 4, where
x is the axial coordinate and x=0 at the left end of the domain. In dimensionless
units, the diameter of the artery was 2 and the diameter of the PVS was 3.1, such
that the ratio of their cross-sectional areas was 1:1.4 as measured in vivo (Mestre,
J. Tithof, et al. 2018). We defined the artery walls as deformable tissues with spring
stiffness k = 5×105 and beam stiffness kb=1×107. The upper and bottom artery
walls were linked with spring stiffness ks1=ks/100 to account for their connection
in three dimensions. The left and right ends of the artery walls were fixed in place,
as were the entire PVS outer boundaries.

The grid size of the CSF fluid was 64×64, and that of the solid tissues was
128× 1. The time step of the simulation was dt = 5× 10−4. We drove arterial
diameter changes by applying a uniform force over the region 1.39 ≤ x ≤ 2.17,
which varied over time.

F =


2ks1∆Dsin2 2π

4(t2−t1)
(t − t1), t1 ≤ t < t2

2ks1∆D, t2 ≤ t < t3

2ks1∆D(1− sin2 2π

4(t4−t3)
(t − t3)), t3 ≤ t < t4

(B.1)

Otherwise, F=0. Here t is time, ∆D = 0.05 for dilation and −0.05 for con-
striction, t1 = 0.025, t2 = 0.03125, t3 = 0.04375 and t4 = 0.05. The motion of
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the artery walls and the CSF were calculated based on the applied force, the elas-
tic forces of tissues and the interactive forces between tissues and fluids. The
normalized force F/ks1 is plotted in red in figure5.5d,j.

We calculated the 2D volume flow rate through a cross-section of the PVS via
numerical integration as Q =

∫
Γ

U(r)dr , where U is the axial velocity, Γ is the
cross-section and r is the radial coordinate. We calculated the normalized net mass
flux of CSF as

∫
τ

Qdt. We also simulated tracers in the PVS, which move exactly
as fluid elements, to visualize the Lagrangian movement of the CSF.
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