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Knowledge of the relative importance of advection and diffusion in clearing
waste from the brain has been elusive, especially concerning the extracellular
space (ECS). With local and global computational models of the mouse
brain, we explore how the presence or absence of advection in the ECS
affects solute transport. Without advection in the ECS, clearance would
occur by diffusion into flowing cerebrospinal fluid in perivascular spaces
(PVSs) or elsewhere, but we find this process to be severely limited by
build‑up of solute in the PVSs. We simulate flow in the ECS driven by a
pressure drop between arteriole and venule PVSs, which enhances clearance
considerably. To assess the relative importance of advection and diffusion,
we introduce a local Péclet number 𝒫(x, t), a dimensionless scalar field. For
our simulations, 𝒫≪ 1 through much of the ECS but 𝒫 ≥ 1 near PVSs near
the brain surface. This local dominance of advection in the ECS establishes
a clearance mechanism markedly different from that produced by diffusion
alone. In network simulations that explore different parameter values and
efflux routes, the pressures needed to drive the PVS flows measured in vivo
are unrealistically large for most cases lacking ECS flow. Collectively, our
models indicate that a flow in the ECS is necessary to explain experimental
measurements and maintain homeostasis.

1. Introduction
There are no lymph vessels in the interior of the brain: the removal of metabolic
waste molecules is instead accomplished by advection and diffusion within the
interstitial fluid (ISF) filling the extracellular space (ECS) and cerebrospinal fluid
CSF filling the perivascular spaces (PVSs) that surround the blood vessels (arte‑
rioles, venules and perhaps capillaries) [1,2]. The details of this waste‑clearance
system are not well understood, and in particular, the relative importance of
advection and diffusion in the system is still controversial (see recent reviews
[3–5]). Diffusion of solutes in the porous ECS is well understood, thanks to the
extensive work byNicholson and others [6–10], which showed that the effective
diffusion coefficient is set by ECS tortuosity. Here, and throughout, we consider
the ECS excluding perivascular and intravascular spaces. Assessing the contri‑
butions of advection requires detailed knowledge of the velocity fields of CSF
and ISF: while such details are being revealed for CSF flow in surface PVSs [11–
14], they are lacking for flows in the interior of the brain, particularly in the
ECS.

Here we consider the possible ways in which advection and diffusion could
contribute to brain clearance under different scenarios. In one scenario, there is
no flow of CSF or ISF anywhere within the brain, so there is no advection and
clearance is by diffusion alone.Wemention this scenario, in spite of the fact that
there is strong evidence for flow of CSF along penetrating PVSs and consider‑
able evidence that there may be flow of ISF in the ECS, because doubts have
been expressed about the existence or importance of any such flow (e.g. [15–
17]). Diffusion is a slow process, and it is hard to imagine that evolution would
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leave one of the largest organs in the body, with one of the highest metabolic rates, with such an inefficient means of clearing
metabolic waste. This inefficiency is illustrated by a simple spherical brain model [5], which shows how diffusion acting alone
will produce a highly inhomogeneous distribution of a metabolic waste solute, with very high concentrations at the centre of the
brain. We dismiss this scenario and shall not consider it further in this paper. Instead, we consider the following two scenarios.

Scenario A: There is a flow of CSF along the network of PVSs in the interior of the brain but no flow of ISF in the rest of the
parenchyma. Clearance is by diffusion of a solute from the ECS into PVSs, where the solute is then advected out of the brain along
a network of PVSs. This scenario was discussed briefly by one of us [18], pointing out how it might work provided that there
are continuous pathways for CSF flow along PVSs surrounding penetrating arteries, arterioles, capillaries, venules and veins. The
existence of such continuous PVS pathways has been neither firmly established nor firmly refuted. Here we examine this scenario
with different models. In particular, we seek to assess the effect of the build‑up of solute in the CSF flowing through the network
of PVSs, which reduces the rate at which a solute diffuses from the ECS into the PVSs, an effect that has received little attention
in previous studies.

Scenario B: There is a flow of CSF along the network of PVSs in the interior of the brain and also a slow flow of ISF in the ECS
in the rest of the parenchyma, and solutes are carried by both advection and diffusion to PVSs along venules and then carried to
the lymphatic system. This scenario is supported by the early experimental findings of Cserr et al. [19] and also corresponds to the
‘glymphatic system’ as originally proposed [20]. The hypothesized slow flow of ISF is very difficult to measure directly, and its
existence has proved to be controversial. Simulations by Holter et al. [21] indicated that the permeability of the ECS is too low to
allow for any substantial flow of ISF. However, several other, more recent pieces of evidence indicate the existence of a slow flow
of ISF in the ECS and hence at least some advective transport there. This evidence includes results frommodelling of experimental
data [22–26], which show a better fit to tracer data when a slow flow of ISF is included. There is a theoretical argument for a flow
of ISF [27] based on the observed increase in tissue porosity and solute clearance from the awake state to the sleep state [28]. Also,
a recently proposed mechanism for producing a directed flow in PVSs driven by arterial pulsations, in which the glial endfoot
gaps in the wall of a PVS act as valves, necessarily drives a flow of ISF in the ECS [29–31].

2. Mathematical aspects of advection and diffusion in the brain
The basic equation governing the concentration C(x, t) of a passive solute in the brain is the advection–diffusion equation [5,32]

𝜕C
𝜕t

+ u ⋅ 𝛁C=D∇2C + f, (2.1)

where u is the Eulerian velocity field (referred to a fixed frame of reference), D is the diffusion coefficient, f is the source term (the
rate of generation of the solute per unit volume per unit time), t is time, 𝛁 is the spatial gradient operator and ∇2 is the Laplacian
operator. This form of the advection–diffusion equation assumes a homogeneous, incompressible fluid and uniform, isotropic
diffusivity D. Of course the brain parenchyma is not homogeneous: it consists of a porous network of neurons and supporting
tissue filled with ISF, and we are interested in solute transport within the ISF. On length scales larger than the microstructure,
we can treat the medium as homogeneous if we replace D with an effective diffusion coefficient that accounts for the volume
fraction occupied by the fluid and the jagged paths that diffusing molecules must follow, represented by the tortuosity. There is
an extensive literature devoted to justifying this approach and determining effective diffusivities experimentally: see, for example
[8,9,33]. Here we shall assume throughout that D represents an effective diffusion coefficient.

In applying the advection–diffusion equation to models of the transport of solutes in the brain, the velocity field will either be
specified or calculated separately, thus decoupling the advection–diffusion equation from the fluid‑dynamic equations. Coupling
of the equations would occur if we considered the effects of osmosis, which we do not, or if the viscosity of the fluid changed
substantially with changes in the concentration of the solute, which we assume is not the case (this is a good assumption for CSF
and ISF [34]).

The combined effects of advection and diffusion produce dispersion of a solute. The relative importance of advection and dif‑
fusion is usually measured by a dimensionless number, the Péclet number Pe, which estimates the ratio of the magnitudes of the
advection and diffusion terms in equation (2.1):

|u ⋅ 𝛁C|
|D∇2C|

∼
UC0∕L

D (C0∕L2)
∼ UL

D ≡ Pe, (2.2)

where U is a velocity scale, C0 is a typical value of the concentration and L is a length scale for spatial variations in the concen‑
tration. For the flows observed in the PVSs of arterioles in the mouse brain [11,12], the Péclet number is large: Pe∼ 1000 for the
microspheres used in the experiments and Pe∼ 10−100 for other solutes of interest. In these perivascular flows advection dom‑
inates diffusion. However, we do not expect this to be the case throughout the entire system: the flow branches into very many
smaller PVSs along arterioles, capillaries, venules and veins, and hence is much slower in these channels. If there is bulk flow of
ISF through the ECS, it is likely to be slower still, and Péclet numbers of less than unity are to be expected.

The Péclet number defined in equation (2.2) is a global quantity, having a single value for the region in question, based on
suitable fixed values of the velocity scale U and length scale L. However, the relative values of the advection and diffusion terms
in equation (2.1) can vary substantially in space and time in a given region, and they also can act in opposition. For equation (2.1)
written in the form

𝜕C
𝜕t

=−u ⋅ 𝛁C +D∇2C + f, (2.3)
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it is useful to define a local Péclet number 𝒫(x, t) as the ratio of the advection and diffusion terms on the right‑hand side:

𝒫(x, t)≡ −u ⋅ 𝛁C
D∇2C

. (2.4)

This local Péclet number is a scalar field that can vary in space and time, and it is also a signed quantity that is positive when
advection and diffusion are both acting in the same sense, to either reduce or increase the local solute concentration. Note that
advection tends to decrease the local concentration when u has a component in the direction of the solute gradient (i.e. when
u ⋅ 𝛁C> 0) and tends to increase the local concentration when u has a component in the direction opposite that of the concentra‑
tion gradient (i.e. when u ⋅ 𝛁C< 0). The fact that there can be regions where advection and diffusion act in opposition makes this
signed Péclet number a much better indicator of the local situation than a strictly positive one defined as a ratio of magnitudes.
Also, as we shall see in the simulations presented here, this local Péclet number can vary by several orders of magnitude over the
domain, it can be either positive or negative, and advection can substantially affect the character of solute dispersion even when
the magnitude of the local Péclet number is larger than unity only in small subregions of the domain.

Solute transport is effected by the sum J= JA + JD of the advective flux JA = uC and the diffusive flux JD =−D𝛁C. We can ar‑
rive at the advection–diffusion equation (2.1) by setting the local time rate of change of the concentration C equal to the negative
divergence of the total flux plus the local rate of production f:

𝜕C
𝜕t

=−𝛁 ⋅ J + f=−𝛁 ⋅ (uC) − 𝛁 ⋅ (−D𝛁C) + f=−u ⋅ 𝛁C +D∇2C + f, (2.5)

noting that mass conservation requires that 𝛁 ⋅ u= 0 for the incompressible fluid and that the diffusivity D is assumed to be uni‑
form (𝛁D= 0). Although the local rate of change of concentration is determined by the divergence of the fluxes JA and JD, not by
the fluxes themselves, it is of some interest to consider the magnitude and direction of each of these fluxes at various points in the
domain. The directions are conveniently represented by unit vectors eA ≡ u∕|u| and eD ≡−𝛁C∕|𝛁C|. The fluxes JA and JD are in
general in different directions, and their alignment is conveniently represented be the scalar product of their unit vectors, eA ⋅ eD.
The values of this scalar quantity lie in the range −1≤ eA ⋅ eD ≤ 1, and the limiting values −1 and 1 correspond to fluxes aligned in
the opposite or same direction, respectively.

In modelling advection and diffusion within the CSF and ISF in the brain, there are two basic and quite different types of
mathematical problems of interest. In simple terms, these problems can be described as follows:

Problem 1. Here the aim is to model the observed time‑varying concentration distribution C(x, t) in an experiment in which a
tracer solute or drug is injected into the brain. This is an initial‑boundary‑value problem, in which there is no internal production
of the solute, but instead an initial concentration of the solute is specified. In this case, for example, one solves the time‑dependent
advection–diffusion equation (2.1) for a specified steady velocity field u(x), a specified initial concentration C(x, 0) =C0(x), no
source term (f= 0), and suitable model geometry and boundary conditions. Alternatively, an injection taking place over an ex‑
tended time can be represented by a source term f (x, t). The problem can also be posed for a known time‑dependent velocity field
u(x, t).

Problem 2. This is a steady‑state problem, to determine the distribution of a naturally occurring metabolic waste solute, pro‑
duced at a steady rate, and advected by a known velocity field of the fluid. In this case, one solves equation (2.1) with 𝜕C∕𝜕t= 0, a
specified steady velocity field u(x), and a given steady source term f (x). This problem is aimed at understanding the brain’s actual
clearance mechanism for metabolic waste, which must maintain a steady‑state concentration (on average, subject to fluctuations
associated with sleep/wake changes and other variations in brain state) in order to prevent the build‑up of metabolic waste and
maintain homeostasis.

Problem 2 is of course the fundamental one, describing the actual working of the brain’s mechanism for clearing metabolic
waste, but Problem 1 has been much studied because it relates directly to experimental observations of the transport of an injected
tracer. We shall consider both types of problems in the models we present here, and point out some important differences.

3. Local models of clearance by advection and diffusion
In this section, we present local models of transport based on scenarios A and B. The simplest model consists of a single pene‑
trating arteriole, with a flow of CSF in its PVS, and a surrounding region of the parenchymal ECS from which a solute is cleared.
We follow this with a more complete model consisting of an array of arteriole and venule PVSs within an extended region of
the parenchyma. In Scenario A, these models show that high solute concentration along PVSs slows diffusive clearance from the
surrounding parenchyma. In Scenario B, these models show how clearance can be enhanced by a flow of ISF.

The numericalmethods used in computing the velocity and concentration fields in these localmodels are described in appendix
A.

3.1. A single perivascular space and its surrounding extracellular space
First we consider a simple, circular annulus model consisting of a single arteriole PVS surrounded by a porous region of ECS. A
schematic diagram of the computational domain is shown in figure 1A. The width of the PVS is hPVS, and the width of the ECS
is hECS, chosen to be half the average distance to the nearest neighbouring arteriole, thus representing the region of the ECS that
is cleared by the central PVS. CSF flows from top to bottom along the PVS, carrying solute out of the computational domain at
the bottom surface of the PVS. The boundary conditions at the top, bottom and outer wall of the ECS domain are set to prevent
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Figure 1. Time-dependent (Problem 1) numerical simulations for a single PVS and its surrounding ECS. (A) Computational domain showing the widths of the PVS and
ECS and the flow direction in the PVS. The solute concentration in the ECS is initially uniform, C= 1 at t = 0. (B) Concentration distributions at various times for three
simulations. Top row: no flow in the ECS, concentration maintained at zero on the PVS boundary (artificial case); middle row: no flow in the ECS and vPVS = 1 μm s−1;
bottom row:mean flow speed in the ECS vECS = 0.038 μm s−1 (permeability𝜅ECS =10−14 m2) and vPVS =1 μm s−1. (C) Volume-averaged solute concentration versus time
for the three simulations shown in panel (B). (D) The total solute flux across the boundary between the PVS and ECS at all depths at t=1h,with positive values indicating
flux from the ECS to the PVS, and negative values indicating flux in the opposite direction.

Table 1. Parameter values for the single-PVS local model.

parameter lower bound upper bound

arteriole radius rart (µm) 20 20

width of the PVS hPVS (µm) 1 20

width of the ECS hECS (µm) 100 500

depth of the ECS L (µm) 1000 1000

mean flow speed in PVS vPVS (µm s−1) 1 20

PVS diffusion coefficient DPVS (µm2 s−1) 180 180

ECS diffusion coefficient DECS (µm2 s−1) 62.3 62.3

solute transport across the boundaries, except in the case of flow in the ECS (as shown in the bottom row of figure 1B), where
solute advection across the outer wall is allowed but diffusion is not. The solute diffusivity is greater in the PVS than in the ECS.
Parameter values for the simulations are given in table 1.

We illustrate the effect of the clearance of solute by solving the time‑dependent Problem 1 assuming a uniform initial concentra‑
tion C= 1 of solute in the ECS. Results of the corresponding simulations are shown in figure 1B,C, where we plot the concentration
distribution in the domain at various times and the time dependence of the volume‑averaged concentration. In the top two rows
of figure 1B, there is no flow in the ECS (Scenario A). The top row shows the distribution when the concentration is artificially
maintained at zero along the outer surface of the PVS: this corresponds to instantaneous removal of solute that reaches the PVS
boundary, which can be thought of as corresponding to an infinite flow velocity in the PVS. (This zero‑concentration boundary
condition is sometimes used in brain‑clearance models.) In this case, concentration drops rapidly over time, there is no build‑up
of solute in the PVS, and the concentration distribution is independent of the axial (z) location; diffusion occurs only in the radial
direction.
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The second row in figure 1B shows the concentration distribution for a finite, realistic flow velocity along the PVS. Solute‑free
CSF enters the PVS at the top surface of the domain, and the uniform flow velocity is vPVS = 1 μm s−1. (This value of the veloc‑
ity is based on simulations in our network model described in §4: see figure 6C.) The solute concentration in the PVS increases
monotonically going downstream, as more solute enters from the ECS, so the concentration gradient across the PVS boundary
decreases monotonically, and hence the rate of removal of solute from the ECS decreases monotonically downstream. Comparing
these plots with those in the top row shows quite clearly the substantial effect of solute build‑up in the PVS, which reduces the
rate of clearance. Within the ECS, concentration varies in both the axial and radial directions, with concentration increasing with
z (into the brain). Thus, there is some back‑diffusion in the ECS, in the negative z‑direction, but this component of the diffusive
transport is generally weaker than the radial component, which operates across a shorter distance, until radial clearance is essen‑
tially complete. Figure 1D shows that radial diffusion into the PVS is strongest near the inlet and decreases rapidly with increasing
depth into the brain.

The third row of figure 1B shows the effect of adding a flow of ISF in the ECS (Scenario B). Here the entering flow speed in
the PVS is again 1 μm s−1. The flow in the ECS is a purely radial, outward Darcy flow driven by a 1‑Pa pressure drop imposed
between the outer boundary of the PVS and the outer boundary of the ECS, across which ISF is allowed to flow. The permeability
in the ECS is 𝜅ECS = 10−14 m2, and the mean flow velocity in the ECS is vECS = 0.038 μm s−1. Solute is cleared faster with this slow
flow than without it, as is also evident in the decay of concentration over time (figure 1C). Comparing the two curves with vPVS = 1
μm s−1 in figure 1C, solute is still mainly cleared by flow through the PVS in the case with ISF flow, and the additional clearance
is attributed to the ISF flow through the ECS. Figure 1D shows that solute transport into the PVS only occurs near the inlet and
advection by ISF dominates radial transport deeper into the brain.1

For this single‑PVS model, we also carried out simulations related to the steady‑state Problem 2, assuming a uniform source
term f for solute production in the ECS. The properties of amyloid‑𝛽 were used for the solute, and the generation rate was
f= 3.48 × 10−11 mol (m−3 s−1) [35]. Figure 2 shows how the average solute concentration depends on the sizes of the PVS and ECS,
the CSF flowvelocity and the permeability 𝜅ECS of the ECS (which governs ISF flowvelocity). The solute concentration distributions
plotted in figure 2D show clearly that the concentration is lowest near the PVS, as in figure 1, andmuch greater for larger values of
hECS. Figure 2B shows the average concentration in the ECS in simulations with varying hECS, again showing higher concentration
when hECS is larger. The spacing between arteriole and venule PVSs is a dominant factor in solute clearance: this will be shown
more realistically in the array model presented in the next subsection. Here there are two effects at play: the solute production
increases with increasing width hECS and the flow velocity in the ECS drops off with increasing hECS (see figure 2B) because the
driving pressure gradient is reduced (i.e. the fixed pressure drop occurs over a greater distance). The mean concentration in the
ECS decreases with PVS thickness hPVS (figure 2A) and with flow velocity vPVS in the PVS, consistent with the idea that a larger,
faster‑flowing region of clean CSF clears solute more quickly. This trend demonstrates why the C= 0 case in figure 1 produced
such rapid clearance: it corresponds to vPVS =∞.

In our simulations, clearance is promoted by flow not only in PVSs but also in the ECS. As figure 2 shows, the steady‑state
concentration is highest when flow in the ECS is prohibited and diffusion must act alone. When a flow in the ECS is driven by
a pressure drop, the concentration decreases monotonically as the permeability 𝜅ECS is increased, allowing faster flow in the ECS
and faster clearance by advection.

3.2. An array of arteriole and venule perivascular spaces
Next we consider a more realistic local model that incorporates an array of arteriole and venule PVSs embedded in a larger region
of the parenchymal ECS. Each PVS in the array is a uniform and straight annular cylinder, as in the single‑PVS model above,
and all the PVSs in the array are parallel. The relative numbers of arteriole and venule PVSs and their spacings in the array are
based on experimental data on these arrangements in the mouse brain [36], as modelled by Schreder et al. [37]. The dataset used
in this study is from the MATLAB file in the supplementary material in [37], Blinder_Coordinates.filtered, with the label ‘au’. As
illustrated in figure 3A, fluid flows along the arteriole PVSs, through a small reservoir, and then along the venule PVSs. For this
model, in addition to examining Scenario A (no flow in the ECS), we also examine Scenario B by including a flow of ISF in the
ECS. The flow in Scenario B is modelled as a Darcy flow in the porous PVSs and the ECS, following a procedure similar to that
in [37] but extended to a three‑dimensional computational domain. The flow is driven by a pressure difference between the outer
surfaces of the arteriole PVSs (which serve as sources of CSF) and the outer surfaces of venule PVSs (which serve as sinks). In the
simulations in figure 3B, the pressure at the outer surfaces of arteriole PVSs is 0.1 mmHg and the pressure at the outer surfaces of
venule PVSs is zero, and the resulting mean flow speed in the arteriole PVSs is approximately 1 μm s−1.

Figure 3B shows the solute concentration at three different times, for simulations with three different values of the ECS per‑
meability 𝜅ECS. The concentration decreases with time in all cases, but the decrease is strikingly slow in the absence of flow in the
ECS (𝜅ECS = 0) and is much quicker with greater permeability. The case with no ECS flow leaves more tracer in the tissue after 16
h than in the moderate‑permeability case (𝜅ECS = 3 × 10−15 m2) after 4 h or the high‑permeability case (𝜅ECS = 1 × 10−13 m2) after just
1 h.

Figure 3C shows the volume‑averaged concentration in the ECS as it varies over time, for various values of the ECS permeability
𝜅ECS. Consistent with figure 3B, the concentration decreases most slowly in the absence of flow, and the rate of decrease increases
with permeability. Also shown in figure 3B is the time decay of the average concentration (normalized by its maximum value)
measured in the experiments by Cserr et al. [19]. Those researchers infused radio‑labelled tracers into rat brains and measured the

1We mention in passing that the results presented in figure 1 are mathematically equivalent to an analogous problem in heat transfer, in which the domain represents
a simple heat exchanger, C is the temperature, D is the thermal diffusivity, and the results show the cooling in the outer annulus.
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Figure 2. Steady-state (Problem 2) simulations for the single-PVS model (figure 1A). The solute generation rate in the ECS is f= 3.48 × 10−11 mol (m−3 s−1) [35].
(A–C) The dependence of the volume-averaged solute concentration in the ECS on the PVS thickness hPVS, ECS thickness hECS and PVS velocity vPVS, for the case with no
flow in the ECS and several cases with flow in the ECS for different permeabilities (𝜅ECS). In panel (A), hECS = 200 μm and vPVS= 5 μm, and increasing hPVS decreases the
mean concentration in the ECS. In panel (B), hPVS = 10 μm and vPVS = 5 μm s−1, and increasing hECS increases the mean concentration in the ECS. In panel (C), hPVS = 10
μm and hECS = 200 μm, and increasing vPVS decreases the average concentration in the ECS. (D) The concentration distributions for hECS = 200, 300, 400 μm, with 𝜅ECS =
1 × 10−15 m2.

Figure 3. Time-dependent simulations (Problem1) for an array of PVSs in themouse brain [36,37]. (A) Schematic of simulation setup: CSF flows through an array of PVSs
of arterioles (red) and venules (blue), connected by a reservoir of small volume (purple). The arrows show the flow direction. Inmost simulations, fluid also flows through
the ECS, entering from arteriole PVSs and exiting to venule PVSs. (B) The spatial distributions of the concentration at different times are shown for three simulation cases:
no flow in the ECS,𝜅ECS =3 × 10−15 m2 and𝜅ECS =1 × 10−13 m2. Themean flow speed in the arteriole PVSs is approximately 1 μm s−1, while themean flow speed in the
ECS is considerably slower, decreasing rapidly with depth into the brain. (C) The mean concentration and the mean magnitude of concentration gradient in the ECS for
time-dependent simulations. The concentration decreases after the tracer is injected. The case with no flow in the ECS greatly overestimates the concentration, and the
case with 𝜅ECS = 3 × 10−15 m2 generally fits the experimental data of Cserr et al. [19]. For greater values of 𝜅ECS the magnitude of the concentration gradient is initially
larger shortly after tracer injection, but it decreases more rapidly over time.
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Figure 4. Steady-state simulations of an array of PVSs of arterioles and venules in amouse brain [36,37]. (A) Concentration (left column) andmagnitude of concentration
gradient (right column) at three different cortical depths. (B) The mean concentration in the ECS for solutes of different diffusivities. Higher values of DECS correspond to
solutes with smaller molecular masses. (C) The mean magnitude of the concentration gradient in the ECS for solutes of different diffusivities. (D) Solute flux alignment
eA ⋅ eD at depth z = 250 μm for 𝜅ECS = 3 × 10−15 m2. The directions of advective and diffusive flux typically differ by >90° near arteriole PVSs and <90° near venule
PVSs. Also shown are projections of the streamlines of the ECS flow onto the z = 250 μm plane.

tracer mass in the CSF after 1, 4, 18 and 28 h. Here we see that the simulation with a permeability of 𝜅ECS = 3 × 10−15 m2 fits the
experimental data well. In that simulation, the mean flow speed in the ECS was 11.9 μm h−1.

To justify the comparison between our simulation results for the mouse brain and the experimental results for the rat brain
by Cserr et al. [19], we enlarged the computational domain by 50% in all dimensions to represent the rat brain, in which the pial
vasculature covers three times as much area as in mice but has only twice as many penetrating vessels [36]. There is a clear size
difference between mouse and rat brains, with the typical volume of a mouse brain being 415 mm3 [38] and that of a rat brain
being 1765 mm3 [39], but the vascular networks in the cortex are similar in mouse and rat brains [36,40] and the venule–arteriole
ratio is 2.6 for rodents [41]. Our simulation of the rat brain with 𝜅ECS = 3 × 10−15 m2 showed that the normalized concentration in
the ECS after 28 h also matches that measured by Cserr et al., and the concentrations in mouse and rat brain simulations differ by
less than 5%.

The flow speed in the ECS varies substantially with cortical depth (depth into the brain): near the surface, the mean flow speed
is 78.5 μm h−1, which is in good agreement with the estimate of 60−190 μm h−1 by Bork et al. [25]. There, advection is strong and
solute is cleared faster than in deeper regions. This creates a concentration gradient (see figure 3B) and enhances solute diffusion
towards the surface.

Steady‑state simulations (Problem 2) with the PVS array were carried out with the same solute generation rate as in the
single‑PVS simulations, f= 3.48 × 10−11mol (m−3 s−1). Figure 4A shows the steady‑state concentration and the magnitude of the
concentration gradient for three cases: when flow in the ECS is prohibited, when the ECS permeability is 𝜅ECS = 3 × 10−15 m2 (the
value that gives a good match to the experimental data of Cserr et al., as shown in figure 3), and when the ECS permeability is 𝜅ECS
= 1 × 10−13 m2. The concentration is highest without ECS flow and lowest when the permeability is greatest, consistent with the
idea that advection in the ECS helps clear solute. Steady‑state concentration gradients follow the opposite trend, being steepest in
the absence of ECS flow and more gradual when ECS permeability is greater and the flow is faster. That is, the model shows that
advection facilitates a more uniform biochemical environment for brain tissue.

In addition to the case of amyloid‑𝛽, we simulated solutes of different diffusivities to study the effect of molecular mass on
solute transport. We assume that changing the molecular mass does not change the advective transport and changes only the
solute diffusivities in the PVSs and ECS, and that the diffusivity is inversely proportional to the cube root of the molecular mass,
based on the Stokes–Einstein equation. Figure 4B,C shows the variation of the mean concentration and concentration gradient
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in the ECS with ECS diffusivity, DECS, for various values of the ECS permeability 𝜅ECS. The mean concentration increases as DECS

decreases, consistent with the fact that lower diffusivity slows clearance. As shown in figure 4A, the steady‑state concentration is
highest without flow in the ECS and decreases with increasing ECS permeability.

In the ECS, the directions of the advective and diffusive fluxes vary substantially throughout the domain. Figure 4D shows the
solute flux alignment, that is, the scalar product of the unit vectors in the directions of the advective and diffusive fluxes (eA and
eD, respectively). The two fluxes tend to have directions separated by more than 90◦ (eA ⋅ eD < 0), and thus oppose each other, near
arterioles. On the other hand, the two fluxes tend to support each other (eA ⋅ eD > 0) near venules. Those observations are consis‑
tent with diffusion towards all PVSs (since solute concentration is lower in PVSs than in the ECS) occurring simultaneously with
advection away from arteriole PVSs and towards venule PVSs (in the direction of ISF flow). (Keep in mind that it is the divergence
of these fluxes, not the fluxes themselves, that determines the local rate of solute clearance.)

For a steady‑state simulation with ECS flow, figure 5 shows the local Péclet number 𝒫(x) at three cortical depths. 𝒫 is of order
unity or greater near the surface but much smaller in deeper regions. Note in figure 5B that near the surface and in the immediate
surroundings of an arteriole (within about 15 μm), 𝒫 is typically negative, implying that advection and diffusion act in opposite
senses. Near an arteriole, advection is decreasing local concentration by bringing low‑concentration fluid from the arteriole PVS,
but diffusion is increasing local concentration by bringing solute from other directions, where concentration is higher (compare
with figure 4D). However, slightly farther from the arteriole, 𝒫 typically reverses sign and becomes positive, implying that advec‑
tion and diffusion act in supporting senses. Beyond that maximum, flow away from the arteriole PVS means that advection tends
to increase the local concentration, as does diffusion. By contrast, regions around venules typically show no reversal of 𝒫; there,
advection and diffusion typically act in supporting senses. Reversals are not evident, either, around arterioles at greater depth
(see figure 5C,D). We attribute that observation to two complementary mechanisms: flow there is slower, and solute concentration
within the arteriole PVS is not as low.

This simulation shows that, although the local Péclet number 𝒫 is quite small throughout most of the ECS domain, the fact that
its magnitude is larger than unity in small regions near the arterioles is crucial, in that the pattern of solute clearance is completely
different from what it would be in the absence of a flow in the ECS. Although in this case a single, global Péclet number for the
ECS is small, and the local Péclet number is small throughoutmost of the ECS domain, it would bemisleading to say that diffusion
dominates advection in the ECS.

4. Global model of fluid transport using a hydraulic network model
Having found that local solute transport is greatly enhanced by advection in the ECS, we now consider the effect of advection
in the ECS on global fluid transport, using a previously published hydraulic network model of glymphatic flow in the mouse
brain [42]. This model includes a simplified representation of the pial PVSs, inspired by the vascular model proposed in [36], and
a brain‑wide configuration of penetrating vessels, as measured in [40] and [43]. The model encompasses nine generations of pial
PVSs, with 324 penetrating PVSs branching from the pial surface. Each penetrating PVS is surrounded by a boundary formed by
astrocyte endfeet separated by gaps through which fluid can pass. Beyond the gaps lies an axisymmetric, cylindrical region of
porous tissue. Penetrating PVSs are also connected to capillary PVSs, through which fluid can alternatively pass, as sketched in
figure 6A. (Although the existence of capillary PVSs is uncertain, we include them for completeness.) The inlet of this network
represents the PVS of the middle cerebral artery (MCA), and the network simulates flow along PVSs surrounding all vessels that
branch off of the MCA, as well as in the adjacent parenchyma [42], spanning approximately one‑third of a typical mouse brain.
All flows and pressures are modelled as steady.

As a hydraulic resistance model, the pressure drop in a PVS or the ECS is linearly related to the volume flow rate via the resis‑
tance to flow through that space. The precise value of hydraulic resistance for a PVSs or ECS segment depends on the parameters
described in table 2, and the relationship between parameters and hydraulic resistance values are described thoroughly by [42].
Additionally, the volume flow rate is conserved at bifurcations, connecting the network’s segments and resulting in a solvable
system of linear equations. Before these equations can be solved, additional boundary conditions must be applied at the inlet
and outlets of the model. The outlets of the model refer to the edges of the capillary PVSs and ECSs, which represent perivenous
spaces: the reference pressure is set to zero in all such spaces. Then, we select a pressure drop such that the flow speed along the
third of the model closest to the MCA inlet is 18.7 μm s−1, to match experimental particle‑tracking measurements of flow speed
along the MCA in that same region [11]. The result is the calculated flow rate through each PVS and segment of ECS, as well as
the corresponding pressure drop for each segment, for a given set of parameters.

While this model lacks the dimensional realism and time dynamics of the local simulations described above, its computational
efficiency allows repeated simulations with thousands of different values for parameters, such as the cross‑sectional areas and
permeabilities of the PVSs and ECSs. We ran 2000 simulations while randomly varying 10 key parameters over the ranges listed
in table 2 (which are the same as those used for a prior sensitivity analysis on solute transport following dye injection [54]). By
sweeping the ranges of estimated parameter values, we can estimate the average fluid‑dynamic behaviour despite the lack of
accurate in vivomeasurements. In the initial simulations, we allowed ECS flow, randomly varying 𝜅ECS between 1.2 × 10−17 m2 [21]
and 4.5 × 10−15 m2 [45].

The results of one such simulation are shown in figure 6B, using the value 𝜅ECS = 3.00 × 10−15 m2 that agrees closely with the
tracer experiments of Cserr et al. [19] (see §3 above). Fluid flows fastest near the inlet, nearly as fast throughout the pial PVSs,
and substantially slower in penetrating PVSs and passageways further downstream. In all the simulations allowing ECS flow, the
average flow speed in penetrating PVSs is about 1 μm s−1, although the flow speed itself can vary by orders of magnitude (figure
6C). Accordingly, we set the flow speed in penetrating arteriole PVSs to be 1 μm s−1 in the local‑model simulations described in §3.
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Figure 5. The local Péclet number,𝒫(x), for the steady-state amyloid-𝛽 simulation case with 𝜅ECS = 3 × 10−15 m2. (A) Concentration distributions and𝒫(x, t) at
depths z= 250 μm, 500 μm and 750 μm. Streamlines of the ECS flow are also shown. (B–D)𝒫(x) on the same slices, with yellow circles indicating arterioles, white
circles indicating venules, and white curves indicating projections of the three-dimensional streamlines plotted in panel (A). Note in panel (B) that |𝒫|> 1 near the
surface and particularly near PVSs of arterioles (see the enlarged image), indicating that advection is stronger than diffusion there. Far from the surface, |𝒫(x)|≪ 1,
indicating that diffusion is stronger than advection there. Overall, the dominance of advection near the surface sets the clearance pattern, which is quite different from
that in the absence of flow in the ECS.

Table 2. Parameters varied in global simulations, along with their ranges of variation.

parameter lower bound upper bound ref.

fraction pial efflux Epial 0 0.8 [44]

pial PVS area ratioΓpial 0.5 2 [11]

penetrating PVS area ratioΓpen 0.5 2 [11]

penetrating PVS permeability 𝜅pen (m2) 4.50 × 10−15 3.71 × 10−12 [45,46]

capillary PVS permeability 𝜅cap (m2) 2.25 × 10−18 4.66 × 10−14 [47,48]

capillary area ratioΓcap 0.07 2 [49,50]

capillary effective length Lcap (m) 5.00 × 10−5 4.00 × 10−4 [42]

capillary radius rcap (m) 1.50 × 10−6 4.5 × 10−6 [51]

endfoot wall thickness T (m) 2.00 × 10−7 1.00 × 10−6 [52]

endfoot cavity fraction Fc 0.003 0.37 [52,53]
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Figure 6. (A) A cylindrical extracellular region around a penetrating arteriole, as modelled. Arrows indicate fluid flow. (B) A sample network geometry, coloured by
segment type: perivascular spaces (PVSs) and extracellular space (ECS). The inset shows velocities for the case of ECS permeability 𝜅ECS = 3.0 × 10−15 m2. (C) A boxplot
of themean velocity in the penetrating PVSs from the simulations that allow ECS flow. The boxes identify the interquartile range, with simulations that produced outliers
identified by ’+’. The median velocity is 1.4 μm s−1. (D) Probability density of QECS∕(QECS + Qcap), the volume fraction of fluid that flows through the ECS rather than
through capillary PVSs. (E) The volume fraction of flow through the ECS depends primarily on 𝜅cap, the permeability of capillary perivascular spaces. When 𝜅cap is large,
the hydraulic resistance of capillary PVSs is small. In simulations that allow flow through the ECS, fluid moves at approximately 1 μm s−1 through penetrating PVSs and
flows primarily through extracellular spaces, unless the capillary PVSs have an extremely low hydraulic resistance.

In our global model, fluid leaving a penetrating PVS must either pass between endfeet and on through the ECS, or else pass
along capillary PVSs. In 70% of the global simulations allowing ECS flow, more than 99% of the fluid passes through the ECS
instead of the capillary PVSs (figure 6D). This finding suggests that a flow of ISF in the ECS plays a central role in the circulation
of water‑like fluid in the brain.

Next, we ran 2000 more simulations, randomly varying the parameters listed in table 2 as before, but prohibiting ECS flow by
choosing 𝜅ECS = 0. Figure 7A shows the pressure in one such simulation.

The total pressure drop p0 is large, exceeding 1.3 mmHg. That drop occurs almost exclusively in the capillary PVSs; pressure in
pial and penetrating PVSs is nearly uniform. For comparison, figure 7B shows the pressure in a simulation using identical param‑
eters, except that flow is permitted in the ECS (𝜅ECS = 3 × 10−15 m2). There, the total pressure drop is much smaller (0.05 mmHg)
and is not concentrated in any part of the network, instead occurring gradually throughout.

The trends apparent in these two examples persisted when we considered all our simulations collectively. First, prohibiting
ECS flow correlatedwith large total pressure drops. Among all simulations prohibiting ECS flow, the average pressure drop across
the global model was 249.08 mmHg, much greater than the 0.31 mmHg average for simulations allowing ECS flow. In fact, many
simulations without ECS flow had global pressure drops exceeding those in typical simulations allowing ECS flow by orders of
magnitude, as shown in figure 7C. Although the pressure drop between pial PVSs and lymphatic vessels has never beenmeasured,
its order of magnitude has been estimated to be 1 mmHg [55]. Simulations in which the pressure drop exceeds that value can be
considered unrealistic. According to that criterion, 78.3% of the simulations prohibiting ECS flow are unrealistic, compared with
just 6.5% of the simulations allowing ECS flow.

Second, the large pressure drops associated with prohibiting ECS flow occurred almost entirely in the capillary PVSs. Figure
7D,E shows that the mean pressure drops across pial and penetrating PVSs did not change appreciably when ECS flow was pro‑
hibited. When ECS flow was allowed, the mean pressure drops along pial and penetrating PVS channels were 3.1 × 10−4 mmHg
and 0.020 mmHg, respectively. When ECS flow was prohibited, the mean pressure drops across pial and penetrating PVS seg‑
ments became 3.0 × 10−4 and 0.037 mmHg. However, figure 7F shows that the mean pressure drop across capillary PVSs was far
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Figure 7. The ECS provides a low-resistance fluid pathway. (A) Pressure in each segment of the PVSs and ECS, in an example simulation where flow in the ECS is prohib-
ited. (B) Pressure in each segment, in a simulation that is identical except that flow in the ECS is permitted (𝜅ECS = 3 × 10−15 m2). (C) Probability density functions of the
global pressure drop p0, considering all simulations with and without flow in the ECS. Pressure drops greater than 1 mmHg are considered unrealistic. (D–F) Probability
density functions of the mean pressure drop in pial, penetrating and capillary PVSs. (G) Probability density functions of the mean pressure drop in capillary PVSs, as a
fraction of the global pressure drop. (H) Probability density functions of total volumetric flow rate through capillary PVSs. Prohibiting ECS flow causes large global pressure
drops which occur primarily in capillary PVSs (not in pial or penetrating PVSs) and are a consequence of large flow rates there.

greater when ECS flow was prohibited than when it was allowed, among all simulations. The mean pressure drop across cap‑
illary PVSs was 86.5% of the global pressure drop, on average, when ECS flow was prohibited, but only 16.0% when ECS flow
was allowed. Those averages are consistent with the underlying distributions, shown in figure 7G. The existence of large pressure
drops in capillary PVSs when ECS flow is prohibited is to be expected because blocking the ECS reroutes fluid through capillary
PVSs, resulting in far greater flow rates there (see figure 7H). If capillary PVSs exist, they must be small (see table 2), implying
high hydraulic resistance and therefore large pressure drops.

5. Discussion
In this study, we have considered advection and diffusion in the cerebrospinal and interstitial fluid filling perivascular and extra‑
cellular spaces in the brain, as they relate to the dispersion of an injected tracer and the clearance of metabolic waste. The results of
our local models and our global hydraulic network model suggest that a flow of ISF in the ECS is required to match experimental
data on tracer movement, interstitial pressure variation and waste clearance.

When there is no flow of ISF (Scenario A), our local models show substantially slower clearance than when ISF flow is included
(Scenario B), as shown for example in figure 3C, as well as steeper concentration gradients. In these simulations, the downstream
accumulation of solute in the arteriole PVSs substantially slows clearance by impeding diffusion into the PVSs. This accumulation
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could be reduced by higher flow speeds in the PVSs, but unrealistically high flow speeds are required to produce the rates of
clearance observed in experiments.

We find that the usual, overall Péclet number can be a poor indicator of the actual clearance mechanism in the parenchyma
because local effects can substantially alter global transport. To address this deficiency, we have introduced a local Péclet number
𝒫(x, t), defined as the ratio of the advective and diffusive terms (not characteristic scales) in the advection–diffusion equation.
This dimensionless parameter varies spatially and is large in small, localized regions surrounding the PVSs if arteriole and venule
PVSs serve as sources and sinks for a slow flow of ISF in the ECS. Those regions can substantially change the clearance pattern.
PVSs serve as sources and sinks in the proposed valve mechanism created by the endfoot gaps in the arteriole PVS wall [29–31],
in which arteriole pulsations drive a small amount of CSF from the PVS into the ECS and establish a pressure drop between the
arteriole and venule PVSs.

Using our multi‑PVS local model, we estimate the value of the ECS permeability from the experimental data of Cserr et al. [19]
by matching the rate at which the average concentration of a tracer decreases with time: we find the approximate value 𝜅ECS =
3 × 10−15 m2 for mouse and rat brains.

According to our global hydraulic network model, the overall pressure drop across the glymphatic system is unrealistically
large in most simulations in which ECS flow is prohibited, but realistically small in nearly all simulations in which ECS flow is
allowed. Additionally, in most of the simulations in which ECS flow is allowed, nearly all fluid passes through the ECS, not the
capillary PVSs. The large overall pressure drops in simulations in which ECS flow is prohibited arise because all fluid is forced
through capillary PVSs, small spaces with large hydraulic resistance where flow can proceed only with large driving pressure
gradients. From this, we would expect in vivo experiments to show substantial pressure gradients in the brain and fast ISF flow
around capillaries if there is in fact no ECS flow. Since this fluid behaviour has not been observed experimentally, and very fast
PVS flows would likely be observed in MRI, we conclude that slow flows in the ECS must occur instead.

Our results also provide insight into sleep–wake variations in solute transport. The results of our local models show faster
solute transport through the ECS when flow rates are higher, but the flow into the ECS results in a concentration profile that
depends substantially on depth in the brain. The behaviour of the high resistance, minimal flow case is similar to that in the brain
state of an awake animal, suggesting that there is slow, but uniform, transport of nutrients and ions into brain tissue when an
animal is awake. When the animal is asleep, the permeability of the ECS increases [28], leading to much faster clearance of natu‑
rally produced solutes (figure 3). This variation is in accord with a theoretical scaling analysis of the effects of the changes in ECS
permeability that occur from awake to asleep [27].

There are important caveats to this work. Values of several parameters needed to accurately simulate flows in penetrating
PVSs are unknown. While the configurations of surface PVSs have been carefully characterized [56,57] and the CSF flow fields
within them have been carefully measured [11–14], little is known about penetrating PVSs. In particular, cross‑sections and flows
in venule PVSs have not been measured. We attempted to overcome this uncertainty by using a range of parameter values to
estimate flow speeds in penetrating PVSs with the hydraulic network model. Since solute transport through the ECS is sensitive
to changes in the mean velocities in PVSs around arterioles and venules (figure 2C), our simulations may not match in vivo clear‑
ance if real flows are much faster or slower than 1 μm s−1 in penetrating PVSs. Additionally, precise pathways of CSF and ISF
flow are not known, and efflux routes are particularly uncertain. We have attempted to compensate by including many plausible
pathways in our global models. Finally, much of the brain’s waste is removed not by advection or diffusion but by phagocyto‑
sis and/or chemical breakdown. Waste may also be cleared by crossing the blood–brain barrier, though the idea is debatable. We
have said little about these alternative clearance mechanisms. That said, all would appear in our models as reaction terms, so if the
production rate f is interpreted as the net production (taking these other clearance mechanisms into account), the above analysis
and discussion holds true.

Solute transport by advection and diffusion in biological systems is complicated by the presence of semi‑permeable cell mem‑
branes. Solute transport around and through membranes is impeded by the unstirred layer effect [17]. This effect involves an
apparent reduction in membrane permeability as solute travelling via advection builds up around a membrane that is more per‑
meable to water than to the solute (as in a sieve). The small, high‑concentration region next to the membrane produces an osmotic
gradient opposing advection, thus decreasing transport through cells [58,59]. The effect of unstirred layers around cells, which
is not accounted for in our models, might reduce solute transport in and out of PVSs, where CSF must flow through small gaps
between astrocyte endfeet.

Our findings suggest future work. Our simulations of an array of penetrating perivascular spaces used the locations of vessels
in a mouse cortex; performing similar simulations using locations of vessels in a human cortex might reveal the extent to which
our findings are conserved across species. There are additional parameters to consider when comparing rodent and human brains
and when modelling different physiological and disease states [60]. The fact that rodents have more cortical veins than cortical
arterioles, but the reverse is true for primates, suggests that solute transport through the ECS, from arteriole PVSs to venule PVSs,
might differ in interesting and important ways. Similarly, our global model represents the domain of the middle cerebral artery
in a murine brain. The domain of a human middle cerebral artery is many times larger and involves more generations of bifur‑
cations and daughter vessels, so performing simulations like those described above for a human global model might reveal new
behaviours. Finally, experiments to reduce the uncertainty of model parameters would allow more precise predictions than we
can yet make. Measuring any of the properties listed in tables 1 and 2 more precisely would help; measuring the permeability of
penetrating PVSs is most important [54,61]. Measurements of pressure or concentration gradients could be used immediately to
validate and correct models and would have important implications for the field.
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Appendix A. Numerical methods for the local models
For the local models, we used the finite element method code COMSOL Multiphysics® 6.1 to perform the numerical simulations.
The simulations were performed in two steps: the first step was solving for the fluid velocity field and the second step was calcu‑
lating the concentration by solving the advection–diffusion equation (2.1). In the local models, the ECS was modelled as a porous
medium, but the PVS can be considered as either a porous medium or an open space, and both cases were simulated and com‑
pared in this study. When the PVSs were treated as porous media, the flow in the PVS was modelled as a Darcy flow by solving
the Darcy equation. When the PVS was treated as an open space, the flow there was modelled as laminar viscous flow by solving
the Navier–Stokes equation. For these two different approaches to modelling the fluid flow in the PVS, the variance in average
concentration in the ECS was found to be negligible (< 0.22%) when the average flow speeds were kept the same. Therefore, given
the lower computational cost, the PVS was considered to be a porous medium in the simulations reported here.

The fluid motion in the porous ECS is governed by Darcy’s law:

u=− 𝜅𝜇𝛁p, 𝛁 ⋅ u= 0, (A 1)

where u is the velocity field, 𝜅 is the permeability, 𝜇 is the dynamic viscosity of the fluid and p is the fluid pressure. In all
simulations, we used 𝜇= 0.7 × 10−3 Pa s, the viscosity of water at 37°C.

We first validated our numerical methods by comparing the numerical results with analytical solutions of one‑dimensional
advection–diffusion problems, obtaining good agreement. Mesh sensitivity studies were also performed to ensure that themeshes
were sufficiently fine to resolve the computational domains and that the numerical results did not change substantially when the
mesh size was decreased further. For the two‑dimensional axisymmetric cases the mesh size ranged from 1 μm to 5 μm, and for
the three‑dimensional cases the mesh size ranged from 1 μm to 25 μm.

References
1. Tamura R, Yoshida K, Toda M. 2020 Current understanding of lymphatic vessels in the central nervous system. Neurosurg. Rev. 43, 1055–1064. (doi:10.1007/s10143-019-01133-0)
2. Zhao L, Tannenbaum A, Bakker EN, Benveniste H. 2022 Physiology of glymphatic solute transport and waste clearance from the brain. Physiology 37, 349–362. (doi:10.1152/physiol.

00015.2022)
3. Bohr T et al. 2022 The glymphatic system: current understanding and modeling. iScience 25, 104987. (doi:10.1016/j.isci.2022.104987)
4. Hladky SB, Barrand MA. 2022 The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9. (doi:10.1186/s12987-021-00282-z)
5. Kelley DH, Thomas JH. 2023 Cerebrospinal fluid flow. Annu. Rev. Fluid Mech. 55, 237–264. (doi:10.1146/annurev-fluid-120720-011638)
6. Nicholson C, Phillips JM. 1981 Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257. (doi:10.

1113/jphysiol.1981.sp013981)
7. Nicholson C, Chen KC, Hrabĕtová S, Tao L. 2000 Diffusion of molecules in brain extracellular space: theory and experiment. Prog. Brain Res. 125, 129–154. (doi:10.1016/S0079-

6123(00)25007-3)
8. Nicholson C. 2001 Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64, 815–884. (doi:10.1088/0034-4885/64/7/202)
9. Nicholson C, Hrabětová S. 2017 Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113, 1–10. (doi:10.1016/j.bpj.2017.06.052)
10. Nicholson C. 2023 Sheet and void porous media models for brain interstitial space. J. R. Soc. Interface 20, 20230223. (doi:10.1098/rsif.2023.0223)
11. Mestre H et al. 2018 Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878. (doi:10.1038/s41467-018-07318-3)
12. Raghunandan A, Ladron-de-Guevara A, Tithof J, Mestre H, Du T, Nedergaard M, Thomas JH, Kelley DH. 2018 Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an

artifact of injection. eLife 10, e65958. (doi:10.7554/eLife.65958)
13. Boster KAS et al. 2023 Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proc. Natl Acad. Sci. USA 120,

e2217744120. (doi:10.1073/pnas.2217744120)
14. Toscano JD, Wu C, Ladrón-de-Guevara A, Du T, Nedergaard M, Kelley DH, Karniadakis GE, Boster KAS. 2024 Inferring in vivomurine cerebrospinal fluid flow using artificial intelligence

velocimetry with moving boundaries and uncertainty quantification. Interface Focus 14, 20240030. (doi:10.1098/rsfs.2024.0030)
15. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. 2018 The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 1–21. (doi:

10.1007/s00401-018-1812-4)
16. Ma Q, Ries M, Decker Y, Müller A, Riner C, Bücker A, Fassbender K, Detmar M, Proulx ST. 2019 Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137,

151–165. (doi:10.1007/s00401-018-1916-x)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ay
 2

02
5 

http://dx.doi.org/10.1007/s10143-019-01133-0
http://dx.doi.org/10.1152/physiol.00015.2022
http://dx.doi.org/10.1152/physiol.00015.2022
http://dx.doi.org/10.1016/j.isci.2022.104987
http://dx.doi.org/10.1186/s12987-021-00282-z
http://dx.doi.org/10.1146/annurev-fluid-120720-011638
http://dx.doi.org/10.1113/jphysiol.1981.sp013981
http://dx.doi.org/10.1113/jphysiol.1981.sp013981
http://dx.doi.org/10.1016/S0079-6123(00)25007-3
http://dx.doi.org/10.1016/S0079-6123(00)25007-3
http://dx.doi.org/10.1088/0034-4885/64/7/202
http://dx.doi.org/10.1016/j.bpj.2017.06.052
http://dx.doi.org/10.1098/rsif.2023.0223
http://dx.doi.org/10.1038/s41467-018-07318-3
http://dx.doi.org/10.7554/eLife.65958
http://dx.doi.org/10.1073/pnas.2217744120
http://dx.doi.org/10.1098/rsfs.2024.0030
http://dx.doi.org/10.1007/s00401-018-1812-4
http://dx.doi.org/10.1007/s00401-018-1916-x


14

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20250010

..................................................................................................................

17. Hladky SB, BarrandMA. 2024 Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 21,
57. (doi:10.1186/s12987-024-00532-w)

18. Thomas JH. 2019 Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J. R. Soc. Interface 16, 52–57. (doi:10.1098/rsif.2019.0572)
19. Cserr HF, Cooper DN, Suri PK, Patlak CS. 1981 Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. Renal. 240, 319–328. (doi:10.1152/ajprenal.1981.

240.4.F319)
20. Iliff JJ et al. 2012 A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147–111.

(doi:10.1126/scitranslmed.3003748)
21. Holter KE et al. 2017 Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899. (doi:10.1073/pnas.

1706942114)
22. Ray L, Iliff JJ, Heys JJ. 2019 Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 16, 6. (doi:10.1186/s12987-019-0126-9)
23. Koundal S et al. 2020 Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep 10, 1990. (doi:10.

1038/s41598-020-59045-9)
24. Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. 2023 Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation.

Fluids Barriers CNS 20, 62. (doi:10.1186/s12987-023-00459-8)
25. Bork PAR, Hauglund NL, Mori Y, Møllgård K, Hjorth PG, Nedergaard M. 2024 Modeling of brain efflux: constraints of brain surfaces. Proc. Natl Acad. Sci. USA 121, e2318444121. (doi:

10.1073/pnas.2318444121)
26. Bork PAR, Gianetto M, Newbold E, Hablitz L, Bohr T, Nedergaard M. 2024 Blood osmolytes such as sugar can drive brain fluid flows in a poroelastic model. Sci. Rep. 14, 29017. (doi:10.

1038/s41598-024-80593-x)
27. Thomas JH. 2022 Theoretical analysis of wake/sleep changes in brain solute transport suggests a flow of interstitial fluid. Fluids Barriers CNS 19, 30. (doi:10.1186/s12987-022-00325-

z)
28. Xie L et al. 2013 Sleep drives metabolite clearance from the adult brain. Science 342, 373–377. (doi:10.1126/science.1241224)
29. Bork PAR, Ladrón-de-Guevara A, Christensen AH, Jensen KH, NedergaardM, Bohr T. 2023 Astrocyte endfeetmay theoretically act as valves to convert pressure oscillations to glymphatic

flow. J. R. Soc. Interface 20, 20230050. (doi:10.1098/rsif.2023.0050)
30. Gan Y, Holstein-Rønsbo S, Nedergaard M, Boster KAS, Thomas JH, Kelley DH. 2023 Perivascular pumping of cerebrospinal fluid in the brain with a valve mechanism. J. R. Soc. Interface

20, 20230288. (doi:10.1098/rsif.2023.0288)
31. Gan Y, Thomas JH, Kelley DH. 2024 Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model. J. R. Soc. Interface 21,

20230659. (doi:10.1098/rsif.2023.0659)
32. Bennett TD. 2013 Transport by advection and diffusion: momentum, heat, and mass transfer. Hoboken, NJ: Wiley.
33. Syková E, Nicholson C. 2008 Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340. (doi:10.1152/physrev.00027.2007)
34. Bloomfield IG, Johnston IH, Bilston LE. 1998 Effects of proteins, blood cells andglucoseon the viscosity of cerebrospinal fluid.Pediatr.Neurosurg.28, 246–251. (doi:10.1159/000028659)
35. Mukherjee S, Tithof J. 2022 Model of glymphatic clearance of aggregating proteins from the brain interstitium. Phys. Rev. E 105, 024405. (doi:10.1103/physreve.105.024405)
36. Blinder P, Shih AY, Rafie C, Kleinfeld D. 2010 Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA 107, 12670–12675. (doi:10.1073/pnas.

1007239107)
37. Schreder HE, Liu J, Kelley DH, Thomas JH, Boster KAS. 2022 A hydraulic resistance model for interstitial fluid flow in the brain. J. R. Soc. Interface 19, 20210812. (doi:10.1098/rsif.2021.

0812)
38. Kovačević N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelman RM, Chen XJ. 2005 A three-dimensional MRI atlas of the mouse brain with estimates of the average and

variability. Cereb. Cortex 15, 639–645. (doi:10.1093/cercor/bhh165)
39. Welniak-Kaminska M, Fiedorowicz M, Orzel J, Bogorodzki P, Modlinska K, Stryjek R, Chrzanowska A, Pisula W, Grieb P. 2019 Volumes of brain structures in captive wild-type and

laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study. PLoS One 14, e0215348. (doi:10.1371/journal.pone.0215348)
40. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. 2013 The cortical angiome: an interconnected vascular networkwith noncolumnar patterns of blood flow.Nat. Neurosci.

16, 889–897. (doi:10.1038/nn.3426)
41. Qi Y, Roper M. 2021 Control of low flow regions in the cortical vasculature determines optimal arterio-venous ratios. Proc. Natl Acad. Sci. USA 118, e2021840118. (doi:10.1073/pnas.

2021840118)
42. Tithof J, Boster KAS, Bork PAR, NedergaardM, Thomas JH, Kelley DH. 2022Anetworkmodel of glymphatic flowunder different experimentally-motivated parametric scenarios. iScience

25, 104258. (doi:10.1016/j.isci.2022.104258)
43. Adams MD, Winder AT, Blinder P, Drew PJ. 2018 The pial vasculature of the mouse develops according to a sensory-independent program. Sci. Rep. 8, 9860. (doi:10.1038/s41598-018-

27910-3)
44. Lee H, Mortensen K, Sanggaard S, Koch P, Brunner H, Quistorff B, Nedergaard M, Benveniste H. 2018 Quantitative Gd‐DOTA uptake from cerebrospinal fluid into rat brain using 3D

VFA‐SPGR at 9.4T.Magn. Reson. Med. 79, 1568–1578. (doi:10.1002/mrm.26779)
45. Basser PJ. 1992 Interstitial pressure, volume, and flow during infusion into brain tissue.Microvasc. Res. 44, 143–165. (doi:10.1016/0026-2862(92)90077-3)
46. Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. 2021 Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS 18, 55. (doi:10.1186/s12987-021-00290-

z)
47. Asgari M, de Zélicourt D, Kurtcuoglu V. 2015 How astrocyte networks may contribute to cerebral metabolite clearance. Sci. Rep. 5, 15024. (doi:10.1038/srep15024)
48. Katz MA, Barrette T, Krasovich M. 1992 Hydraulic conductivity of basement membrane with computed values for fiber radius and void volume ratio. Am. J. Physiol. Heart Circ. Physiol.

263, 1417–1421. (doi:10.1152/ajpheart.1992.263.5.h1417)
49. Yurchenco PD. 2011 Basement Membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, 004911. (doi:10.1101/cshperspect.a004911)
50. Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA. 2007 The endothelial glycocalyx: composition, functions, and visualization. Pflügers Arch. Eur. J. Physiol. 454,

345–359. (doi:10.1007/s00424-007-0212-8)
51. Miyawaki T, Morikawa S, Susaki EA, Nakashima A, Takeuchi H, Yamaguchi S, Ueda HR, Ikegaya Y. 2020 Visualization and molecular characterization of whole-brain vascular networks

with capillary resolution. Nat. Commun. 11, 1104. (doi:10.1038/s41467-020-14786-z)
52. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. 2010 The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D

reconstruction. Glia 58, 1094–1103. (doi:10.1002/glia.20990)
53. Korogod N, Petersen CC, Knott GW. 2015 Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusionwith cryo fixation. eLife 4, e05793. (doi:10.7554/elife.05793)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ay
 2

02
5 

http://dx.doi.org/10.1186/s12987-024-00532-w
http://dx.doi.org/10.1098/rsif.2019.0572
http://dx.doi.org/10.1152/ajprenal.1981.240.4.F319
http://dx.doi.org/10.1152/ajprenal.1981.240.4.F319
http://dx.doi.org/10.1126/scitranslmed.3003748
http://dx.doi.org/10.1073/pnas.1706942114
http://dx.doi.org/10.1073/pnas.1706942114
http://dx.doi.org/10.1186/s12987-019-0126-9
http://dx.doi.org/10.1038/s41598-020-59045-9
http://dx.doi.org/10.1038/s41598-020-59045-9
http://dx.doi.org/10.1186/s12987-023-00459-8
http://dx.doi.org/10.1073/pnas.2318444121
http://dx.doi.org/10.1038/s41598-024-80593-x
http://dx.doi.org/10.1038/s41598-024-80593-x
http://dx.doi.org/10.1186/s12987-022-00325-z
http://dx.doi.org/10.1186/s12987-022-00325-z
http://dx.doi.org/10.1126/science.1241224
http://dx.doi.org/10.1098/rsif.2023.0050
http://dx.doi.org/10.1098/rsif.2023.0288
http://dx.doi.org/10.1098/rsif.2023.0659
http://dx.doi.org/10.1152/physrev.00027.2007
http://dx.doi.org/10.1159/000028659
http://dx.doi.org/10.1103/physreve.105.024405
http://dx.doi.org/10.1073/pnas.1007239107
http://dx.doi.org/10.1073/pnas.1007239107
http://dx.doi.org/10.1098/rsif.2021.0812
http://dx.doi.org/10.1098/rsif.2021.0812
http://dx.doi.org/10.1093/cercor/bhh165
http://dx.doi.org/10.1371/journal.pone.0215348
http://dx.doi.org/10.1038/nn.3426
http://dx.doi.org/10.1073/pnas.2021840118
http://dx.doi.org/10.1073/pnas.2021840118
http://dx.doi.org/10.1016/j.isci.2022.104258
http://dx.doi.org/10.1038/s41598-018-27910-3
http://dx.doi.org/10.1038/s41598-018-27910-3
http://dx.doi.org/10.1002/mrm.26779
http://dx.doi.org/10.1016/0026-2862(92)90077-3
http://dx.doi.org/10.1186/s12987-021-00290-z
http://dx.doi.org/10.1186/s12987-021-00290-z
http://dx.doi.org/10.1038/srep15024
http://dx.doi.org/10.1152/ajpheart.1992.263.5.h1417
http://dx.doi.org/10.1101/cshperspect.a004911
http://dx.doi.org/10.1007/s00424-007-0212-8
http://dx.doi.org/10.1038/s41467-020-14786-z
http://dx.doi.org/10.1002/glia.20990
http://dx.doi.org/10.7554/elife.05793


15

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20250010

..................................................................................................................

54. Quirk K, Boster KAS, Tithof J, Kelley DH. 2024 A brain-wide solute transport model of the glymphatic system. J. R. Soc. Interface 21, 20240369. (doi:10.1098/rsif.2024.0369)
55. Penn RD, Linninger A. 2009 The physics of hydrocephalus. Pediatr. Neurosurg. 45, 161–174. (doi:10.1159/000218198)
56. Tithof J, Kelley DH, Mestre H, Nedergaard M, Thomas JH. 2019 Hydraulic resistance of periarterial spaces in the brain. Fluids Barriers CNS 16, 19. (doi:10.1186/s12987-019-0140-y)
57. Raicevic N, Forer JM, Ladrón-de-Guevara A, Du T, Nedergaard M, Kelley DH, Boster K. 2023 Sizes and shapes of perivascular spaces surrounding murine pial arteries. Fluids Barriers CNS

20, 56. (doi:10.1186/s12987-023-00454-z)
58. Pedley TJ. 1983 Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q. Rev. Biophys. 16, 115–150. (doi:10.1017/s0033583500005060)
59. Patlak CS, Paulson OB. 1981 The role of unstirred layers for water exchange across the blood-brain barrier.Microvasc. Res. 21, 117–127. (doi:10.1016/0026-2862(81)90009-1)
60. Mehta RI, Mehta RI. 2024 Understanding central nervous system fluid networks: historical perspectives and a revised model for clinical neurofluid imaging. NMR Biomed. 37, e5149.

(doi:10.1002/nbm.5149)
61. Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. 2022 Sensitivity analysis on a network model of glymphatic flow. J. R. Soc. Interface 19, 20220257. (doi:10.1098/rsif.2022.0257)
62. Kimst, tithof. 2022 kimst12/gnm: fix typo in comments (v1.5). Zenodo. (doi:10.5281/zenodo.6540366)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 M

ay
 2

02
5 

http://dx.doi.org/10.1098/rsif.2024.0369
http://dx.doi.org/10.1159/000218198
http://dx.doi.org/10.1186/s12987-019-0140-y
http://dx.doi.org/10.1186/s12987-023-00454-z
http://dx.doi.org/10.1017/s0033583500005060
http://dx.doi.org/10.1016/0026-2862(81)90009-1
http://dx.doi.org/10.1002/nbm.5149
http://dx.doi.org/10.1098/rsif.2022.0257
http://dx.doi.org/10.5281/zenodo.6540366

	Advection and diffusion in perivascular and extracellular spaces in the brain
	Introduction
	Mathematical aspects of advection and diffusion in the brain
	Local models of clearance by advection and diffusion
	A single perivascular space and its surrounding extracellular space
	An array of arteriole and venule perivascular spaces

	Global model of fluid transport using a hydraulic network model
	Discussion
	Numerical methods for the local models
	References


