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Abstract

This thesis focused on the study of oscillatory flows in two special cases. First,

it explored the dynamics of peristaltic pumping and its role in the functioning

of the biological auditory system. Specifically, it was established that the tunnel

of Corti’s fluid, containing potassium ions, undergoes deformations at its walls

which push fluid, producing electrical signals that the brain interprets as sound.

To ensure healthy functioning of the auditory system, it was demonstrated through

the development of an experimental and analytic model that peristaltic pumping

plays a role in homogenizing the concentration of ions in the tunnel of Corti.

Furthermore, the experimental and analytic model provided a novel approach for

modeling complex waveforms in peristaltic pumping. The second oscillatory flow

study sought to gain a better understanding of flow dynamics in the glymphatic

system, which consists of oscillatory flows and complex channel networks with

bifurcations. It was found that an oscillating flow coupled with a junction was

sufficient to induce a directional flow.
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4.1 Left: Rendering of the key components of the experimental setup.

Right: Design images of the experimental setup. The side view

shows the hardware that makes up the experiment apparatus. . . 45

5.1 The figure shows a series of comparisons between the experimen-

tally measured (blue) and analytical model values from Yin and

Fung. a) Holding c = 30 cm/s and ϵ = 0.01 while varying the

wavelength λ yielded little change in the root-mean-square velocity

of the flow. The experimental values appear to have a small trend

but are not significant. Both values are still close in magnitude. b)

Holding c = 30 cm/s and λ = 30 cm while varying the amplitude ϵ

shows similar magnitudes of root-mean-square velocity and trends

for both the analytic model and experiment. c) Holding ϵ = 0.01

and λ = 30 cm while varying the wave speed c shows close agree-

ment in magnitudes of root-mean-square velocity and trends for

both the analytic model and experiment. d) Comparing the veloc-

ity profiles for the velocity in x at a fixed point in space and time

from the analytic model and experimentally measured values show

good agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xvi

5.2 The figure presented illustrates a comparison of velocity profiles

over one wavelength for the given parameters of λ = 30 cm, c = 20

cm/s, and ϵ = 0.01. The velocity profiles are represented by the

red line which depicts the analytically predicted velocity profile,

the blue line which displays the experimentally measured velocity

profile, and the green line which portrays the numerically calculated

velocity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 The root-mean-square velocity (equation A.6) in the bulk flow re-

gion was compared between experiments, modeling, and simula-

tions with a constant wavelength of λ = 30 cm. The comparison

was conducted for two values of ϵ = 0.01 (top panel) and ϵ = 0.05

(bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Average bulk flow velocity in the downstream direction for various

deformation waveforms including sinusoid (a), sawtooth (b), Gaus-

sian (c), and complex wave (d). Blue curves show analytic estimates

derived using the model from [8]. Red curves show experimentally

measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 The following figures illustrate a comparison of vorticity fields ob-

tained from an analytic model (a) and a simulation (b), along with

a plot of their difference (c). In each figure, the vorticity is nor-

malized by the absolute maximum vorticity of the model, while

maintaining the following parameters: λ = 500 µm, L = 16 µm,

ϵ = 0.0013, and c = 60 m/s . . . . . . . . . . . . . . . . . . . . . . 56

5.6 The flow rate, expressed as a dimensionless quantity using equation

5.5, was measured and found to vary with deformation amplitude

in accordance with the analytic estimates provided by [9] (black

curve). It is important to note that these results only apply to a

recirculating setup, in which the mean pressure rise is zero. . . . . 57



xvii

5.7 Examples of a) simulated, b) analytic, and c) experimentally mea-

sured particle pathlines, with c = 1 m/s, λ = 30 cm, and ϵ = 0.03.

Black points mark particle locations a period apart. . . . . . . . . 60

5.8 Comparison of Lagrangian mean fields with wave speed c = 1 m/s

(a), c = 10 m/s (b), and c = 100 m/s (c). In all cases, λ =

500 µm, L = 16 µm, and ϵ = 0.0013. The color bar is a ratio of

the Lagrangian velocity ud over the absolute maximum Lagrangian

velocity over the entire field |ud|. . . . . . . . . . . . . . . . . . . 62

5.9 Variation of the mean drift velocity udm with wave speed c and

nondimensional deformation amplitude ϵ, and the calculated Reynolds

number. The wavelength was held constant at λ = 30 cm. . . . . 63

5.10 a) Comparison of the normalized drift velocity profile ud/max(ud),

at different Reynolds numbers Re. The black line marks the zero

velocity point. b) Location of the edge of the reflux region, as pre-

dicted by the analytic model. The red line was obtained through

numerical integration of the Eulerian velocity field. The blue line

was obtained with the analytic model. The dots are the edge loca-

tion for the curves in figure a), and the color matches the relevant

Reynolds number. As the Reynolds number increases, the reflux

region shrinks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.11 The figure illustrates the variation in the concentration of a passive

scalar, influenced by both diffusion and the modeled Lagrangian

mean flow, as well as by diffusion alone. When subjected to flow,

the values of the parameters λ = 200 µm, L = 50 µm, ϵ = 0.002,

and c = 50 m/s are utilized, while the diffusion coefficient Ξ remains

constant at 7× 10−10 m2/s in both cases. It can be observed that

the peristaltic flow leads to greater mixing compared to the case

with diffusion alone. . . . . . . . . . . . . . . . . . . . . . . . . . 65



xviii

6.1 Sketch from [10] shows the structure of a glymphatic channel. The

channel surrounds the artery and exhibits an oscillatory flow. . . . 67

6.2 The diagram depicted in figure a) illustrates that due to the glym-

phatic system’s composition of numerous branching channels, it is

feasible to represent the system as an abstract fluid network model,

as noted by Tithof and colleagues in their recent publication [11].

figure b) shows an image of a channel bifurcation where measure-

ments were performed [10]. . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Flow measurements found in the glymphatic system from [10]. The

figure shows how the flow-tracking particles move directionally in

the channels with an oscillatory component. . . . . . . . . . . . . 68

6.4 Figure from Nguyen et al. [12]. (a) Shows the simulated looped

channel, the color is the speed of the flow along the channel at a

selected point in time. Speed is normalized by the maximum value.

At the bottom section, there is a piston driving the fluid. (b) The

figure shows computational results at the T-junction of a looped

channel in simulations. Four points of the cycle are plotted with

the respective vorticity. The plot shows that over the cycle, there

is some form of asymmetric flow structure in the cycle. This is

what the authors pointed out to be flow separation that results in

a valving effect, which ultimately produced a directional flow in the

looped section of the system. . . . . . . . . . . . . . . . . . . . . . 70



xix

7.1 Sketch of the preliminary experimental design. Shown are the chan-

nel configurations of the experiment. The system has two fluid

channel loops separated by a flexible membrane at one section.

The two tubes are TJ-1 with a length of L1 and TJ-2 with a length

of L2. A valve was in the system to help me fill the experiment

with water. During experiments, the valve was always open, when

closed no fluid was observed to be displaced in the passive loop.

The top blue arrows indicate the positive direction of the flow, for

this experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Detailed drawings of the experiment split channel. All dimensions

shown are in inches. a) Drawing of the entire assembly. b) Drawing

of the ‘lid’ layers. c) Drawing of the ‘channel’ layers. . . . . . . . 75

7.3 McMaster-Carr part no. 5117K13 schematic of the T-junction used

for experimental measurements. This junction was used for the

preliminary experiment, as well as testing the final experiment. . . 77

7.4 McMaster-Carr part no. 5117K69 schematic of the Y-junction used

for preliminary experimental measurements. . . . . . . . . . . . . 77

7.5 Shown is a measurement of particle positions at TJ-1 over time.

Each line represents a singular tracked particle. The positive direc-

tion of position is associated with the position from TJ-1 towards

TJ-2. Parameters for this plot were f = 2.25 Hz, γ = 4, Ltot = 40

cm. The scale was 125 pixels per mm. The lines show the os-

cillatory nature of the motion, with an added nonperiodic drift.

Understanding the source of the nonperiodic drift is the focus of

this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xx

7.6 Shown is the maximum instantaneous speed as a function of the

total loop length Ltot. The loop ratio was held constant γ = 4 and

f = 2.5 Hz. Measurements in blue were performed at a section of

TJ-2. Measurements in red were performed at a section of TJ-1.

The maximum instantaneous speed decreases with increasing total

loop length Ltot. The data suggest that this decrease is likely due

to an increase in resistance from viscosity in the loop. This is in

agreement with the expectation that resistance to flow in a pipe

increases linearly with Ltot. The plot shows each tube of the loop

has different speeds related to the difference between L1 and L2,

likely due to viscous resistance to the flow. Note that speed has no

direction, and if the direction were to be applied, the measurements

for TJ-2 would be negative. . . . . . . . . . . . . . . . . . . . . . 81

7.7 Measurements of the net velocity of particles at TJ-1 when the

frequency of the peristaltic pump is varied. The plot shows an

upward trend in net velocity where it peaks somewhere between 2

Hz to 2.75 Hz. The loop ratio was γ = 4 and loop length Ltot = 40

cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.8 Measured maximum instantaneous speed of particles at TJ-1 as

the frequency is varied. Other parameters were held constant at

Ltot = 80 cm, γ = 4. Similar to figure 7.7, the particles’ maximum

instantaneous speed appears to peak around the same frequency

range. One potential explanation for the speed peaking around a

specific frequency is that the rubber membrane is excited at that

frequency, and as such the maximum amount of deformation to

displace fluid in the active channel occurs at around 2.5 Hz. . . . 83



xxi

7.9 A series of measurements of net flow for different values of the loop

ratio γ and two different total lengths Ltot were plotted at a fixed

frequency of f = 2 Hz. The results indicate that no consistent

pattern emerges regarding how γ affects the flow. However, note-

worthy variations are evident near γ = 1, which can be explained

by the expectation of no net flow at this point, and the consequent

potential for drastic changes as we move away from it. . . . . . . 84

7.10 Shown are the tested configurations for different geometrical con-

figurations that I tested. The resulting measured net velocities are

shown in table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1 Sketch of the final experimental design. The system differs from the

preliminary one (Figure 7.1) as it only has one looped channel. Flow

is driven into the channel with a syringe pump and the membrane

on the other end is allowed to deform to allow fluid into the loop.

The two tubes are TJ-1 with a length of L1 and TJ-2 with a length

of L2. The blue arrow indicates the positive direction of the flow. 91

8.2 Schematic of the final T-junction design. This T-junction geome-

try was used for the final experiment where the junction was con-

structed to allow visualization of the flow inside. . . . . . . . . . . 92

8.3 Downstream particle positions in a section of T-1, with each particle

path colored differently. a) With parameters f = 1 Hz, S = 2.0

mm, γ = 4, Ltot = 80 cm, particles and the surrounding fluid have

a net velocity, as they drift away from the visible area. b) With

parameters f = 0.5 Hz, S = 2.0 mm, γ = 4, Ltot = 80 cm, particles

oscillate without any net velocity. . . . . . . . . . . . . . . . . . . 93



xxii

8.4 Shown in the figures are net velocity measurements measured at TJ-

1 as a function of frequency. Each panel represents measurements

with different values of γ, where a) γ = 2, b) γ = 3, c) γ = 4, and

d) γ = 7. Each colored line represents a different value of Stroke S.

The plots help establish trends in the system, where it can be seen

that higher values of S and f lead to higher net velocities. It is

also possible to have negative velocities in the case of small values

of both S and f . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.5 The data presented in the figures demonstrate the efficiency of gen-

erating a net flow through a calculation. Notably, the lowest fre-

quencies are associated with the highest absolute efficiency. . . . . 96

8.6 Shown is a plot of the maximum amplitude measured at TJ-1 versus

the loop ratio γ. The total loop length was Ltot = 80 cm. Each

of the colors represents a different value of S. The scatter clearly

shows how the amplitude increases as γ decreases. The values also

converge towards the expected amplitude as γ → 1. The expected

amplitudes are plotted as exes. . . . . . . . . . . . . . . . . . . . 98

8.7 Shown is a sketch of the analytic model. The model considers

steady flow at a two-dimensional system of three channels con-

nected by a T-junction. The perpendicular channel imposes a flow

rate, simulating the conditions of the syringe pump. The two out-

let channels are labeled as 1 and 2, they have their own respective

lengths and are open to the atmosphere. Each channel’s flow rate

is described by Q∗ with their respective label. . . . . . . . . . . . 100



xxiii

8.8 Sketches of the three configurations that were tested. a) The Sym-

metric configuration connected the central arm of the T to the sy-

ringe pump (IO). b) The Short configuration connected the central

arm to the short tube (TJ-2). c) The Long configuration connected

the central arm to the long tube (TJ-1). . . . . . . . . . . . . . . 101

8.9 Measurements of the net velocity in a section of TJ-1 for differ-

ent interconnection configurations. For the Long configuration, the

direction of the flow is reversed. The effects of S and f on the

magnitude of the net flow remained the same as shown in figure 8.8. 102

8.10 Visualizations of the flow at the T-junction during the push and

pull portions of a cycle for two configurations: γ = 1 and γ = 3.

Dark regions indicate flow separation, which is located in the center

of the symmetric γ = 1 configuration and shifted towards the inlet

of TJ-1 for the asymmetric γ = 3 configuration. This indicates that

changing γ induces an asymmetry in the flow. Reynolds number as

defined by equation 8.1 was 30 for all cases shown. . . . . . . . . . 103

8.11 The particle paths at a T-junction for two configurations at two

different stages of the cycle have been analyzed. Magenta lines in-

dicate paths occurring during the pull part of the cycle, while cyan

paths indicate the push part. Blue and red curves mark the ap-

proximate location of the separatrix for each part of the cycle. The

green line is the width of the channels, and the green circle is the

analytically approximated separatrix location. Reynolds number

as defined by equation 8.1 was 30 for all cases shown. . . . . . . . 105



xxiv

8.12 This is a simplified view of the model I simulated using Fluent soft-

ware. I created a two-dimensional T-shaped connection with long

channels attached to it and labeled the distances between them.

The width of the channels is represented by the variable Dc. The

orange section at the junction is where I focused on understand-

ing the separatrix position, which is where the flow splits into two

channels at the purple dotted line. . . . . . . . . . . . . . . . . . . 109

8.13 The numerical calculations shown in the figures depict streamlines

for various γ values, based on the model illustrated in Figure 8.12,

with a Reynolds number of 30. The visualized area of interest is

specifically the region highlighted in orange in Figure 8.12. The

position of the separatrix is determined by extracting the position

where the streamlines divide the flow between outlets/inlets along

the purple line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.14 Shown is a plot of the estimated separatrix position from the ana-

lytic model and numerical simulations. Two cases are shown, one is

for a system where the channel gap Dc matches that of the experi-

ment (5 mm), and another is Dc = 20 mm in order to test the sen-

sitivity to changes in Dc. Reynolds number was held at ReT = 30

to match experimental values. The comparison shows the model is

perfectly accurate, however, it captures the relationship between γ

and the separatrix position well. . . . . . . . . . . . . . . . . . . . 111



xxv

8.15 The present illustration presents a comparison between the analyt-

ically estimated separatrix position for a given γ and the numeri-

cally measured separatrix position during the pull and push phases

for a given γ. It is noteworthy that the analytic model predicts

a position that lies between the two while correctly reflecting the

impact of γ. This suggests that the model captures only a partial

view of the dynamics, as the discrepancy is likely attributable to

dynamics caused by the T-junction that are not accounted for by

the Poiseuille flow model. . . . . . . . . . . . . . . . . . . . . . . . 112

8.16 The figure illustrates a comparison of three streamlines obtained

using Fluent software, specifically at the T-junction section. In

each case, we set Dc = 5 cm and γ = 3, while varying the Reynolds

number as labeled. The top left of each panel indicates the position

of the separatrix at the inlet location. . . . . . . . . . . . . . . . . 113

8.17 The particle paths at the T-junction for both the short and long

configurations are marked in magenta and cyan, respectively, to in-

dicate whether they occur during the pull or push part of the cycle.

Blue and red curves give an approximate location of the separatrix

for each part of the cycle. Overall, the different directions of flow

create a net velocity in the loop. The green line is the width of

the channels, and the green circle is the analytically approximated

separatrix location. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 The drawing shows the assembly of the experiment using the parts

previously described. Indicated is how the top section of the chan-

nel applies compression on the rubber sheet to secure it in position,

and produce a seal. . . . . . . . . . . . . . . . . . . . . . . . . . . 130



xxvi

A.2 Schematic of the bottom component of the channel in the experi-

mental device. All units are in inches. Notably, I machined a small

slot where the side walls are inserted to introduce a rubber strip to

act as a seal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Schematic indicating the location of the rubber seal (McMaster

Square-Profile Oil-Resistant Buna-N O-Ring Cord Stock, part num-

ber 9700K12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.4 The drawing shows the end walls (or caps) of the channel. The

middle hole is an NPT 1/8 threaded hole where a hose is connected

to the rest of the fluid system. The units shown are in inches. . . 133

A.5 The figure is a sketch that indicates how the major components of

the experiment were interconnected. In essence, the experiment set

up was a channel connected to a series of valves to allow me to fill

the channel with fluid, ensure that the system has no trapped bub-

bles, and change the boundary conditions of the system by closing

or opening valves, or change the pressure conditions by changing

the amount of fluid at each reservoir, creating a pressure gradient

along the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.6 The sketches contrast the effects of a thick and thin rubber wall

on the experiment. a) Is an example where the rubber is thick,

and so as an actuator deforms the sheet, it creates a smooth curve

between actuators. b) Is an example of a thin rubber wall, where

the wall only deformed locally, creating a sort of dimple, instead of

a smooth curve between actuation points. . . . . . . . . . . . . . 135



xxvii

A.7 Comparison of an aligned (a) and misaligned actuator (b). The

sketch shows how a misaligned actuator would increase friction in

the contact region with the bottom section, as well as not pro-

duce an accurate vertical displacement due to an added horizontal

displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.8 The figure shows an image of the PCB board I designed for con-

trolling the experimental hardware. . . . . . . . . . . . . . . . . . 138

A.9 A sketch is presented that demonstrates the algorithm used to de-

termine if a stepper motor must take a step. The red and blue

curves represent conceptualized wall positions, and the circles sym-

bolize the position of the ith stepper motor. The middle image

exhibits the calculation necessary to decide if a step must be initi-

ated between time n and n+ 1. . . . . . . . . . . . . . . . . . . . 140

A.10 Stalling torque curves for stepper motors from Pololu’s datasheets

[13]. PPS stands for pulse per second, the vertical axis is units

of torque. Both curves are given for the half-step mode and are

expected to have lower values for finer microstepping. a) Pololu

Bipolar NEMA 7 3.9 Volt 0.6 stalling torque curve. Amp/phase b)

Pololu Bipolar NEMA 14 10 Volt 0.5 Amp/phase stalling torque

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



xxviii

A.11 Shown is a plot of experimental measurements. The x and y axis

are positions in the visualization window of the experimental mea-

surements. The red lines show particle paths measured using PTV

when a peristaltic motion is forced in the system. The blue lines

show measured particle paths where a low pass filter was applied

on the red measurements, attempting to eliminate the oscillatory

component of the particle path. The green lines were PTV mea-

surements with no forcing on the system. It is very notable that the

particles appear to follow a path that resembles Rayleigh-Bernard

convection, where hot fluid travels upwards, and cold fluid down-

wards producing a vortex-like structure. . . . . . . . . . . . . . . 145

A.12 Plotted are temperature measurements over time at three locations

in the experimental device. These measurements were conducted

while heating the top of the experiment. The sketch shows the

location where I placed thermocouples for temperature measure-

ments, the color of the plots matches the sketch locations. Over

time a temperature gradient is produced and increases in the ex-

periment between the top and the bottom. Plotted in pink circles

are Vrms measurements of particles in the fluid. My hope from this

experiment was to be able to eliminate the background flow as a

stable temperature gradient is induced in the system. However, as

the measurements of Vrms, the added temperature gradient did not

eliminate the presence of a background flow. . . . . . . . . . . . . 146

A.13 Shown are measurements of the net velocity at TJ-1 as a function

of f . These are the only measurements where the system used

glycerin instead of water. The data was noisy but clearly shows a

net velocity is present. The direction of the flow is negative for all

measurements, unlike previous measurements with water. . . . . . 148
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1 Introduction

In this thesis, I explore oscillatory flows in different systems, their implications

on physiological systems, and their transport properties. Oscillatory flows are

defined as a flow where the velocity field is periodic in time and has a periodic

directionality. A simple example of an oscillatory flow is a tube where the fluid

moves back and forth periodically.

1.1 Introduction

This thesis presents a series of studies on oscillatory fluid flows. Oscillatory flows

are characterized as fluid flows in which the velocity follows a periodic pattern

over time. This phenomenon can be expressed mathematically as

uoscillatory = U0fperiodic(t), (1.1)

where t is time, uoscillatory represents the fluid velocity, U0 is a velocity scale, and

fperiodic(t) is a periodic function of time, such as sine or cosine. It should be noted

that uoscillatory and U0 may have dependencies on other dimensions than time and

still be considered oscillatory flows. For example

uoscillatory = sin(y) cos(x− t), (1.2)
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where x and y are spatial dimension variables. A visual example of an oscillatory

flow can be found in figure 1.1.

� 0, 0

sin �( )

� = 0, = 1

� = 0, = 2 … � = 0, = 0
� = 0, = 7

Figure 1.1: Shown is a sketch of a fluid-filled channel where an oscillatory flow is present. The

black dotted lines indicate the center line from which the continuous black line gives the velocity

profile of the flow at that point. The velocity profile is periodic and changes direction over the

cycle. As such the profile oscillates over time.

Oscillatory flows play an important role in nature and industrial applications.

The dynamics of oscillatory flows are not fully understood, since they can have

dramatically different behaviors from non-oscillatory flows. As an example, con-

sider a simple flow in a pipe (also referred to as Poiseuille flow). One simple way

to describe the flow behavior is to look at the Reynolds number. The Reynolds

number for Poiseuille flow is

RePoi =
UpipeDpipe

ν
, (1.3)

where Upipe is the average velocity of the flow at the pipe, Dpipe is the diameter

of the pipe, and ν is the kinematic viscosity of the fluid. The Reynolds number,

a dimensionless quantity, provides valuable information by measuring the ratio of

inertial and viscous forces in the flow. Applying the Reynolds number in analysis

can be of great value in determining the characteristic dynamics of a flow within
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a pipe. However, calculating the Reynolds number for oscillatory flows is more

challenging since the velocity is not constant. If one assumes that an oscillatory

flow is solely a function of time, such as sin(t), computing the average would result

in a value of zero, despite the fact that sin(t) possesses instantaneous speeds that

are non-zero.

Given the prevalence of oscillatory systems found in nature, many previous

studies [9, 14, 15] have developed techniques and approaches to analyze the dy-

namics of different oscillatory flows. Later in this thesis, I show how I approached

these challenges in understanding oscillatory flows. The goal of my studies was

to develop a better understanding of oscillatory flows found in the human inner

ear. To accomplish this aim, I conducted experimental and analytical analyses,

striving to replicate the flow conditions observed in the actual system as closely

as possible.

Oscillatory flows are a general term for flows that exhibit a variation in time.

While different oscillatory flows can share the criteria of a periodic flow in time,

they can be dynamically different. To better illustrate this concept, consider that

oscillatory flows can be induced in various ways, e.g. a piston moving back and

forth displacing fluid or a periodic pressure gradient on a pile. Experimental

observations suggest that the flow in the inner ear is generated via periodic defor-

mations of the walls that contain the fluid. This means that the type of oscillatory

flow found in the inner ear appears to be produced by peristaltic pumping. Thus,

peristaltic pumping is one of the key types of oscillatory flows I study in this

thesis.

In order to model and understand peristaltic pumping flows in the inner ear I

used two approaches. First, I performed analytic analysis and was able to develop

a simple and accurate analytic model of peristaltic flows for the parameter range

of the inner ear. Second, I constructed and ran an experiment. The experiment

consisted of a tabletop device that acted as a peristaltic pump. The device was
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capable of recreating peristaltic pumping with similar characteristics to those

found in the inner ear. I performed cross-validation between the analytic and

experimental results. Finally, I used the analytic model to determine if peristaltic

pumping could play a role in the function of the inner ear by inducing fluid mixing.

I found that peristaltic pumping does have a mixing effect and demonstrated the

ability of the analytic model to model the mixing characteristics for the inner ear.

Another problem of interest in oscillatory flows is understanding flows and

mass transport in the glymphatic system. The glymphatic system is a biological

system that helps remove waste proteins from the brain. It is composed of a

network of channels that transport cerebrospinal fluid, which helps to cleanse

the brain of toxins and metabolic waste. At the time of writing, the physical

mechanisms that produce mass transport in the glymphatic system are still an

open question. Observations have shown [11] that the glymphatic system consists

of a network of small channels which appear to exhibit an oscillatory flow, with

some net transport properties.

I hypothesized that deformations of the wall are the mechanism that induces

mass transport in the glymphatic system. However, my study of the inner ear

suggested that peristaltic pumping was an unlikely candidate for the mechanism

driving flow in the glymphatic system. This is due to the small deformations that

have been observed in the glymphatic system are predicted to produce different

flow characteristics than the ones that have been observed. As I discuss details

of peristaltic pumping in chapter 2 and discuss flows in the glymphatic system in

more detail in chapter 6, the challenge to the hypothesis that peristaltic pumping

is what drives flow transport in the glymphatic system will become evident.

Similar to the study motivated by the inner ear, I created an experimental

device designed to simulate conditions that resemble those present in the glym-

phatic system. While my model successfully replicated some of the glymphatic

system’s characteristics, it became apparent during the course of the experiment
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that the significant findings I obtained would be constrained in their similarity to

the glymphatic system.

The experiment consisted of a closed-loop channel, where I induced an oscil-

latory flow. The closed-loop channel was set up in such a manner that the fluid

has to pass through a T-junction. Based on my experimental observations, the

configuration of the closed-loop channel with a junction can result in a net flow

along the closed-loop, depending on how it is set up. It appears that the geo-

metric properties of the closed-loop allow for the oscillatory flow to possess a net

directional component, in addition to its oscillations.

1.2 Overview of the Thesis

Chapters 2 through 5 of this document are focused on an in-depth study of peri-

staltic flows, specifically within the context of the inner ear. These chapters have

been devoted to exploring the context and significance of my study of peristaltic

pumping, outlining the experimental design, presenting the results of analytic

analyses, and engaging in discussions of the outcomes.

Chapters 6 through 8 of this thesis are dedicated to my research on oscillatory

flows in closed-loop channels. The purpose of this study was to develop a model

that could enhance our comprehension of the glymphatic system’s flows. While the

method employed in these chapters may not be the optimal analog, the research

findings are substantial and could have potential applications in other systems.

The chapters detail the motivation behind the study, the experimental design, the

analytic analysis, and an extensive discussion of the findings.

Chapter 9 serves as the concluding segment of this thesis. In this chapter, a

comprehensive summary of the key findings derived from the studies is presented,

along with a discussion of their implications. Additionally, the chapter highlights
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how these findings align with the overarching theme of oscillatory flows, thereby

bringing together the entirety of the research presented within this thesis.
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2 Modeling Peristaltic Flows in

the Inner ear

The following four chapters are dedicated to the series of experiments and analytic

methods that I used to study peristaltic flows. The focus for these experiments

was targeted towards developing a better understanding of flows in the inner ear

as briefly discussed in section 1.2.

2.1 Introduction

To begin, let me introduce and contextualize what peristaltic flows are, why they

are important, and why I was motivated to develop this study.

2.1.1 Importance of Peristaltic Pumping

Peristaltic pumping is a mechanism that is found often in various biological sys-

tems and specialized industrial applications for pumping fluids. Some examples

of such systems and applications are: Pumping in the stomach [4], pumping in

the urethra [16], medical applications [17], pumping sterilized industrial fluid [18],

etc. Peristaltic pumping is unique in that it uses the deformation of the channel

boundary to produce flow, unlike other pumping mechanisms that one will com-

monly see on a daily basis. That is, the channel containing the fluid deforms in
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such a manner that it displaces fluid through the system. For peristaltic pumping

the deformation is specifically enforced by the boundary’s periodic deformation,

traveling along the channel. Peristaltic pumping, even though it operates using

deformable walls, does not consider any form of fluid-structure coupling. In other

words, the material properties of the deformable walls are not of importance. This

is different from other forms of pumping where the boundary is deformed, such as

impedance pumping, where the material properties play an important role. Fig-

ure 2.1 is a sketch that illustrates the basic principle of how peristaltic pumping

works.

λ

�

�
�

Figure 2.1: The diagram presented depicts the fundamental principles of peristaltic pumping.

Specifically, a channel containing fluid, denoted by the color blue, experiences periodic defor-

mation of its upper boundary through the action of green circles. These circles travel at a wave

speed denoted by c and possess a wavelength represented by λ. The deformation of the channel

occurs by an amplitude denoted by A. As the green circles move toward the right side of the

illustration, fluid displacement occurs, constituting the mechanism through which peristaltic

pumping functions.

Peristaltic pumping is a process that involves the periodic deformation of the

walls of a fluid-filled channel in a specific direction. The parameters that describe

this process are the channel gap L, the deformation (or wave) amplitude A, a

characteristic wavelength λ, and a deformation (or wave) speed c.

Fundamentally, the flow characteristics between a peristaltic pump that oper-

ates using amplitudes where the ratio ϵ of the channel gap to wave amplitude is

large (ϵ = A/L≫ 0) are very different from the case where the amplitude ratio is

small (ϵ = A/L ≈ 0). To provide some physical intuition to the reader, the sketch
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in figure 2.2 is a visual guide to help illustrate how different dynamics ought to be

expected. In the case of small amplitudes, observations show that an oscillatory

flow is produced, where the fluid travels back and forth in the channel at some

frequency. Obviously, in the case of large amplitudes, the wall deformation covers

the entire channel and the fluid can only flow in one direction.

Most commercially available peristaltic pumps operate using amplitudes that

span the entire channel gap L, for example: Xsample 200 from the manufacturer

Anton Paar, and the Preciflow peristaltic pump from the manufacturer Sigma

Aaldrich. The reason for this is that pumping efficiency (how much fluid is dis-

placed for a given energy input) is proportional to the amplitude [19], thus max-

imum efficiency is achieved when A = L. On the other hand, small amplitude

peristaltic pumping is found more frequently in nature [20, 21], and has been

present in exploratory applications for microfluidics devices [22, 23].

�

�

Figure 2.2: The purpose of this illustration is to demonstrate the distinct manners in which

a peristaltic pump with a small amplitude (a) and one with a large amplitude (b) interact

with the fluid domain. As depicted, in the latter scenario, the deformation of the channel is

more pronounced, and the fluid becomes trapped as a result. Consequently, the available paths

through which the fluid can travel are more limited when compared to the case of a smaller

amplitude peristaltic pump.

The previous examples provide a clear demonstration of the critical role that

amplitude plays in determining the dominant physics of peristaltic pumping. In
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order to streamline my study of the inner ear and avoid introducing unnecessary

complexity to my model, it was crucial to identify these dominant factors. How-

ever, it is important to acknowledge that other parameters also have a significant

impact. For example, wave speed has an intuitive effect on the flow velocity in

peristaltic pumping, as faster waves would push the fluid faster. To gain a bet-

ter understanding of the quantitative impact of each parameter, I explored their

respective roles in the peristaltic pumping process.

Illustrated in figure 2.3, the inner ear of humans contains a small, fluid-filled

channel known as the inner ear labyrinth, where an organ called the cochlea

resides. This part of the inner ear is shared among mammals [24]. The function of

the cochlea is to convert sound waves into electrical signals that can be interpreted

by the brain as sound [24].

� �

Figure 2.3: Sketches showing the inner ear and cochlea of a human. a) shows a sketch labeling

different parts of the inner ear. Figure was modified from [1]. b) Shows a sketch of the organ

named the cochlea. It shows how the cochlea is a spiral structure with two fluid-filled channels

inside of them. The marked frequencies are the locations in the cochlea that are stimulated

when hearing a frequency. Figure was taken from [2].

Straightening out the spiral structure of the cochlea and zooming in, one finds

a channel within the cochlea named the tunnel of Corti. Figure 2.4 shows a
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sketch of the stretched-out cochlea. The tunnel of Corti is the location where

essential chemical reactions occur for auditory function. A more detailed view of

the structure of the channel can be seen in figure 2.5. Inside the tunnel of Corti,

as a sound stimulates the cochlea, sections of the channel consume ions to produce

an electrical signal [24]. This is because the location where the chemical reaction

occurs is dependent on the frequency of the sound. This raises an important

question: since ion consumption is localized and dependent on frequency, how

does the tunnel of Corti remain homogenized enough to maintain function? In

simpler terms, if ions are used at a specific spatial point in the channel, how is it

replenished such that hearing is not affected?

Modeling Domain (Tunnel of Corti)

Figure 2.4: The illustration depicts a stretched-out representation of the cochlea, a structure

within the inner ear that contains two channels, namely Endolymph and Perilymph. Of partic-

ular interest in this model is the Tunnel of Corti, a section within the Endolymph channel that

undergoes compression during auditory stimulation. Figure from J.-H. Nam was modified.
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Tunnel 

of Corti

Figure 2.5: Side view of the organ of Corti. The triangular-like shape opening is the fluid

channel of interest, the tunnel of Corti. Indicated are the outer hair cells, responsible for the

deformations which I hypothesize drive flow in the system. The pink region corresponds to the

Endolymph, and the blue region to the Perilymph. This figure was taken from [3].

Although there is consistent ion production along the tunnel of Corti, it seems

insufficient to sustain optimal function. This issue has been a subject of discussion

in several studies [25–28]. Due to this fact, one hypothesis was that diffusion would

ensure that the tunnel of Corti ion concentration stays homogenized [29, 30]. How-

ever, the issue with this hypothesis is that the diffusion time scale is inadequate

for the requirements of the auditory system. Doing some basic scale estimates for

diffusion, I obtain the following: The diffusivity coefficient of potassium ions is

Ξ = 5 · 10−10 m2/s [25]. The spatial scale of diffusion for the tunnel of Corti is

Lcorti = 10 mm, which is the approximate length of the stretched-out cochlea for

a rodent (10 mm for a human). The time scale τ for homogenization via diffusion

is then given by

τ =
L2
corti

Ξ
≈ 2 · 105 s. (2.1)

This estimated time scale for homogenization is too long for adequate function

of the tunnel of Corti. For adequate hearing functionality, a time scale under the

order of one second (τ < 1) is needed. This brings us back to a potential solution
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to this problem, which could be that the induced peristaltic flow in the tunnel of

Corti facilitates homogeneity by producing a mixing mechanism.

Peristaltic pumping is a potential mechanism due to the fact that during stim-

ulation, the organ of Corti experiences deformation akin to those in peristaltic

pumps. Karavitaki and Mountain [20] showed that a fluid flow was present in

the tunnel of Corti. Ex-vivo observations by [31] showed that the outer hair cells

contract, and are responsible for the deformations that create a flow given that

they deform in a traveling wave along the channel. To get a better understanding

of how these cells induce a flow when stimulated consider figure 2.5 which is a

side view of the tunnel of Corti. The motion of the outer hair cells leads to a

deformation of the organ of Corti which displaces the fluid in the tunnel of Corti,

and coupling that with the traveling wave of the deformations, it is reasonable to

hypothesize that some form of flow would be induced.

In summary, the tunnel of Corti can be modeled as a fluid-filled tube that

experiences deformations. Now the question is whether the parameters of this

channel induce a flow that assists in the homogenization of the tunnel of Corti,

and thus plays a role in the auditory system of mammals.

This is why I developed the upcoming series of analyses presented in this

thesis. While the inner ear was the primary motivation, let me make a brief

pause before delving into the details of the study by mentioning how the analysis I

performed has applications beyond just the inner ear. There are various biological

systems that have similar characteristics to flows in the inner ear, as well as utility

in industrial applications. A large number of biological systems use peristaltic

pumping, as tissue and organic material tend to be malleable. The fact that the

pumped fluid does not contact any additional parts other than the channel itself

means that the fluid can be kept sterilized with ease when compared to alternative

pumping mechanisms. Figure 2.6, shows a series of visual sketches of examples

where peristaltic pumping is found other which are not in the inner ear.
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a) b)

c)

Figure 2.6: Shown are examples of systems where one can find peristaltic pumping: a) Pumping

in the stomach [4, 5]. b) Industrial applications on food processing [6]. c) Applications in medical

pumps [7].

By now, I trust that I have adequately conveyed the significance of investi-

gating peristaltic pumping. Moving forward, let us delve into the specifics of my

research on this subject.

2.1.2 Analysis Overview

First, I will present previous studies on peristaltic pumping and the main take-

aways from them. From that point, I will go on to describe a full mathematical

analysis, which will give us a quantitative understanding of the relevant physics in

peristaltic pumping. Understanding the mathematical fundamentals of the prob-

lem will lead to a full analytic model which I developed. This analytic model

is capable of capturing the dynamics of peristaltic flows in the parameter range

relevant to the inner ear. After presenting the details of the analytic model, it

should the driving mechanisms for peristaltic flows will be clear. As such, I will

move on to the details of the experimental approach. Drawing on insights from the
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analytic study as background knowledge, it will be more straightforward to com-

prehend the mechanics of the experimental device and its underlying objectives.

Additionally, this knowledge can illuminate the reasoning behind the experimen-

tal design decisions that were made. Finally, I bring everything together as I show

results from each approach, cross-validate, and apply my model to the inner ear

by implementing the relevant parameters found in previous studies relating to the

inner ear. The ultimate goal is to determine whether peristaltic flows play any

role at all in the inner ear, and if so, whether peristaltic pumping plays a role in

mixing fluids in the inner ear.

2.2 Peristaltic Pumping Literature Review

In this section, I present previous studies of peristaltic pumping with their key

contributions and how each is relevant to my study. Former studies of peristaltic

pumping are, typically, divided by the key parameters A amplitude (also referred

to as occlusion in other literature), λ wavelength, c is the deformation wave speed,

and the undeformed channel width L. For a fundamental understanding of how

peristaltic pumping functions, refer to Figure 2.1. The figure depicts a straight-

forward peristaltic pump model in which the motion of green circles generates

deformations at a wall of the fluid channel, inducing a flow over the channel.

Perhaps the most important research on peristaltic pumping was performed

by Shapiro et al.[19], and Weinberg et al. [32]. Their studies laid some of the

foundations for the study of peristaltic flows, and as such are often cited in any

paper that is related to peristaltic pumping. [19] aimed to establish a basic under-

standing of peristalsis, and the authors presented an analytic foundational theory

of the physics underlying peristaltic pumping. Weinberg et al. [32] performed ex-

periments that validated the former results. Given that their results lay the foun-

dations of peristaltic pumping, I think it is important for me to lay out how their
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results are not sufficient for my application. They defined key non-dimensional

numbers for the system. Reynolds number was defined as

Re =
cL2

νλ
, (2.2)

where c is the wave speed, L is the width of the channel and ν is the kinematic

viscosity of the fluid. The ratio of the channel gap to the wavelength (which they

call wavenumber),

Lλ =
L

λ
(2.3)

where λ is wavelength and L is the width of the channel. And the amplitude ratio,

also referred to as occlusion by some authors, was denoted as

ϵ =
A

L
, (2.4)

where A is the amplitude of the wave and L is the width of the channel. The

analytic models that were developed by this group of researchers (Shapiro, Jaffrin,

and Weinberg) have two crucial limitations that are relevant for my study of the

inner ear: They are limited to low Reynolds numbers Re ≈ 0 (although they make

a limited extension to what they call ‘moderate Reynolds number’) and do not

take into consideration the possibility of non-sinusoidal waveforms. That said,

the contents of these studies are critical for anyone trying to study any sort of

peristaltic pumping problem. Additionally, they discovered that the Lagrangian

dynamics, which encompass the transport and motion of individual particles in

the flow, were complex. Depending on certain conditions, particles in a peristaltic

pump could be transported in a direction opposite to the flow or become trapped in

orbits. Notably, these material transport properties could be vastly different from

what one would assume based on an Eulerian perspective of the flow. A peristaltic

flow may exhibit no net flow through a channel in the Eulerian perspective, yet

be able to transport material from one side of the channel to the other due to

the Lagrangian dynamics. Yih and Fung [33], and Yin and Fung [34] developed
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an analytic model and experimental model around the same time as Shapiro et

al. [19]. Yih and Fung, and Yin and Fung were interested in the applications

of peristaltic pumping for biological systems. One notable aspect is they used a

slightly different definition for the Reynolds number from Shapiro et al., they used

ReY F =
cL

ν
, (2.5)

where c is the wave speed, L is the width of the channel and ν is the kinematic

viscosity of the fluid. Their study used a two-dimensional analytic model for peri-

staltic flows with small amplitudes and long wavelengths (Lλ ≫ 1). Unfortunately,

their study is held back by a lack of detail in the assumptions and limitations of

the model. To obtain a more detailed look at the analytic model I studied the

thesis by Yin [35], which includes more detail on the derivation of the solution,

but found that at higher Reynolds numbers (Re > 100) and larger amplitudes

(ϵ > 0.2) the solution produced unphysical results. I was not able to determine

the cause, but boundary conditions would not be met.

Lozano [36] conducted numerous investigations into peristaltic flows, utilizing

numerical [37], analytic [38] and experimental [36] approaches. The scope of the

studies was targeted to understand the role of peristaltic flow in the urethra. For

the purposes of my study, Lozano’s parameter regime is not a good analog. This

is due to the nature of the flows in the urethra, which tend to have large defor-

mations, i.e. ϵ ≈ 1. However, the experimental setup described in Lozano [36]

served as inspiration for my own design. Lozano used a series of pneumatic actu-

ators to deform a rubber tube filled with fluid in a periodic manner. This induced

peristaltic flow in the tube which he studied. While elaborate, the experimental

design lacked the fine control that I was seeking in terms of varying the amplitude

and shape of the wave.

Ayukawa et al. [39] performed experiments and numerical analysis [40] of

peristaltic flows at high Reynolds numbers Re = 1000 and long wavelengths Lλ >
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1. They developed a simple model, which they find to be relatively accurate for

the conditions of their experiment. They documented to have different findings

from previous studies in terms of the Lagrangian motion of particles in the system.

Although their findings did not align with some of the expected behavior reported

in previous literature, it’s important to note that the experiment was conducted

for a limited range of parameters. Furthermore, at the time the experiments were

performed, flow measurement techniques were relatively constrained.

Selverov [22] studied the effects of mixing produced by peristaltic pumping.

Their interest was focused on microfluidic channels, similar to my interest. They

found that at high frequencies of peristaltic pumping, fluid could be mixed. This

goal was to determine the possibility of producing mixing in microfluidic channels,

without the need for internal mechanical components. One significant difference

from my study interest is that they studied the problem for an enclosed channel.

Notably, they stressed the importance of analyzing the peristaltic flow from an

Eulerian and Lagrangian perspective, adding further evidence that one can find

interesting results depending on how the flow is analyzed.

There are numerous studies on peristaltic pumping in addition to the ones I

have reviewed. The goal was to set a baseline background on peristaltic pumping

with the former review. If the reader wishes to gain further insight into the

analytic approach used in this paper, they should look into the specifics of the

previous studies to gain a better understanding of the mathematical analysis.

2.3 Physics of Peristaltic Pumping

In this section, I will now focus on the physics of peristaltic pumping and how we

can mathematically describe it. First, I consider the following simplified model

depicted in figure 2.7. By using a simplified model, I can capture the essential

dynamics of peristaltic pumping without the added complexities of a realistic
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model. The simple model consists of an infinite two-dimensional channel, where

one wall is deformed by a periodic traveling wave. The system has coordinates

x in the horizontal spatial direction, y in the vertical spatial direction, and t for

the time dimension. The channel gap is defined as the length from y = 0 to

y = L + η(x, t), where η(x, t) is a function that describes the position of the

deformable wall. The boundary conditions can be described as follows. y = 0 and

y = η(x, t) are no-slip conditions, while the channel extends infinitely in x.

Figure 2.7: A schematic representation of the domain of the analytical model is presented.

The domain is an infinite two-dimensional channel with a mean width of L and a periodic spatial

period of λ in the x-direction. Fluid flow is induced by the periodic deformation of one boundary

in the shape of η(x, t) at a velocity of c in the x-direction and an amplitude of A.

A large number of peristaltic flow studies [19, 22, 34, 39] limited themselves

to only considering the case of a sinusoidal traveling wave deformation, where

η = Asin(αx − ωt), α = 2π/λ and ω = 2πc/λ. The reason for this is simplicity.

Note that there are no other forcing mechanisms in the equations that describe

peristaltic pumping. The boundary condition at the deforming wall is the source

of pumping and energy for the system.

Before continuing with this analysis, it is important to consider if η(x, t) is a

dispersive wave or a non-dispersive wave. A dispersive wave is one which contains

multiple wavelengths traveling at different phases, while a non-dispersive wave is
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one which can be followed by a deformation wave in a moving frame, thus appear-

ing stationary. Figure 2.8 presents a visual example of the differences between

dispersive and non-dispersive waves. Due to the complexity of the analysis for a

dispersive wave, I limit the scope of my study of non-dispersive waves. In nature,

dispersive waves do exist, such as those found in the inner ear [25]. However, for

the purpose of simplifying the analysis, nonlinearities associated with dispersive

waves are not addressed in this thesis.

� 2� 3� 4�0 � 2� 3� 4�0�

Figure 2.8: Comparison of a nondispersive wave and a dispersive wave. One can see how a

nondispersive wave has a specific periodic shape which simply translates in one direction in y.

The dispersive wave has a more complex evolution over time.

The model I considered did not take into account the material properties of

the deformable wall, as they are not relevant when imposing a specific velocity on

the wall. This means that the wall position is dictated by the boundary condition

at the wall, and the fluid must move at the same velocity as the wall in order for
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the model to be valid. Thus, an interaction between the deformable wall and the

fluid is not necessary, and the only information needed regarding the wall is the

velocity it is deforming at.

As I hinted at in the literary review in section 2.2, I will first go over a brief

overview of the fundamental differences between the Eulerian and Lagrangian

perspectives for fluid flow analysis. To understand the fundamental differences

between the two perspectives, one must go back to how the foundations of fluid

physics are described. Figure 2.9 serves as a visual aid to help understand the

differences between the two perspectives. I have the option to look at a fluid as

many individual fluid parcels that compose the entire fluid. I then can describe

a flow using these fluid elements over time. The difficulty with this approach

comes from the fact that it is mathematically difficult to solve for large numbers

of individual elements, whose positions, velocities, and other parameters change

over time and space. The Eulerian perspective simplifies this by instead looking

at fixed points in space, and describing the velocity of fluid elements along an

infinitesimally small volume or area. Fundamentally, the main difference is that

in the Lagrangian approach one tracks individual fluid elements, while in the

Eulerian one looks at how the flow properties at fixed spatial positions. Eulerian

perspective is generally simpler and more straightforward to use, which is why it

is the more common approach. The Lagrangian perspective can be more useful

for certain applications, such as when tracking the trajectory of a fluid particle.
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a) b)

Figure 2.9: Sketch comparing the Eulerian description of a fluid flow a) and Lagrangian

description b). The Eulerian perspective of fluid flow describes the properties of the fluid at a

fixed point in space, whereas the Lagrangian perspective describes the properties of the fluid at

a fixed point in time, following the motion of individual fluid particles.

2.3.1 Generalized Lagrangian Mean

The Generalized Lagrangian Mean (GLM) is a technique that was developed in

[41, 42] to calculate a Lagrangian velocity field for time-periodic flows, such as

that of ocean waves. This method assumes that particles follow the flow perfectly,

i.e. the Stokes number is zero and utilizes the equation

ud ≈
∫
u(x, y, t)∂t

∂u(x, y, t)

∂x
+

∫
v(x, y, t)∂t

∂u(x, y, t)

∂x
(2.6)

and

vd ≈
∫
v(x, y, t)∂t

∂v(x, y, t)

∂y
+

∫
u(x, y, t)∂t

∂v(x, y, t)

∂y
. (2.7)

This technique is useful to track the paths of particles over a period of time and

generate a field description. Figure 2.10 provides a sketch of the difference between

the GLM and the full Lagrangian path. This technique will be important for the

Lagrangian analysis in a later section.

Given that the GLM is a vector field, I define the GLM velocity field in x and

y as

ULag =< ud, vd >, (2.8)
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where ud is the GLM velocity in x and vd is the GLM velocity in y. It will be

useful for later sections to define the mean value of ud as

udm = ūd. (2.9)

������������� 	�
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Figure 2.10: Sketch of a fluid with a flow, particles in the flow are sketched as the yellow

circles. The black lines indicate the Lagrangian path a particle takes over one period. The

generalized Lagrangian mean of the particles is shown by the orange vectors.

The Generalized Lagrangian Mean is a simplified field that indicates the mo-

tion of particles in the flow. This is advantageous since it is difficult to obtain

the paths of individual particles and to obtain meaningful results without the

calculation of paths for the entire domain. The Generalized Lagrangian Mean

presents a single velocity field that illustrates the movement of particles in the

fluid over successive periods, making it feasible to draw conclusions and apply

them to relevant problems.

2.3.2 Nondimensionalization of the Governing Equations

The technique of nondimensionalizing the governing equations in fluid mechanics

analytic analysis has been commonly employed in order to determine the dominant

physics in a system. To do this, I began with the Navier-Stokes equations for an

incompressible viscous fluid problem. The equations of motion were given by
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∂U

∂t
+ U · ∇U = −∇P

ρ
+ ν∇2U, (2.10)

where U is the two-dimensional velocity field of the fluid so U =< u, v >, t is

time, P is the pressure field of the fluid, ∇ is a derivative an operator < ∂x, ∂y >,

ρ is the density of the fluid, and ν is the kinematic viscosity of the fluid.

Incompressibility is imposed by the continuity equation, which is

∇ · U = 0. (2.11)

Since the model I consider is two-dimensional, as I mentioned in subsection

2.3, I can rewrite equation 2.10 as two equations for each spatial component of x

and y. The equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
) (2.12)

for the x component, where u is the velocity in x of the fluid and

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
) (2.13)

for the y component, where v is the velocity in y of the fluid.

At this point, the previous equations simply describe the physics of some

fluid without specifying much. In order to apply these equations to my study of

peristaltic pumping, I must define the boundary conditions. One notable aspect

is that there is no forcing term in equations 2.12 or equation 2.13. The driving

mechanism is defined by the boundary conditions. Going back to figure 2.7, it

is easy to describe the boundary condition at the stationary wall. The boundary

conditions at the non-moving wall is a no-slip condition defined as

U(x, 0) =< 0, 0 > . (2.14)

The ends at x = 0 and x = λ are treated as periodic boundary conditions. This is

to further simplify the problem and treat the system as an infinite wave train, in
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other words, the domain is infinitely long in x and the traveling wave spans the

entire infinite domain. While real-world peristaltic pumps have finite lengths, I

can significantly simplify the problem by concentrating on the fluid motion within

one wavelength if I consider an infinite train of waves. From this simplification,

one can expect the flow to be periodic in nature over the scale of a wavelength.

The periodic boundary condition is described as

U(0, y) = U(λ, y). (2.15)

Describing the last boundary condition of the deforming wall is more compli-

cated. The deformation is traveling across the deformable wall with some direction

in x over time t. Applying this to my simple model from figure 2.7, I can describe

the deformation of the wall by using its position. Thus, let η(x, t) be a function

that describes the displacement of the wall from the nondeformed state. Using

this definition, I can describe the position of the deformed wall as y = L+ η(x, t).

From this, I can easily determine that the deformable wall is imposing a vertical

velocity condition as

v(x, L+ η(x, t)) =
∂η(x, t)

∂t
. (2.16)

The remaining component to describe is the horizontal velocity at the deformable

wall. For the purposes of this study I treat it as

u(x, L+ η(x, t)) = 0. (2.17)

However, this may not always be the case. Note that in the real world as the

flexible wall is deformed from the undeformed position, the total length of the

wall changes. This would impose an additional velocity component parallel to the

shape of the wall. Figure 2.11 visually demonstrates how this effect is present.
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Figure 2.11: Sketch demonstrating stretching effects on a wall using a discretized flexible line,

where I separate each part into segments of length δL. a) An unstretched line. All segments

that compose the discretized line are of length δL. b) If I stretch the line it becomes clear

that δL cannot remain constant, it must have gained some length δS. This added distance has

a component in x and y. This added component can add a boundary condition if significant

enough when considering peristalsis.

If a line goes from x = 0, y = 0 to x =M1, y = 0, I would then know the length

of such a line is M1. Now, say I deform it with the function η(x, t), such that

its position is described as y = η(x, t) from x = 0 to x = M1. An infinitesimal

segment of the line is defined by

δMdeformed =
√
δx2 + δy2, (2.18)

where δx and δy are infinitesimal segments in the x and y components. Then it

would follow that the way to calculate the total length of the line is given by

Mdeformed =

∫ M1

0

√
12 +

∂η(x, t)2

∂x
dx. (2.19)

While the previous equation yields exact results to tell us how much the line has

stretched, it can be impossible to solve, depending on the function η(x, t). To

estimate the impact of this effect let us simplify to consider only the relevant

scales at play. I am displacing the wall approximately a distance A over a length



27

λ, at a frequency f . Then the estimated velocity induced by stretching would be

given by

Svel = (λ−
√
λ2 + A2)f. (2.20)

Since λ ≫ L ≫ A for the cases I consider, I find that the stretching velocity is

negligible (Svel ≈ 0), and so the boundary condition in equation 2.17 is adequate.

Having defined the problem, let us move on to finding a solvable case where I

consider simple conditions. Although there are various forms of periodic functions

that are admissible here, first I consider the simplest case of a traveling sinusoidal

wave. To begin, η is defined as

η = Acos(
2π

λ
x− 2πc

λ
t). (2.21)

Since η(x, t) describes the position of the wall, it must push an amount of fluid

equal to the area it moves to conserve the incompressibility of the fluid. As a

consequence the boundary condition (equation 2.16) of the governing equations is

defined by

v(x, y = L+ η) =
∂η

∂t
. (2.22)

The former, along with equations 2.14, 2.15 and 2.17, are all the boundary

conditions required to model a two-dimensional peristaltic flow. Now, I proceed

with the nondimensionalization. I decided to nondimensionalize the variables of

the governing equations as shown in Table 2.1. It is important to note that the

nondimensionalization of the velocity is done by using the mean displacement

velocity of the boundary over one cycle, which differs from previous studies, such

as the ones by Shapiro et al. [19], and Yin and Fing [34].

The parameters that describe the system are A, L, λ, c, ν, and P . Thus, three

nondimensional numbers should be able to characterize the system. From the

nondimensionalization it will be clear that the important numbers are the ratio of

wavelength to gap width λ
L
, the amplitude ratio A

L
, and a Reynolds number 4AcL

νλ
.
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Dimensional variable x y u v t

Nondimensional variable x
λ

y
L

uλ
4Ac

vλ
4Ac

tc
λ

Table 2.1: Nondimesional form of the variables.

Plugging the nondimensionalization picks into the Navier-Stokes equations

(equations 2.12 and 2.13) gives

4Ac2

λ2
∂u

∂t
+

16A2c2

λ3
u
∂u

∂x
+

16A2c2

λ2L
v
∂u

∂y
= − 1

ρλ

∂P

∂x
+ ν(

4Ac

λ3
∂2u

∂x2
+

4Ac

λL2

∂2u

∂y2
) (2.23)

for the x direction and

4Ac2

λ2
∂v

∂t
+

16A2c2

λ3
u
∂v

∂x
+

16A2c2

λ2L
v
∂v

∂y
= − 1

ρL

∂P

∂y
+ ν(

4Ac

λ3
∂2v

∂x2
+

4Ac

λL2

∂2v

∂y2
) (2.24)

for the y direction.

One can simplify the resulting equations by multiplying by λ2

16A2c2
. The result

is

1

4A

∂u

∂t
+

1

λ
u
∂u

∂x
+

1

L
v
∂u

∂y
= − λ2

16A2c2ρλ

∂P

∂x
+ ν(

1

4Acλ

∂2u

∂x2
+

λ

4AcL2

∂2u

∂y2
) (2.25)

for the x direction and

1

4A

∂v

∂t
+

1

λ
u
∂v

∂x
+

1

L
v
∂v

∂y
= − λ2

16A2c2ρλ

∂P

∂x
+ ν(

1

4Acλ

∂2v

∂x2
+

λ

4AcL2

∂2v

∂y2
) (2.26)

for the y direction.

At this point, I pick a length scale to finish the nondimensionalization. The

important thing to note is that different multiplications will lead to different

insights onto how the governing equations behave. For the purposes of studying

our problem, I multiply by L which yields

L

4A

∂u

∂t
+
L

λ
u
∂u

∂x
+

1

1
v
∂u

∂y
= − λL

16A2c2ρ

∂P

∂x
+ ν(

L

4Acλ

∂2u

∂x2
+

λ

4AcL

∂2u

∂y2
) (2.27)
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for the x direction and

L

4A

∂v

∂t
+
L

λ
u
∂v

∂x
+

1

1
v
∂v

∂y
= − λ2

16A2c2ρ

∂P

∂y
+ ν(

L

4Acλ

∂2v

∂x2
+

λ

4AcL

∂2v

∂y2
) (2.28)

for the y direction.

In this form one can reduce the terms with the following assumption λ >> L.

This restricts the equation to cases where the wavelength scale must be signifi-

cantly higher than that of the channel gap. The simplified equations are

L

4A

∂u

∂t
+

1

1
v
∂u

∂y
= − λL

16A2c2ρ

∂P

∂x
+ ν(

λ

4AcL

∂2u

∂y2
) (2.29)

for the x direction and

L

4A

∂v

∂t
+

1

1
v
∂v

∂y
= − λ2

16A2c2ρ

∂P

∂y
+ ν(

λ

4AcL

∂2v

∂y2
) (2.30)

for the y direction.

Inspection of equations 2.29 and 2.30 demonstrated the following properties of

the system. The nondimensional equations show that the nonlinear term scaled

with the amplitude, while the viscous terms were reduced to include only the y

derivatives. This reduction was reasonable, considering that a long wavelength

indicated that the shearing effect of the change in vertical velocity occurred over

a long distance, thus playing a significantly lesser role than the shear induced by

the no-slip boundary conditions due to the channel dimensions. With improved

knowledge of the dominant physics of the problem, I proceeded to devise a math-

ematical solution that modeled the dominant physics of peristalsis for conditions

found in the inner ear.

2.3.3 Mean Pressure Rise

An important characteristic of peristaltic pumping, which is discussed in previ-

ous literature such as [32], is the mean pressure rise per wavelength. The mean
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pressure rise per wavelength is defined as

∆Pλ =

∫ λ+x

x

∂P

∂x
dx. (2.31)

As noted by Shapiro et al. [19], the value of ∆Pλ heavily dictates the behavior

of pumping. To better understand the physical implications of the mean pressure

rise per wavelength, I created the sketches found in figure 2.12. In the case of

peristaltic pumping, the flow must experience a periodic pressure differential. So,

if one assumes the pressure gradient is purely sinusoidal over space, then it follows

that ∆Pλ = 0.

pump

Δ��

N sin(t)

Δ�� 0

Δ�� = 0

�

�

Figure 2.12: A sketch of a peristaltic pump pushing fluid. The pump is connected to two

reservoirs, which are in hydrostatic pressure balance when the pump is off. When the pump is

turned on if the hydrostatic balance level of each reservoir will depend on ∆Pλ. The bottom

sketched graph demonstrates the effect of having ∆Pλ ̸= 0, where the pressure function is shifted

by a constant, which explains why the equilibrium height of the reservoir is changed from the

∆Pλ = 0 case.

What this means from a physical standpoint, is that since a peristaltic pump

can generate flows in two directions in x, it can effectively pump fluid to meet a
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specific pressure gradient. After that point, the fluid volume will not travel any

further but still be oscillated back and forth around a mean. To visualize this

effect see figure 2.13.
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Figure 2.13: A sketch based on the same setup as figure 2.12 that compares two peristaltic

pumps. The pressure P is oscillatory in nature, and one sees a system where ∆Pλ ̸= 0 and

one where ∆Pλ = 0. The big difference is that the equilibrium pressure from the inlet reservoir

(the left side of the pump) with the outlet reservoir (the right side of the pump) is different

when ∆Pλ ̸= 0. t indicates time, where subscripts are points further in time. Since the flow is

oscillatory, the behavior is repeated every three indices in this example, i.e. P (t1) = P (t4) =

P (t7).

For the purposes of my study, I only considered the case of ∆Pλ = 0, which

as indicated by Eckstein et al. [43] would appear to defeat the point of pump-

ing. However, the main interest in my applications is not to pump fluid, but to

mix a fluid. As I stated earlier, even if fluid is not pumped in the sense that a
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net flow over time is achieved, it is still creating a flow that can have transport

characteristics that lead the channel to be mixed.
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3 Analytic Approach to

Modeling Peristaltic Flows in

the Inner Ear

3.1 Analytic Approach

In this section, I will describe how I developed an analytic model for peristaltic

flows considering the conditions that are typically found in the inner ear. Building

upon the nondimensionalization outlined in the previous section, I will establish

the groundwork for my analysis. This approach will allow me to simplify the

physics and find a solution to the governing equations. To accomplish this, I will

leverage the physical attributes of the inner ear, which motivated this analysis as

discussed in section 1.1.

Previous in-vivo studies of the inner ear have shown measurements of flow and

channel deformations [20]. Using measurements from in-vivo studies, I estimated

the relevant physical parameters for the fluid system. Table 3.1 is a comprehensive

list of the parameters relevant to the study. I estimated the flow of the inner ear

to lie in the regime of High Reynolds number (Re > 100) flows as the wave speed

has been measured to be in the range of 1 m/s to 200 m/s. This is important to

note, as it is relevant for the first simplification in my analytic method.
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Parameter Tunnel of Corti Experimental Setup

Wave speed c 1− 200 m/s 0.05− 2 m/s

Cross-stream length of channel L 50 µm 2.54 cm

Stream-wise length of channel 10 mm 91.44 cm

Amplitude A 50− 500 nm 0.13− 1.3 mm

Wavelength λ 50− 5000 µm 4− 30 cm

Table 3.1: Comparison of the tunnel of Corti dimensions and parameters with the experimental.

The tunnel of Corti ranges are estimated from observational studies, the experimental range is

the range the system is capable of producing while being within the same Reynolds number

range of the real system.

3.1.1 Solution for a Traveling Sine Wave

I proceed to develop an analytic solution to the problem. I can now combine the

simplified equations (equations 2.29 and 2.30) from the nondimensionalization

using a streamfunction where ∂ψ
∂x

= v, ∂ψ
∂y

= −u, and the vorticity W = ∂v
∂x

− ∂u
∂y

∂3ψ

∂2x∂t
+

∂3ψ

∂2y∂t
+
∂2ψ

∂2x

∂2ψ

∂x∂y
+
∂ψ

∂x

∂3ψ

∂2x∂y

+
∂2ψ

∂x∂y

∂2ψ

∂y2
+

∂2ψ

∂x∂y

∂3ψ

∂3y
= −ν( ∂4ψ

∂2x∂2y
+
∂4ψ

∂4y
)

(3.1)

I can neglect the nonlinear terms as they are higher-order terms from my nondi-

mensionalization. I eliminate the time derivative by using a coordinate shift to

the wave speed and assuming the flow to be steady in the moving frame. Thus

using a coordinate transformation where x = x− ω
α
t, where x is the x coordinate

in the moving frame, I can dramatically simplify the equations of motion to

∂4Ψ

∂2x∂2y
+
∂4Ψ

∂4y
= 0 (3.2)

where Ψ is the streamfunction in the moving frame, such that Ψ(x, y). Note that

the problem has become viscosity independent. This is the problem to solve where
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I specify a series of constraints (boundary conditions)

∂Ψ

∂x
(x, L) = Aωsin(αx), (3.3)

∂Ψ

∂x
(x, 0) = 0, (3.4)

Ψ(0, y) = Ψ(λ, y), (3.5)

∆Ψ(0, y) = ∆Ψ(λ, y) (3.6)

To solve this problem I will assume that the flow must be irrotational, such that

∂2Ψ

∂2x
+
∂2Ψ

∂y2
= 0. (3.7)

Now I try to find a solution to equation 3.2 by assuming that Ψ is a separable

equation such that it can be rewritten as

Ψ(x, y) = X(x)Y (y) (3.8)

This means equation 3.2 can be rewritten as

d2X

dx2
(x)

d2Y

dy2
(y) +X(x)

d4Y

dy4
(y) = 0 (3.9)

At this point, I can proceed with solving the problem, which happens to be a

typical separable partial differential equation problem encountered at the under-

graduate level. For additional detail on the method see [44]. The separable

equation tells us that

−
d2X
dx2 (x)

X(x)
=

d4Y
dy4

(y)

d2Y
dy2

(y)
= µ, (3.10)

where µ is a constant. The general solution equation 3.10 of the problem can then

be split into the x and y parts, for which the general solutions to their respective

differential equations are

X(x) = θasin(µx) + θbcos(µx) (3.11)
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and

Y (y) = θ1 + θ2y + θ3e
−µy + θ4e

µy. (3.12)

where the θ terms are constants. Boundary condition 3.3 imposes a strong con-

straint that will simplify the problem significantly.

dX

dx
(x)Y (L) = Aωsin(αx) = (µγ1cos(µx) + µγ2sin(µx))Y (L) (3.13)

The only way this equation can be satisfied is if γ2 = 0 and µ = α. This simplifies

the problem to

X(x)Y (y) = (θ1 + θ2y + θ3e
−αy + θ4e

αy)cos(αx) (3.14)

The next constraint I apply is irrotation, so equation 3.14 must satisfy equation

3.7.
d2X

dx2
(x)Y (y) +X(x)

dY 2

dy2
(y) = −α2(θ1 + θ2y + θ3e

−αy

+θ4e
αy)cos(αx) + α2(θ3e

−αy + θ4e
αy)cos(αx) = 0

(3.15)

Which can be simplified to

d2X

dx2
(x)Y (y) +X(x)

dY 2

dy2
(y) = −α2(θ1 + θ2y) = 0 (3.16)

The only way to satisfy this condition then is for θ1 and θ2 to be zero. Thus I can

further simplify the stream function to

X(x)Y (y) = (θ3e
−αy + θ4e

αy)cos(αx) (3.17)

Now by applying boundary conditions 3.3 and 3.4 I obtain a final form of

Ψ(x, y) = −
eαL−αycos(αx)

(
Aw − Awe2αL

e2αL−1

)
α

− AweαL+αycos(αx)

α (e2αL − 1)
. (3.18)

The final step is to transform back to the stationary frame, where I obtain the

following simplified equation using some trigonometric identities

ψ(x, y, t) = −Aωcsch(αL) sinh(αy) sin(αx− tω)

α
. (3.19)
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This streamfunction (Eq. 3.19) is a solution for modeling peristaltic for a sine

wave deformation. However, this solution does not take into account viscosity,

this does not mean it is a bad model, but it is particularly a bad model if I

care about the characteristics of the flow near the no-slip boundaries or if the

Reynolds number is low (Re < 1). As such the next step in creating the model is

to implement a correction to the solution which will be able to capture the viscous

effects.

3.1.2 Viscous correction

To implement the viscous effects into the solution, let me first split the solution

in streamfunction form into the two-dimensional velocity components,

u(x, y, t) = Aωcsch(αL) cosh(αy) sin(αx− tω) (3.20)

v(x, y, t) = −Aωcsch(αL) sinh(αy) cos(αx− tω) (3.21)

Based on the results of the nondimensionalization in section 2.3.2, specifically

equations 2.29 and 2.30, I determined that for long wavelengths Lλ ≫ 1, the

viscous component in the y direction is considerably less significant compared to

that in the x direction. Thus, for the purposes of the model, I can prioritize

adding the effects of viscosity in x and neglecting those in y. Inspecting equation

3.20, one can see that the flow at some position in x, is periodic in t and has some

velocity profile y in the x direction. This mathematical description is similar to

Stokes second problem ([45]). Recognizing this similarity, the next step is to split

the problem in two. I want to locally solve for the viscous effects near the top

and bottom of the velocity profile. Figure 3.1 will serve as a visual guide for this

mathematical approach.

If I only consider the local problem at the boundary, I can treat it as a flow

profile oscillating due to a pressure gradient near a plate. This problem has a well
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established analytic solution. First, one must recognize the governing equation

for this section of the flow is

∂u

∂t
= ν

∂2u

∂y2
, (3.22)

which is similar to equation 2.12, but I only keep the viscous term and linear

velocity term. This is what one would expect of a simple viscous flow. The

boundary conditions relevant to the localized problem I am are the x components

for the no-slip boundary conditions described by equation 2.14.

Inviscid dominant

Viscous dominant

Viscous dominant

Individual components

Figure 3.1: Shown is a sketch of velocity profiles for a channel that has a peristaltic flow. The

velocity profiles are divided into the respective analytic models. Shown in red is an example

velocity profile of the inviscid component of u. In green are two example velocity profiles of the

local viscous component of u. The left velocity profile sketch indicates how the superpositioned

velocities produce a complete modeled velocity, while the right one splits the components and

shows each example velocity profile would look like individually.

Taking the u velocity values at y = L and y = 0 now gives the boundary

conditions to solve this localized problem. It follows, that the local solution must

be equal to the velocity given the inviscid solution as I move away from the

boundary. To better illustrate this point let us first solve the problem near y = 0.

In the vicinity of this boundary, the boundary conditions governing the local
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problem can be expressed as

ua(x, 0, y) = 0, ua(x,∞, t) = u(x, 0, t) (3.23)

where I label ua as the velocity for the localized model near y = 0. Now I must

seek a form for ua(x, y, t) which satisfies equation 3.22. The solution in this specific

case is

ua(x, y, t) = u(x, 0, t)e
√

− ω
2ν
ycos(ωt−

√
ω

2ν
y). (3.24)

Equation 3.24 gives a solution that describes the flow near the boundary.

The process for solving the other local region where viscosity is dominant is

similar. The solution for the velocity ub near y = L is

ub(x, L, y) = 0, ub(x,−∞, t) = u(x, L, t). (3.25)

Now that I have the two local regions, I must bring them together to form one

single general solution for the entire system. To do this I will superposition both

solutions.

uf (x, y, t) = u(x, y, t) + (ua(x, y, t)− u(x, 0, t))− (ub(x, y, t)− u(x, L, t)) (3.26)

Equation 3.26, is a superposition of the local viscous solutions and the inviscid

solution. While the local solutions have boundaries at infinite points in y, the

local solution converges to the value exponentially. I can describe a characteristic

length scale δBL as

δBL =

√
2ν

ω
. (3.27)

It is possible to rewrite δBL in terms of the Reynolds number as

δBL =

√
L2

πRe
. (3.28)
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Equation 3.28 shows that as the Reynolds number increases the length scale of

the viscous section decays rapidly. Dividing by L I can obtain a ratio of the scale

of the channel to the viscous length scale,

δBL
L

=

√
1

πRe
. (3.29)

Given that I only consider cases where the Reynolds number is high, i.e. Re≫ 1,

then the viscous region will always be a small portion (at a maximum 15%, i.e.

Re ≈ 10) of the domain as indicated by equation 3.29.

At this point, I have a corrected velocity in the x direction, but I am still

missing a corrected velocity in y. To obtain the corrected velocity I use the

continuity equation (equation 2.11). Given that u is known, now as uf , I can

integrate and apply boundary conditions to obtain a corrected velocity vf in the

y direction.

∫
∂uf
∂x

∂y =

∫
∂vf
∂y

∂y = vf + E, (3.30)

where E is constant that is obtained by reapplying the no penetration bound-

ary condition at y = 0 (equation 3.4) of the problem. substituting for the equa-

tions in the case of a sinusoidal wave boundary condition, equation 3.30 yields

vf (x, y, t) = Aωcsch(αL)sinh(αy)cos(αx− tω)

+
αAω√
2δBL

(coth(αL)e
L−y
δBL sin(

π

4
− L− y

δBL
+ tω − αx)

−csch(αL)e−y/δBLsin(
π

4
+ tω − αx− y/δBL)) + E,

(3.31)

where the constant term due to integration is

E =
1

2
αAδBLω(csch(αL)

(cos(αx− tω)− sin(αx− tω))− e
− L

δBL coth(αL)

(sin(− L

δBL
− tω + αx) + cos(− L

δBL
− tω + αx))).

(3.32)
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Note that the viscous corrected solution will not exactly match the boundary

at v(x, y = L, t) (equation 3.3). If I take equation 3.31, and evaluate at y = L,

one obtains the following result

eBL =

−1

2
Aωe

− L
δBL (2eL/δBL cos(αx− tω) + αδBL coth(αL)(cos(αx)− sin(αx))

(eL/δBL sin(tω)− sin(
L

δBL
+ tω))− αδBLcsch(αL)(sin(αx) + cos(αx))

(eL/δBL sin(tω) + sin(
L

δBL
− tω))).

(3.33)

I had expected that the error constant would scale with
√
νω−1L−2, which is in-

versely proportional to the Reynolds number. I had anticipated that it would

remain small in this model, given that the error scales with Re. From my un-

derstanding, the source of the error was likely due to implementing the viscous

correction. This added viscous correction would have implemented some form of

resistance to the flow, or energy drain. The error factor essentially implied that

the sine wave needed to be stronger to achieve the flow that was modeled as in-

viscid. In other words, the error factor was an additional energy input into the

system that was necessary to account for the viscous losses in order to match the

inviscid solution.

3.1.3 Extending the Model to Arbitrary Nondispersive

Waveforms

Since I used separation of variables to find a solution to the analytic model, it

became evident that I could find solutions to other cases other than the simple

sine wave. Upon examining the analytical solution approach, it became clear that

the boundary condition outlined in equation 3.3 for the simple sine wave case is

represented as a Fourier series in the solution methodology. This boundary con-
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dition imposes a specific form on the Fourier series, implying that any waveform

that can be expressed as a Fourier series can be solved using this method.

Now I solve for a generalized wave function Z(x), where the solution is defined

by the stream function ψg and Ψg in the moving frame. The boundary condition

in the moving frame changes to

∂Ψg

∂x
(x, L) = Z(x) (3.34)

This changes the solution such that the constant term µ changes to µn =

(nπ
λ
)2. This extends the applicability of the general solution of the sine wave case

(equation 3.20) and transforms to

Ψg = Γnsin(
√
µnx)y + ϑncos(

√
µnx), (3.35)

where the Γn and ϑn are

Γn =
1

π

∫ λ

0

Z(x)sin(
√
µnx)dx, ϑn =

1

π

∫ λ

0

Z(x)cos(
√
µnx)dx. (3.36)

Note that the Fourier series has no constant term given that I have restricted

functions to those which are periodic over λ.

Applying the periodic boundary conditions will simplify to only retain the Γn

term, which can give a generalized solution by letting it be a sum of constants

depending.

Ψg = Γncos(
√
µnx)csch(αnL) sinh(αny), (3.37)

for

Z(x) = −√
µnL

1,2...∑
n

Cnsin(
√
µnx), (3.38)

where Cn is a series of constant terms. Finally giving

Cn =
2

√
µnλL

∫ λ

0

Z(x)sin(
√
µnx). (3.39)
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Note that this transformation will apply to a single wave speed, this means that

when going back into the time-dependent form the frequency must be adjusted to

match the wavenumber of the series µn. The final generalized analytic solution to

the problem is then equal to

Ψg =

1,2...∑
n

Aω

αnL
Cncos(αnx− nωnt)csch(αnL) sinh(αny). (3.40)

With equation 3.40, one can model peristaltic flows for any waveform that

is nondispersive with good accuracy, except near the walls. Near the walls, the

solution still requires an adjustment to account for the no-slip boundary condition.

So far, the solution only works if I assume the flow to be inviscid.

For equation 3.40, it is also possible to implement the viscous effects, although

it is somewhat more cumbersome since I have to deal with a long sum of equations.

The exact same procedure as the one described in section 3.1.2 for the sinusoidal

wave case applies here, where one replaces the term u(x, y, t) from equations 3.22

with the negative derivative in x from equation 3.40 (−∂Ψg

∂x
= u(x, y, t)).

Because the generalized solution consists of a sum of wavelengths and frequen-

cies, that means that the viscous component will also have the same frequency

summation. As noted in equation 3.27 for the sinusoidal case, one can see that the

viscous length scale would consist of multiple wave frequencies in the generalized

case, in the same manner as the sum operates having multiple frequencies and

wavelengths. Thus one determines the viscous length scale to be

δBLn =

√
2ν

ωn
. (3.41)
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4 Experimental Approach to

Modeling Peristaltic Flows

This chapter provides a comprehensive overview of the experiment design, con-

struction, and operation utilized to investigate peristaltic flows. To start, I will

provide a brief summary of the apparatus, its construction, and its intended pur-

pose.

4.1 Experimental Device Overview

The experiment I designed consisted of a square channel where one of the walls was

flexible. I filled the channel with water and used an array of actuators to deform

the flexible wall. I used the actuators to deform the wall in a periodic manner.

The wall deformations would displace the fluid inducing a flow. The induced flow

is peristaltic pumping, which I studied for a specific set of parameters. Ultimately

the goal was to gain a better understanding of peristaltic flow conditions found in

the inner ear, as discussed in chapter 2. Figure 4.1 provides a general overview of

the experimental setup.
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Camera

Laser

Experiment

Figure 4.1: Left: Rendering of the key components of the experimental setup. Right: Design

images of the experimental setup. The side view shows the hardware that makes up the exper-

iment apparatus.

The top wall of the experimental setup was made of flexible rubber with a

thickness of 1.6 mm and a durometer of 40A, sourced from McMaster-Carr. The

wall was actuated by 14 translation stages, each driven by a stepper motor. The

stepper motors were capable of inducing a discrete form of a traveling wave defor-

mation in the rubber wall. The position of each motor was accurately controlled

by a combination of MATLAB code and an Arduino board. This setup provided

flexibility in capabilities to deform the flexible wall, as any waveform could be

induced, and a large range of wavelengths, wave speeds, and amplitudes could be

achieved.

The channel gap L was adjustable by inserting polycarbonate sheets to reduce

the effective flow region. This reduced the Reynolds number and increased the

range of operability for different amplitudes ϵ. The experimental device charac-

teristics are fully detailed in the appendix, chapter A.

4.2 Experiment Measurement Techniques

Having established an overview of the experimental setup, in this section I detail

the measurement techniques that I used to obtain data from the experimental

apparatus.
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4.2.1 Particle Image Velocimetry

Particle image velocimetry (PIV) is a technique that consists of taking images

from a fluid flow where a large number of particles are present. The particles are

illuminated so that they are clearly visible in the image. Additionally, particles

must have a low Stokes number. A low Stokes number ensures that particles track

the flow stream accurately, by ensuring that inertial effects are negligible. The

Stokes number is defined by

St =
Us(ρp − ρ)d

18νρ
, (4.1)

where ρp is the particle density, ρ is the fluid density, and Us is a characteristic flow

speed. In all instances for this experiment, the Stokes number is small (St ≪ 1).

The Stokes number remains small since the particles I used were of diameter d =

115.5± 9.5 µm and density ρp = 1± 0.01 g/cc from the manufacturer Cospheric.

Since the fluid I used was water in all experiments, the main component dictating

the Stokes number is the difference between ρp and ρ, which are approximately

equal, as such St ≈ 0.

PIV works by taking a section of an image where a large number of particles

are present, and determining how they have displaced in the next frame. The

determined displacement gives a velocity vector derived from the motion of the

set of particles that were in that section of the image. Each image is divided into

multiple sections, which all produce a vector, and when combined one can have

an experimentally measured velocity field of the flow. After capturing images of

particles in the flow by recording videos, I use a MATLAB version of the open-

source code PIVlab [46]. The code uses the video image data to produce two-

dimensional velocity fields of the flow. These velocity fields allow me to compare

analytic and numerical models with ease, and as such, it was my primary tool for

experimental measurements over the course of this study.
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4.2.2 Particle Tracking Velocimetry

Particle tracking velocimetry (PTV) is a similar technique to PIV, however, PTV

focuses on tracking the motion of individual particles instead of a set and pro-

duces individual particle path data. This is a Lagrangian measurement of the

flow. This data is particularly useful for determining material transport in a flow

since transport can sometimes be difficult to determine with PIV data alone. The

fundamental principle of Particle Tracking Velocimetry (PTV) involves the iden-

tification of individual particles and the recording of their positions over time as

they move. To obtain these measurements, the MATLAB code, PredictiveTracker,

was utilized, as detailed by Kelley and Ouellette in their publication [47].
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5 Applications and Results

In this chapter, I present the applications of the experimental and analytic ap-

proaches with their respective measurements. The first subsection is dedicated

to the validation of the experiment and analytic solution when considering high

Reynolds number flows. The second subsection focuses on the validation of the

experiment in low Reynolds number cases. The third and final subsection focuses

on how the validated analytic model can be applied to practical problems, which

in my case is modeling mixing in the inner ear.

5.1 Validation of the Experimental and Analytic

Model

Before I can apply either the analytic or experimental models that I developed

directly to modeling flows inside the inner ear, I had to perform a series of ex-

periments that spanned a large parameter range to validate the accuracy of the

models. In order to validate the models, I compared my measurements and pre-

dictions with other analytic and numerical results.

The first form of comparison I employed for preliminary validation was Yin

and Fung’s analytic model from [34]. With the help of Yin’s dissertation [35], I
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was able to write up a Matlab code that computed the lengthy analytic solution.

In figure 5.1, I show a series of comparisons that I made between experimentally

measured values and Yin and Fung’s analytic model. For this comparison, I

measured the root-mean-square velocity (Vrms), as calculated by equation A.6,

and compared against three key variables, the wavelength λ, the wave speed c

and the nondimensional amplitude ϵ.
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Figure 5.1: The figure shows a series of comparisons between the experimentally measured

(blue) and analytical model values from Yin and Fung. a) Holding c = 30 cm/s and ϵ = 0.01

while varying the wavelength λ yielded little change in the root-mean-square velocity of the flow.

The experimental values appear to have a small trend but are not significant. Both values are

still close in magnitude. b) Holding c = 30 cm/s and λ = 30 cm while varying the amplitude ϵ

shows similar magnitudes of root-mean-square velocity and trends for both the analytic model

and experiment. c) Holding ϵ = 0.01 and λ = 30 cm while varying the wave speed c shows close

agreement in magnitudes of root-mean-square velocity and trends for both the analytic model

and experiment. d) Comparing the velocity profiles for the velocity in x at a fixed point in space

and time from the analytic model and experimentally measured values show good agreement.

The results from comparisons between Yin and Fung’s model demonstrated
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that the experimental model was replicating trends predicted by the analytic

model. The wavelength λ on its own had little impact on the root-mean-square

velocity. The wave speed c and nondimensional amplitude ϵ had a linear trend

with the root-mean-square velocity, where increasing either also increased the root-

mean-square velocity. However, I was somewhat limited in how I could apply their

analytic model given the limitations that I described earlier. The next step I took

was to develop an analytic model which would suit the modeling applications that

I was interested in, i.e. those described in section 2.1.

After developing the analytic model I presented in section 3.1, I ran a series

of experiments with a large parameter span in order to validate the accuracy

of the model. The approach was similar to the one I used previously. I chose

a parameter range where I had previously estimated that the analytic model

should yield accurate solutions. The parameter range estimate was given by the

results from my analysis in section 3.1. It suggested that the analytic model

would be accurate for the parameter range that I chose for experimental runs. To

start, I consider the simplest case of a traveling wave. As noted in section 3.1,

the experimental cases must be at high Reynolds number (Re ≫ 1), with long

wavelengths (Lλ ≫ 1), and small amplitudes (ϵ ≪ 1). Given these criteria, I

performed experiments with a traveling sine wave defined by the equation

η(x, t) = Asin(αx− ωt). (5.1)

To obtain velocity profiles along the length of the channel, I employed PIV

measurements as described in chapter 4. The experimentally obtained velocity

fields were then compared with analytically derived velocity fields and numerical

simulations to ensure the validity of the results.
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Figure 5.2: The figure presented illustrates a comparison of velocity profiles over one wave-

length for the given parameters of λ = 30 cm, c = 20 cm/s, and ϵ = 0.01. The velocity profiles

are represented by the red line which depicts the analytically predicted velocity profile, the blue

line which displays the experimentally measured velocity profile, and the green line which por-

trays the numerically calculated velocity profile.

The velocity profile from comparison figure 5.2 showed good agreement. The

comparison consisted of comparing measured velocities over y at fixed points in

x from the experiment, with those expected by the analytic model and from

simulations performed by collaborators. For additional validation, I measured

the root-mean-squared velocity (Vrms) from the experimentally measured velocity

field, and did the same three-way comparison between analytic, experimental, and

numerical results. Figure 5.3 shows the comparison of the measurements. In the

comparison, the nondimensional amplitude was held constant as ϵ = 0.01 and the

wavelength at λ = 30 cm.
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Figure 5.3: The root-mean-square velocity (equation A.6) in the bulk flow region was compared

between experiments, modeling, and simulations with a constant wavelength of λ = 30 cm. The

comparison was conducted for two values of ϵ = 0.01 (top panel) and ϵ = 0.05 (bottom panel).

As I previously showed in the preliminary analysis using Yin and Fung’s

method, the resulting root-mean-squared velocity of the experiment shows a linear

increase when c is increased for all methods. The methods also yield close results,

which suggest that the experimental and analytic model are accurately capturing

the dynamics of peristaltic flows.

As discussed in section 3.1, one of the main advantages of my solution over

previous analytic solutions, is that it can admit a broader set of waveforms. Differ-

ent waveforms impose different boundary conditions on the system. I know from

equation 3.3, that the waveform imposes a temporal shape (it follows a certain

time pattern) on the velocity in v, and as such one can expect that the velocity in

u follows the same temporal pattern, different from the sinusoidal case. To check

for this, I compared experimentally obtained average bulk velocities (umathrmAB)
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using PIV, and the analytically obtained average bulk velocities. The average bulk

velocities are calculated by taking the average in y from y = 0.05L to y = 0.9L of u

at a fixed point in x. Figure 5.4 shows the comparison of measured and predicted

average bulk velocities. The figure clearly shows that the analytic model and

experimentally measured quantities are in agreement. Further, it validates that

the boundary conditions, as modeled, for non-sinusoidal waveforms are correctly

captured. The waveforms I used for validation in figure 5.4 can be described by

η(x, t) = Aeγ
2
g (x−mod(ct,λ))2 , (5.2)

η(x, t) = A sawtooth(ω(x− ct))− A/2, (5.3)

η(x, t) = Aω(cos(αx) + sin(4αx) + sin(2αx)), (5.4)

where γg is a factor that determines the traveling Gaussian curve width, and

sawtooth is a sawtooth function. Note that the waveforms for the experimental

device are input as discrete values on the software discussed in the appendix A.2,

and it is possible to create waveforms that are not easily described by mathemat-

ical functions, which adds more versatility for applications.
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Figure 5.4: Average bulk flow velocity in the downstream direction for various deformation

waveforms including sinusoid (a), sawtooth (b), Gaussian (c), and complex wave (d). Blue curves

show analytic estimates derived using the model from [8]. Red curves show experimentally

measured values.
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To ensure the applicability and accuracy of the analytic model for its intended

purpose of investigating the inner ear’s much smaller scale, I compared the model’s

results to numerical simulations for parameter scales beyond the experimental

model’s capabilities. This additional validation step was crucial in establishing

the model’s accuracy and reliability.

To validate the analytic model at the microfluidic scale of the inner ear, I

compare analytically predicted vorticity between numerical and analytic results.

Figure 5.5 shows an example of the comparison between the two. The vorticity

was calculated by taking the numerical derivative of experimentally measured

velocity fields, where the vorticity is W = ∂v
∂x

− ∂u
∂y
. One can see that there is

good agreement between the two as shown by panel c), which is the difference

between the two. The slight variations observed can be attributed to differences

in the boundary conditions. The numerical simulation was performed on a finite

domain, with a wave boundary condition that tapers off in amplitude near the

corners of the domain. This was necessary for the simulation to converge, as

having non-zero velocities at the corners caused stability problems.



56

�
�
�

�
�
�

�
�
�

� ��

Figure 5.5: The following figures illustrate a comparison of vorticity fields obtained from an

analytic model (a) and a simulation (b), along with a plot of their difference (c). In each figure,

the vorticity is normalized by the absolute maximum vorticity of the model, while maintaining

the following parameters: λ = 500 µm, L = 16 µm, ϵ = 0.0013, and c = 60 m/s

5.2 Low Reynolds Number Re < 1 Validation of

the Experimental Model

Even though my experimental device was not originally designed for applications

with low Reynolds numbers (Re≪ 1), it is versatile enough to be able to achieve

those conditions without major modifications. As part of the study I performed

and published in [48], I decided to perform validation of the experiment by compar-

ing experimentally measured values at low Reynolds number with values predicted

by the low Reynolds number model from Shapiro analytic model [19].

To ensure a valid validation process, it is crucial for me to reinforce the sig-
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nificance of the mean pressure gradient’s impact on peristaltic pumping. I have

addressed this topic in detail in section 2.3.3, and to validate my results, I con-

ducted all measurements under zero mean pressure gradient conditions. To clarify,

the experimental setup was connected as depicted in figure A.5 in the appendix

section, which ensured a zero mean pressure gradient.

Although the derivation of the following equation is presented in various studies

from Weinberg [32] and Shapiro [19], but the most detailed description is found

in Eckstein’s thesis [43].

Qo =
3ϵ

2 + ϵ2
(5.5)

Using Qo I have a single parameter to validate between the analytic model

and experimental measurements, similar to the validation approach I presented

earlier where I used the root-mean-square velocity. I performed experiments for

three Reynolds number values, Re = 0.05, 0.10, and 0.20, with varying ampli-

tudes ranging from ϵ = 0.35 to 0.70. The experiment had to be slightly modified

using polycarbonate sheet spacers as described in the appendix section A.1. The

modification reduces L, which increased the capability for ϵ to be higher, and

consequently lowers the Reynolds number of the system as L is proportional to

Re. Having a higher ϵ also helps address the issue of background convection, as

it increases the magnitude of the velocity of the induced flow.
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Figure 5.6: The flow rate, expressed as a dimensionless quantity using equation 5.5, was mea-

sured and found to vary with deformation amplitude in accordance with the analytic estimates

provided by [9] (black curve). It is important to note that these results only apply to a recircu-

lating setup, in which the mean pressure rise is zero.
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Figure 5.6 shows a comparison between the analytically derived dimensionless

flow rate Qo and experimentally measured values. One can see there is good

agreement between theory and experiment. Further validating the capabilities of

the experimental device.

5.3 Application in Mass Transport and Mixing

To comprehensively validate the models I have presented, it is crucial to conduct a

thorough assessment of the Lagrangian transport characteristics of the flow. This

is important, as the goal of modeling mixing dynamics in the inner ear is rooted in

understanding how concentration is transported in the inner ear. This subsection

demonstrates the practical application of the analytic model in the context of the

inner ear, which is the motivation behind this study, as well as in the general

study of mass transport and mixing in peristaltic flows.

One will see that the analytic model yields no net flow, and my experimental

measurements also showed that there is no net flow for the parameter range I

studied. This was expected since Shapiro et al’s [19] study showed with equation

5.5 that a net flow in peristaltic pumping is proportional to ϵ2. Given that my

focus is on small amplitudes, i.e. ϵ ≪ 1, it begs the question of how does this

system achieve transport or mixing without a net flow? The answer lies in the

Lagrangian dynamics exhibited by peristaltic flows.

First, I have to translate the analytic model’s Eulerian results into the La-

grangian perspective. To do this I had a series of approaches. The first approach

was to numerically calculate the positions of individual particles in the flow over

time. I did this using a forward Euler scheme in time, in a parallelized code in

MATLAB. The scheme can be summarized as the following:

pi+1 = pi +∆tU(pi)i, (5.6)
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where pi is the position of a particle at time i, ∆t is the time step size, and U(pi)i

is the velocity at the particle position, at time i.

The results of the numerical integration were compelling, I observed that par-

ticles in peristaltic have looped paths. However, while performing convergence

analysis, I noticed that the calculated paths were extremely sensitive to time step

size. By comparing solutions for different time step sizes, I determined that in

order to achieve convergence for the solutions I would require time steps to be

approximately equal to 16000/f , where f was in the order of 1 Hz. This meant

impractically high computation times (over two days) for simulations longer than

a couple of periods. To further complicate the issue, it was evident that par-

ticles exhibited some net displacement, however, it was small for each period,

demanding that I run simulations for multiple periods to obtain any meaningful

results.

The way to address this difficulty with the computational method was to use

the generalized Lagrangian mean method from section 2.3.1. Computationally,

it means that I only have to run the calculation over one period. Then, the

difference between the initial and final position of particles divided by the period

of the flow yields the generalized Lagrangian mean field. This obviously reduced

the computational burden significantly as I only needed to compute particle paths

over one period. Having obtained analytic results, I moved on to the experimental

measurements. I used PTV (as discussed in section 4.2) to measure the particle

paths of individual microspheres in the apparatus. On the analytic side, I used

two approaches. A brute force approach by numerically integrating paths using

the velocity field given by the analytic model, and a purely analytic approach by

analytically integrating using the generalized Lagrangian mean method described

in section 2.3.1.

First I compared the Lagrangian analytic results and experimental measure-

ments by looking at the particle paths themselves. Figure 5.7 shows particle paths
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from the experimental measurements, analytic results, and numerical results. It

was difficult to capture particle paths in high detail in the experiment, however,

the results are still compelling. It is clear that the path a particle follows shows

close agreement between methods when compared at approximately equivalent

locations. Another notable characteristic is that when different waveforms are

induced, one can see that the particle path is affected accordingly. This sug-

gested that is possible that different waveforms may have significantly different

Lagrangian dynamics.
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Figure 5.7: Examples of a) simulated, b) analytic, and c) experimentally measured particle

pathlines, with c = 1 m/s, λ = 30 cm, and ϵ = 0.03. Black points mark particle locations a

period apart.

In order to quantitatively validate the models, I decided to compare the mod-

els by comparing calculated generalized Lagrangian mean fields. A comparison
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of average Lagrangian velocities in the bulk region of the flow (from y = 0.1L

to y = 0.9L) among the experimentally, numerically, and analytically calculated

generalized Lagrangian mean is presented in figure 5.10. It is evident from the fig-

ure that there is a high level of agreement among the experimentally, numerically,

and analytically calculated Lagrangian mean velocities. This result reinforces the

accuracy and reliability of the models.

Prior to applying the model to the parameters of the inner ear, it is crucial to

thoroughly validate the accuracy of the modeled Lagrangian dynamics. This is

due to previous studies suggesting that peristaltic flows exhibit varied transport

dynamics depending on the parameters studied. Therefore, it is imperative to

analyze the Lagrangian mean velocity profile to gain insight into its characteristics.

Specifically, Weinberg et al. [32] saw two effects, trapping, and reflux. For the

specific case I am examining, where the peristaltic flow parameters fall within

the range specified in table 3.1, Weinberg et al. estimated that I would observe

reflux. Reflux generates mass transport that travels in the direction of the wave in

sections located away from the moving boundary, while inducing mass transport

in the opposite direction near the moving wall. The findings presented in Figure

5.8 illustrate the streamlines and their corresponding velocities in the x direction

of the Lagrangian mean field for various parameters. The Lagrangian mean field

was calculated by applying the GLM method, as detailed in Chapter 4, which

involves numerical integration of the Eularian velocity field. The plot indicates

the presence of reflux, as evidenced by the negative Lagrangian velocity near the

moving wall and positive velocity away from it. The Lagrangian velocities have the

highest speed near the moving boundary, while the rest of the channel experiences

a slower speed with a transition point of zero speed. Additionally, in figure 5.9

I plot the Lagrangian mean velocity profile, where one can clearly see the effect

of reflux. The Lagrangian velocity is positive away from the wall and reverses

the direction near it. The point that dictates where the Lagrangian velocity will
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reverse is driven by the Reynolds number. I quantify that point by locating the

edge of the reflux region, which occurs at y = yedge, with ud(yedge) = 0.
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Figure 5.8: Comparison of Lagrangian mean fields with wave speed c = 1 m/s (a), c = 10 m/s

(b), and c = 100 m/s (c). In all cases, λ = 500 µm, L = 16 µm, and ϵ = 0.0013. The color bar

is a ratio of the Lagrangian velocity ud over the absolute maximum Lagrangian velocity over

the entire field |ud|.
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deformation amplitude ϵ, and the calculated Reynolds number. The wavelength was held con-

stant at λ = 30 cm.
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Figure 5.10: a) Comparison of the normalized drift velocity profile ud/max(ud), at different

Reynolds numbers Re. The black line marks the zero velocity point. b) Location of the edge

of the reflux region, as predicted by the analytic model. The red line was obtained through

numerical integration of the Eulerian velocity field. The blue line was obtained with the analytic

model. The dots are the edge location for the curves in figure a), and the color matches the

relevant Reynolds number. As the Reynolds number increases, the reflux region shrinks.
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Now that the accuracy of the Lagrangian dynamics in the analytic model has

been validated, I can confidently apply the model and expect accurate results.

It is reasonable to anticipate that the model will produce precise outcomes when

simulating flows in the inner ear. Moving forward, recall that the relevant param-

eters for peristaltic flow in the inner ear were obtained from in-vivo studies such

as Karavitaki and Mountain [20]. The parameter values were presented earlier in

table 3.1. I will now use these parameters to determine whether they can achieve

the goal of mixing in the inner ear.

To fully determine the effects of peristaltic pumping on mixing. I used an

advection-diffusion numerical simulation developed by fellow researchers at the

University of Rochester. Details on the simulation code can be found in Troyetsky

et al. [49]. Using this simulation model, I was able to determine how a channel

with a peristaltic flow and one without any flow will transport some arbitrary

concentration over time.

In figure 5.11 I show a comparison of advection-diffusion simulations of two

channels with a concentration in a channel evolving over time. In one case, no

flow is present, and diffusion alone is responsible for the concentration’s spread.

The other case features peristaltic flow which was calculated using the analytic

model, where the parameters match the inner ear’s estimates that I previously

presented in table 3.1. One can see that the channel that has a peristaltic flow

present, mixes the concentration significantly faster than the channel that relies

on diffusion alone.
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Figure 5.11: The figure illustrates the variation in the concentration of a passive scalar,

influenced by both diffusion and the modeled Lagrangian mean flow, as well as by diffusion

alone. When subjected to flow, the values of the parameters λ = 200 µm, L = 50 µm, ϵ = 0.002,

and c = 50 m/s are utilized, while the diffusion coefficient Ξ remains constant at 7×10−10 m2/s

in both cases. It can be observed that the peristaltic flow leads to greater mixing compared to

the case with diffusion alone.

The reason why it makes sense that peristaltic flows enhance mixing in the

inner ear is due to the presence of reflux. As discussed in section 2.1, the Tunnel

of Corti is a long and slender channel, which means diffusion time scales along

the y axis (if one thinks of it three-dimensionally along in the direction of the

diameter) is significantly faster (10 mm/50µ m≈ 200 times faster). Reflux has

the effect, as shown in figure 5.11 and figure 5.10, of spreading a layer of material

along x at speeds of the order of Aω, and then diffusion takes the role of spreading

the displaced concentration in y. This is likely an effect named Taylor dispersion

and studied originally in [50, 51]. Taylor dispersion works in similar conditions

where specific advective transport produces enhanced mixing of a fluid.
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6 Oscillatory Flow in Junctions

This and the following chapters focus on how I studied the effect of channel ge-

ometries on oscillatory flows. The motivation for this study originated from an

interest in developing a better understanding of how fluid flow occurs in the glym-

phatic system. The glymphatic system consists of a network of fluid channels in

the brain where a form of oscillatory flow has been measured [10]. The underlying

mechanism that drives this flow is unknown at this time, however by building a

simple toy model which captures some of the features found in the real system, I

hope to find useful data that can help develop a full theory of how the glymphatic

system works. To better understand the importance of the glymphatic system, I

will now provide an overview of how it is built and works.

The glymphatic system is a recently discovered system of the central nervous

system that plays a key role in the clearance of waste products from the brain.

It was discovered by Iliff et al. [52] in 2012. It is a specialized version of the

lymphatic system and is composed of glial cells, small channels, and perivascular

spaces that provide a pathway for cerebrospinal fluid (CSF) to flow through the

brain. This system is essential for the maintenance of brain health and for the

prevention of a range of neurological diseases. The glymphatic system works by

allowing CSF to flow through the brain, picking up waste products such as amyloid

beta proteins, which are associated with Alzheimer’s disease.
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The glymphatic system is composed of a series of perivascular channels and

astrocytic processes. These channels are lined with glial cells, which act as support

structures for the pathways and help to facilitate the flow of interstitial fluid (ISF)

and waste. The paths of these channels are arranged in an interconnected web-like

structure, with each pathway leading from one region of the brain or spinal cord

to another. This allows for the efficient and rapid transport of waste and ISF

throughout the brain and spinal cord.

The glymphatic system fluid network consists of vessels and channels that

surround the blood vessels of the body, which in turn bifurcate and distribute

to many sections of the brain. Figure 6.1 shows an image of how the glymphatic

channels are structured around arteries. Figure 6.2 shows a model from [11] where

the glymphatic system is shown to be a complex network of fluid channels.

Oscillatory

Flow

Artery PVS Channel

Figure 6.1: Sketch from [10] shows the structure of a glymphatic channel. The channel

surrounds the artery and exhibits an oscillatory flow.

In 2018, a study by Mestre et al. [10] reported evidence of oscillatory flow in

the glymphatic system. The study used two-photon microscopy and fluorescent

tracers to visualize the movement of interstitial fluid in the mouse brain. It found

that the pulsatile flow of glymphatic fluid was driven by the oscillatory contrac-

tions, which created a wavelike flow of CSF fluid within the glymphatic system.

The authors concluded that this flow, which exhibits oscillatory characteristics,

might be a mechanism for efficient and rapid clearance of metabolic waste from
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the central nervous system. Figure 6.3 shows flow measurements presented in [10]

in the glymphatic system.

a) b)

Figure 6.2: The diagram depicted in figure a) illustrates that due to the glymphatic system’s

composition of numerous branching channels, it is feasible to represent the system as an abstract

fluid network model, as noted by Tithof and colleagues in their recent publication [11]. figure

b) shows an image of a channel bifurcation where measurements were performed [10].

Figure 6.3: Flow measurements found in the glymphatic system from [10]. The figure shows

how the flow-tracking particles move directionally in the channels with an oscillatory component.

At present, the mechanisms behind flow in the glymphatic system remain

unclear. A review of the current hypotheses was put forth by [53]. As the im-

plications of understanding glymphatic flows are significant, and oscillatory flow

has been observed in the glymphatic system, I constructed a simple experimen-

tal device that can simulate flows with some of the same characteristics as the
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glymphatic system. My aim was not to recreate the exact environment of the

glymphatic system, as this would be a challenging endeavor given the present

unknowns. Rather, I sought to investigate whether certain characteristics of the

system may have an effect on flow. I sought to isolate the fluid flow characteristics

of an oscillatory flow, likely caused by the deformations of the arterial walls, and

of bifurcating channels, which downstream split into multiple channels.

To guide my study, I conducted a review of various studies that investigated

mechanisms involving an oscillatory flow in a channel system with some type of

junction. The studies I focused on examined flow mechanisms where an oscillatory

flow can result in a directional net flow due to a temporally asymmetric flow

resistance at a T-junction. This effect can be described as rectification of the

oscillatory flow, although the oscillatory component is not eliminated, unlike in

the context of electronics. This means that when fluid is pushed in one direction

through a junction, it will not exhibit the same flow resistance when flowing in

the opposite direction. These are expected characteristics of a network-like fluid

channel system such as the glymphatic system. To simplify the complex network of

flows and observed oscillating flow in the glymphatic system, I reduced the system

to a local junction for study. This approach has been used in other biological

systems with complex networks and flows, such as studies of flow inside the lungs

and arteries [12, 54, 55].

Some examples of studies that considered a simple system, where a junction

and an oscillatory flow produce some net flow, i.e. have some form of rectification.

Takagi et al. [56, 57] performed studies that focused on the nature of oscillatory

flows interacting with a T-junction. Their system consisted of two reservoirs

connected by a tube. The tube had a T-junction that connected to a piston.

They observed that a pressure gradient between reservoirs can be produced if

the length of the two pipes was not equal. Propst [58] performed an analytic

analysis to further evaluate the nature of such a pumping mechanism. He created
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analytic models that captured the dynamics of the piston and junction system and

ultimately determined that some form of nonlinear resistance at the T-junction

is necessary in order to create a pressure gradient across the system. The results

were further validated later by Cid et al. [59]. Lastly, a study by Nguyen et al.

[12] showed a very similar system. In the study, they showed a looped channel

where they were able to produce a flow by inducing an oscillatory flow with a

magnetic piston within a channel. They hypothesized that this type of channel

geometry has similar physical characteristics to that of lungs in birds, and can

explain how flow occurs in looped sections of bird lungs. Critically, they theorized

that the driving mechanism for this effect was the flow separation caused at the

T-junction (figure 6.4).

Figure 6.4: Figure from Nguyen et al. [12]. (a) Shows the simulated looped channel, the color

is the speed of the flow along the channel at a selected point in time. Speed is normalized by

the maximum value. At the bottom section, there is a piston driving the fluid. (b) The figure

shows computational results at the T-junction of a looped channel in simulations. Four points

of the cycle are plotted with the respective vorticity. The plot shows that over the cycle, there

is some form of asymmetric flow structure in the cycle. This is what the authors pointed out to

be flow separation that results in a valving effect, which ultimately produced a directional flow

in the looped section of the system.

The studies revealed the possibility of generating net directional fluid transport
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in a system by solely utilizing an oscillating flow and a geometric feature in the

form of junctions. In relation to the glymphatic system, periodic deformation

of the walls of the perivascular space (PVS) was observed, which would likely

displace fluid in an oscillating manner [53]. The PVS channels are structured as

a network with many junctions. However, a main limitation in the comparison

between the literature presented and the glymphatic system was the difference in

parameters. The analysis from Mestre et al. [10] indicated that the flow in the

glymphatic system was predominantly dominated by viscous forces, which were

incompatible with the previous literature. Nonetheless, Nguyen et al. [60] found

that for certain geometric conditions, it was still possible to observe a directional

flow induced by advective forces, even when dimensionless analysis suggested that

viscous forces were dominant. Therefore, the direct applicability of my findings

to modeling flows in the glymphatic system remains open.
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7 Oscillatory Flow in Junctions:

Preliminary Study

This chapter focuses on describing the preliminary experiment design and findings

employed to model two key components of the glymphatic system. The fluid

system consisted of an oscillatory flow in a closed-channel fluid network. The

preliminary design can be thought of as initial testing to determine if there were

any interesting results. I then used the findings from this chapter to refine the

experiment design and develop a better understanding of the system’s dynamics

which are explored in chapter 8.

7.1 Experiment Device

The initial experiment consisted of two channels, with a section of the two divided

by a flexible membrane (shown in figure 7.1). Previous research on the glymphatic

system hypothesized that pressure in adjacent blood vessels could cause deforma-

tions in the channels and, in turn, drive the flow. The membrane section was

designed to simulate such deformations and investigate whether they serve as a

driver of the flow.
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Figure 7.1: Sketch of the preliminary experimental design. Shown are the channel config-

urations of the experiment. The system has two fluid channel loops separated by a flexible

membrane at one section. The two tubes are TJ-1 with a length of L1 and TJ-2 with a length of

L2. A valve was in the system to help me fill the experiment with water. During experiments,

the valve was always open, when closed no fluid was observed to be displaced in the passive

loop. The top blue arrows indicate the positive direction of the flow, for this experiment.

The key parameters to consider in the experiment were the frequency f of

the flow, the length L1 of the tubing TJ-1, the length L2 of the tubing TJ-2

where L1 ≥ L2, the total loop length Ltot = L1 + L2, and γ = L1/L2. Note

that the frequency of the flow in the passive was always equal to the frequency

of the peristaltic pump, and no lag in response was ever found. In other words,

the phase of the active and passive channels was always equal. I constructed the

dual channel component using four transparent acrylic sheets of 1/8 inch (3.2

mm) thickness, which I cut to specification using a BOSS CO2 laser. In between

the layers of acrylic sheets, I placed thin rubber sheets (McMaster-Carr part no.

85995K12) with a thickness of 0.006 inches (0.15mm). These rubber layers were

cut to match the size and through-hole features of the acrylic sheets, and so that

when compressed the acrylic layers would seal. The rubber layer’s role is mainly

to provide a seal, but the middle one plays an additional role of being a shared wall
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between the two channels. Figure 7.2 shows a drawing of the layers with detailed

dimensional specifications and has labels on the significance of the features. The

laser cutter produced the through holes where I used 1/4-20 screws and nuts to

tighten the layers together. The inlet features were cut to size to allow for 1/8

NPT threads. I then attached (McMaster-Carr part no. 5153K36) to the 1/8

NPT threads wrapping the threads with a small amount of Teflon tape to ensure

a proper seal.
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Figure 7.2: Detailed drawings of the experiment split channel. All dimensions shown are in

inches. a) Drawing of the entire assembly. b) Drawing of the ‘lid’ layers. c) Drawing of the

‘channel’ layers.

I filled both channels with water and created two looped channels as illustrated
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in figure 7.1. The active channel was driven by a Kamoer KPHM400 24V stepper

motor peristaltic pump. While the passive channel was connected to a t-connector

(McMaster-Carr part no. 5117K13) and a fluid reservoir which I created using

plastic soup containers.

The peristaltic pump was controlled using an Arduino MEGA 2560 board and

a Pololu AMIS-30543 stepper motor controller. I could specify a rotation speed for

the stepper motor that moved the peristaltic pump and it would produce a flow in

the driven channel. The peristaltic pump consisted of three roller components that

compressed a flexible tube as it rotated. Due to the pump having three rollers,

the driven channel would experience a periodic flow with a frequency three times

the stepper motor rotation rate. As fluid is pumped in the driven channel, a net

pressure is generated, which forces the membrane in the passive channel to be

displaced, which in turn displaces fluid in the passive channel.

The T-junction was acquired from McMaster-Carr part no. 5117K13 and is

shown in detail in figure 7.3. This is an important detail of the design, as it will

be demonstrated in the results that knowing the specific geometric characteristics

of the T-junction is critical to the system.
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Figure 7.3: McMaster-Carr part no. 5117K13 schematic of the T-junction used for experimen-

tal measurements. This junction was used for the preliminary experiment, as well as testing the

final experiment.
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Figure 7.4: McMaster-Carr part no. 5117K69 schematic of the Y-junction used for preliminary

experimental measurements.
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7.2 Data Acquisition Techniques

I utilized Emergent M3000 cameras to capture videos of the flow in the system for

this experiment. I measured the flow from the videos by utilizing microspheres

from Cospheric with dimensions 90-106 µm and a density of 0.98 g/cc (part num-

ber REDPMS-0.98).

I attempted to perform some particle tracking velocimetry (PIV) measure-

ments using PIVLab but found it difficult to produce acceptable data. Details on

PIVLab were available on [46] and were also discussed in more extensive detail

in chapter 2. The main issue was that my experiment design had no measures to

allow for illuminating particles in a plane, due to this all the particles captured

by the camera were moving three-dimensionally, which could not be compensated

for by the software properly.

I used PredictiveTracker to obtain data, which allowed me to perform Particle

Tracking Velocimetry (PTV) as discussed in Chapter 2. The PredictiveTracker

produced particle paths for individual particles.

7.3 Preliminary Experiment Results

Once the system was set up as described in section 7.1, I selected a set of pa-

rameters to test, which meant I selected the tube lengths for TJ-1 and TJ-2 and

specified a frequency f . I recorded videos of segments of tubing at TJ-1 and TJ-2,

as shown in figure 7.1. Using PredictiveTracker, I obtained the paths of the mov-

ing particles in the videos. The measured paths provided me with quantitative

data, which indicated that particles showed some form of net displacement in the

loop section of the device. The particles moved back and forth but seemed to not

fully return to the original position, always drifting slightly in one direction.

To obtain a definitive measurement of the net motion of the particles, I took
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the position of particles in the downstream velocity at two points in time. The

two points in time are a multiple of some integer n times the period of the driven

flow Tdriven apart. Then I can obtain an estimated average net velocity as

unet =
pF − pI
nTdriven

(7.1)

where pF is the position of the particle in the flow direction at the end of n cycles

and pI is the initial position in the flow direction. To ensure that this measurement

was as accurate as possible, I would also have to add another condition, where

the initial particle position pI would have to be equal or as close as possible to

the point in time where the particle velocity is zero. Figure 7.5 shows particle

paths measured at TJ-1, where the downstream position is plotted vs time. The

downstream velocity was defined to be positive in the direction from TJ-2 to TJ-1.

One can see the oscillatory component of the flow is present, but also that the

periodic lines appear to have a linear slope to them, indicating that the particles

drift over time.
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Figure 7.5: Shown is a measurement of particle positions at TJ-1 over time. Each line rep-

resents a singular tracked particle. The positive direction of position is associated with the

position from TJ-1 towards TJ-2. Parameters for this plot were f = 2.25 Hz, γ = 4, Ltot = 40

cm. The scale was 125 pixels per mm. The lines show the oscillatory nature of the motion, with

an added nonperiodic drift. Understanding the source of the nonperiodic drift is the focus of

this study.
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In all experimental conditions, the net flow appeared to be unidirectional. To

investigate this further, I conducted a test to determine whether reversing the

peristaltic pump direction in the active channel would result in a reversal of the

flow in the passive channel. Despite the reversal of the pump, no change in the

direction of the flow was observed, indicating that the mechanism did not depend

on the peristaltic pump, but rather on periodic deformations caused by the rubber

membrane that induced flow in the passive channel.

To further confirm the presence of net flow, I measured the flow at two different

locations, namely TJ-1 and TJ-2. The results of these measurements consistently

showed that the particles drifted in the same direction, from TJ-2 to TJ-1.

I observed that the instantaneous speed of the flows at TJ-1 and TJ-2 was

significantly different, this is shown in figure 7.6. From this, I hypothesized this

was due to the different flow resistances between TJ-1 and TJ-2 due to their length

and the oscillatory flow in the system. Notably, the ratio of maximum measured

speeds was approximately equivalent to γ, where the maximum speed at TJ-1 was

approximately four times lower than at TJ-2.
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Figure 7.6: Shown is the maximum instantaneous speed as a function of the total loop length

Ltot. The loop ratio was held constant γ = 4 and f = 2.5 Hz. Measurements in blue were

performed at a section of TJ-2. Measurements in red were performed at a section of TJ-1.

The maximum instantaneous speed decreases with increasing total loop length Ltot. The data

suggest that this decrease is likely due to an increase in resistance from viscosity in the loop.

This is in agreement with the expectation that resistance to flow in a pipe increases linearly with

Ltot. The plot shows each tube of the loop has different speeds related to the difference between

L1 and L2, likely due to viscous resistance to the flow. Note that speed has no direction, and if

the direction were to be applied, the measurements for TJ-2 would be negative.

Having established some basic observations of the system, and a number to

quantify the flow, I moved on to running experiments in an attempt to determine

which parameters drive the flow. I decided that the parameters to test would be

the frequency of the flow f , and the length of the tubes L1 and L2. This was

to test the hypothesis that a difference between L1 and L2, combined with an

oscillatory flow was enough to generate a flow. Perhaps if the flow is driven by

the difference between L1 and L2, a larger mismatch would lead to a faster flow.

Testing the frequency is a simple way to test if there is a link to the oscillatory

component of the flow.

First, fixing the length of the tubes to Ltot = 40 cm and varying the frequency
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of the pump, I found that as I increased the frequency, there was a tendency for the

net velocity of particles to increase. In figure 7.7 one can see that as the frequency

of the pump increased, the measured net velocity also increased. However, after

reaching a frequency of 2.5 Hz, the net displacement per cycle decreased.
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Figure 7.7: Measurements of the net velocity of particles at TJ-1 when the frequency of the

peristaltic pump is varied. The plot shows an upward trend in net velocity where it peaks

somewhere between 2 Hz to 2.75 Hz. The loop ratio was γ = 4 and loop length Ltot = 40 cm.

This observation was critical in determining the next step of the study. I had

two possible explanations for what was causing this behavior. One possibility

was that a frequency of 2.5 Hz was creating optimal conditions in how the flow

behaved at the T-junction, and thus the maximum displacement of the system

would be dictated by the connections and channel geometries. The alternative

was that the fluid was being pushed by a rubber membrane which experienced

periodic pressure increases due to the peristaltic pump pushing fluid. The rubber

membrane must have some natural frequency at which the amount it was displaced

would be maximized. This would mean that near that natural frequency of the

membrane was creating larger displacements of fluid than at other frequencies.

If that were the case, I could not conclude that there was an optimal frequency

for a generalized system, as all the frequency dependence would be linked to the

material properties of the flexible wall.

I measured the maximum instantaneous speeds as a function of frequency as
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shown in figure 7.8. I found the same trend as for the results in figure 7.7. This

further validated my suspicions that the experiment design’s link to the mechanical

properties of the flexible membrane posed a significant limitation, as it was not

possible to isolate the effects of the amplitude of the membrane’s deformation and

the frequency on the induced flow of the passive channel. This led me to redesign

my experiment for final measurements presented in chapter 8.
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Figure 7.8: Measured maximum instantaneous speed of particles at TJ-1 as the frequency is

varied. Other parameters were held constant at Ltot = 80 cm, γ = 4. Similar to figure 7.7,

the particles’ maximum instantaneous speed appears to peak around the same frequency range.

One potential explanation for the speed peaking around a specific frequency is that the rubber

membrane is excited at that frequency, and as such the maximum amount of deformation to

displace fluid in the active channel occurs at around 2.5 Hz.

Before diving into the redesigned experiment, I continued making preliminary

observations to determine what other factors play a role in inducing a net flow.

I tested whether unequal lengths between tubes TJ-1 and TJ-2 were a necessary

condition to induce a net flow. It was easy to comprehend why having equal length

tubing would not result in a net flow. If both tubes were of equal length and the

membrane was shifted uniformly in relation to the channel, it was reasonable

to assume that the fluid would be displaced symmetrically into and out of the
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reservoir, thereby leading to no net flow across the loop. However, if a net flow

was produced with equal length tubes, then it seemed probable that the driver

was the flexible membrane deformation. It was possible that the peristaltic pump

had caused the wall to be moved in an asymmetric manner, which resulted in a

net flow across the loop.

I tested this hypothesis with equal length tubing, leading to noisy results,

which are shown in figure 7.9. It was clear that there was no consistent pattern.

I hypothesized two possible reasons for this: first, I had not taken enough time

to refine my analysis methodology, which could have caused errors in the results.

Second, I had cut the tubing by hand, measuring the lengths L1 and L2 with a

ruler; thus, it is likely that the small differences between tubing lengths resulted

in net flows. This hypothesis is analogous to that of an unstable point, such as

a ball at the top of a hill, where it is impossible to place the ball in the exact

middle.
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Figure 7.9: A series of measurements of net flow for different values of the loop ratio γ and two

different total lengths Ltot were plotted at a fixed frequency of f = 2 Hz. The results indicate

that no consistent pattern emerges regarding how γ affects the flow. However, noteworthy

variations are evident near γ = 1, which can be explained by the expectation of no net flow at

this point, and the consequent potential for drastic changes as we move away from it.
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Figure 7.10: Shown are the tested configurations for different geometrical configurations that

I tested. The resulting measured net velocities are shown in table 7.1.

Configuration Net Velocity (mm/s) at TJ-1 Net Velocity (mm/s) at TJ-2

a) -0.06 0.20

b) -0.12 0.49

c) 0.14 -0.33

d) 0.03 -0.04

Table 7.1: Table showing measured net velocities for different T-junction configurations. The

configurations’ details are shown in figure 7.10.

So far, I had not yet changed the T-junction of the looped channel. I hypothe-

sized that altering the geometry of the junction, from a T-junction to a Y-junction,

might lead to different flow characteristics. This could be due to the fact that the

geometry can impose different resistances to the flow in each bifurcating chan-

nel, and with a periodic motion, it could result in an overall net flow. Table

7.1 illustrates the preliminary results I obtained when I tested different junction

geometries shown in 7.10 and varied the order of connections to the T-junction.

The results show appeared to show a conclusive effect on the flow characteristics

due to the geometry.

To continue with my study, I proceeded to conduct analytic analysis of the

experimental system in order to advance my study. Through the analysis, I was

hoping to gain insight that would enable me to design a more effective experiment

and uncover the mechanism underlying the net flow in the looped channel.
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7.4 Analytic Analysis

I had to consider whether I could connect the physical scaling of the behavior I

observed to my initial goal of studying glymphatic fluid flow. The most appar-

ent distinction was that my experimental apparatus was much bigger, and thus

assessing typical dimensionless parameters, such as Reynolds number, may point

to the fact that the flow I was seeing was outside of the scope of the glymphatic

mechanism.

For the experiment system, one can define the Reynolds number using the

same definition as in a pipe, given that the flow occurs mostly in circular tubing.

The Reynolds number is defined by equation 1.3, which can be rewritten as

Ref =
UD

ν
, (7.2)

where U is a characteristic flow velocity which we can define as the mean velocity

of the flow in the pipe, D is the diameter of the tubing which in this case is equal

to 0.48 cm to 0.64 cm, and ν is the kinematic viscosity of water. The appropriate

value of U to use is complicated. This is because the velocity in the pipe is not

constant (it is time-dependent), and since the flow is divided into three different

channels (TJ-1, TJ-2, IO as seen in figure 8.1), we have three different speeds as

shown in figure 7.8.

I can determine a maximum Reynolds number by using the maximum mea-

sured speed, while this may not necessarily lead to a good scaling parameter for

the system, it will give a conservative result in terms of what sort of flow behavior

I can expect.

For the preliminary experiment, I measured particle velocities in the range of

13 cm/s to 1 cm/s, which yields an estimated maximum Reynolds number range

between 1000 and 100. This value is fairly high when compared to estimates for

the Glymphatic system, which is in the range of a Reynolds number in the order of
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10−3. However, this does not detract from the interesting flow observations, and

it is still possible that the physics at play may extend to a lower Reynolds number

parameter range. Another factor to consider is the Womersley number. The

Reynolds number requires some characteristic velocity UT , which can be difficult

to define in an unsteady flow with multiple channels. However, for oscillatory

flows, I can use the Womersley number across all the channels. The Womersley

number is defined for my experiment as

Wo =

√
2πfD2

ν
(7.3)

where D is the diameter of the tubing, f is the frequency of the flow and ν is

the viscosity of the fluid. My observations showed that the frequency remained

constant throughout the entire system, even though the magnitude of velocities is

different. The Womersley range was 38 to 6. This range is above what one ought

to expect from the actual glymphatic system making the analogy more difficult to

justify. It was clear from the preliminary findings that I was obtaining consistent

directional flow, but in order to better study and relate the flow parameters to

those of the glymphatic system, I would need an experimental device where I could

control the parameters with more accuracy. One major limitation to achieving

this was the dependency on material properties on the flow as I found in section

7.3. As such, I developed the final experiment design which I discuss in chapter

8.

7.5 Summary of Preliminary Findings

Based on my preliminary findings, it was possible to generate a directional flow

in the passive channel that was not influenced by the flow direction in the active

channel. However, the frequency of the flow in the active channel did affect the

flow in the passive channel. Moreover, I discovered that having unequal tubing

lengths between TJ-1 and TJ-2 was crucial for creating a net directional flow.
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Furthermore, changes to the T-junction shape and connection pattern had a

significant impact on the flow direction. These observations provided a foundation

for further investigations of the system with an improved design.
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8 Oscillatory Flow in Junctions:

Final Study

Having performed preliminary experiments, I determined that adjustments to the

experimental design were necessary. The main issue with the two-channel version

of the experiment was that controlling the amplitude of the oscillatory flow in an

accurate manner was not possible. The reason for this is due to the amplitude

of the rubber membrane being tied to a resonant frequency; the details of this

limitation are discussed in chapter 7. Due to this, my observations led me to test

whether the same phenomenon could be reproduced by inducing an oscillatory

flow in a different manner. I modified the experiment so that the oscillatory flow

was produced by a syringe pump. This chapter focuses on this enhanced design

and the resulting observations.

8.1 Experimental Device

My objective in redesigning the experiment was to create a device that would

enable precise control of the oscillating flow’s amplitude. To achieve this, I im-

plemented a syringe pump system that allows for accurate amplitude control of

the membrane. Rather than permitting the membrane to deform in response to

pressure variations caused by the active flow channel in the previous experiment,
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which was not possible to control precisely, the syringe changes the volume in the

closed system and forces the membrane’s deformation to absorb the volume of

fluid that is injected with the displacement of the syringe. This enabled me to

accurately regulate the magnitude and frequency of the flow independently of the

membrane’s mechanical characteristics. A sketch of the updated version of the

system is found in figure 8.1.

The updated experiment design consists of three primary components: a sy-

ringe pump, and a T-junction channel with a rubber membrane functioning as

a pressure relief valve. This also added one key parameter to the control, which

was the stroke (the total distance the syringe will travel over half a cycle) of the

syringe S. The stroke refers to the maximum distance between the two points

of oscillation of the syringe piston; thus the stroke of the syringe determines the

amount of fluid that will be displaced from the syringe in a linear manner.

The updated experiment design included three components: a syringe pump,

a T-junction channel with a rubber membrane as a pressure relief valve, and a

key parameter in the control, the stroke of the syringe. The stroke of the syringe

determines the amount of fluid that will be displaced linearly. The syringe pump

consists of a stepper motor, which drove a threaded shaft connected to a linear

stage. This allowed the stepper motor to accurately displace the syringe. For the

purposes of this study, I only performed experiments using an oscillatory motion

of the syringe pump. The syringe was a 100 ml plastic syringe with a diameter of

3.8 cm and was controlled by a Pololu AMIS-30543 stepper motor driver.
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Figure 8.1: Sketch of the final experimental design. The system differs from the preliminary

one (Figure 7.1) as it only has one looped channel. Flow is driven into the channel with a syringe

pump and the membrane on the other end is allowed to deform to allow fluid into the loop. The

two tubes are TJ-1 with a length of L1 and TJ-2 with a length of L2. The blue arrow indicates

the positive direction of the flow.

The pressure relief membrane was unchanged from the preliminary experiment

design seen in figure 7.2. The one exception was that one of the two channels was

not used; it was simply open to the atmosphere. The system was filled with water

and microspheres, except for one set of measurements (figure A.13) where the

system was filled with glycerin.

I used two different T-junctions for the experiments. One of the T-junctions

was acquired from McMaster-Carr part no. 5117K13 and is shown in detail in

figure 7.3. The other was designed and fabricated by myself. My T-junction

design consisted of a T-shaped channel that was laser cut into a sheet of acrylic,

then sandwiched between two acrylic sheets to form a large see-through channel

in the shape of a tee. Figure 8.2 is the schematic for the final design. The final

design makes the critical difference where the channels are close in area dimensions

to that of the connecting tubing. The reason for this is to attempt to minimize

potential effects caused by a steep transition in the flow area between the tubing

and T-junction.
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Figure 8.2: Schematic of the final T-junction design. This T-junction geometry was used for

the final experiment where the junction was constructed to allow visualization of the flow inside.

8.2 Final Design Measurements

In this section, I present results from the updated experimental device. The

updated design enabled me to acquire better data which allowed me to establish

trends in the dynamics and identify key components of the flow mechanics.

I used the same techniques as in the preliminary experiment to determine the

net velocity of the flow in the system as described in section 7.2. To quantify the

net flow, I measured the net velocity of particles at a section in TJ-1 using Particle

Tracking Velocimetry. Having refined my measurement techniques and approach

for the second iteration of the experiment, I show examples of the measurements

I performed in figure 8.3. Panel b) in the figure illustrates how the particles

have an oscillatory motion, with some net motion over time. This visualization is

intended to give an idea of how the bulk of lab measurements translate into the
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data presented later in this chapter.
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Figure 8.3: Downstream particle positions in a section of T-1, with each particle path colored

differently. a) With parameters f = 1 Hz, S = 2.0 mm, γ = 4, Ltot = 80 cm, particles and

the surrounding fluid have a net velocity, as they drift away from the visible area. b) With

parameters f = 0.5 Hz, S = 2.0 mm, γ = 4, Ltot = 80 cm, particles oscillate without any net

velocity.

Measurements of the net velocity unet for a large set of parameters are shown

in figure 8.4. The parameters I tested were S, f , and γ for the measurements in

the figure. The net velocity measurements were performed at four or (eight in the

case of panel c) in figure 8.4) different frequencies. I performed ten measurements

at each frequency, and I plotted the average net velocity at each frequency. The

error bars indicate the standard deviation of the ten measurements. The goal

for this set of measurements was to determine which parameters are controlling

the net flow. My hypothesis was that perhaps by picking different strokes, γ,

or frequencies I could increase or decrease the net flow. I decided to test γ as I

hypothesized that the asymmetry created by the unequal lengths of L1 and L2 was

a key component of the mechanism that produced a net velocity in the system.
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Figure 8.4: Shown in the figures are net velocity measurements measured at TJ-1 as a function

of frequency. Each panel represents measurements with different values of γ, where a) γ = 2,

b) γ = 3, c) γ = 4, and d) γ = 7. Each colored line represents a different value of Stroke S.

The plots help establish trends in the system, where it can be seen that higher values of S and

f lead to higher net velocities. It is also possible to have negative velocities in the case of small

values of both S and f .

The measurements shown in figure 8.4 show that there is a linear relationship

between the magnitude of induced net flow and the stroke S, as well as between the

induced flow and the frequency f . The direction of the flow is positive as shown in

figure 8.1, which means that positive net flow would displace fluid from TJ-1, into

the pressure relief membrane, and then into TJ-2. In each of the four panels, it was

clear that a higher stroke at equivalent parameters yielded higher net velocities.

However, one notable characteristic is that at lower f and S, the flow direction

was reversed. It was more difficult to establish a clear relationship between net

flow and γ. Comparing results between the panels of figure 8.4 no clear trend

was established as γ was changed. However, the measurements of amplitude from

figure 8.6 suggest that the ratio of the magnitude of speeds measured at TJ-1 and

TJ-2 differ depending on γ. One consequence of having different velocities at each

section of the junction is that defining a single Reynolds number for the system
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would be complicated, not just due to the time dependency, but also the fact that

we have three channels that have three different peak speeds. Notwithstanding

the challenges associated with accurately forecasting the behavior of a system

using the Reynolds number, I note that the highest value of the Reynolds number

represents the scenario where inertia maximizes its influence on the dynamics.

The maximum Reynolds number is measured within the T-junction’s segment

that links to the syringe. As such the Reynolds number in the system is defined

as

ReT =
2SfΛrrD

ν
, (8.1)

where Λrr ≈ 20 is the ratio of the area of the syringe Λsyringe to the area of the

tubing Λtubing, D is the diameter of the tubing, and 2Sf is the average speed of

the syringe.

Another parameter of interest is the observed amplitude of the particles’ mo-

tion. From figure 7.5 and 8.3, one can see the oscillatory motion of the particles,

from which it is possible to extract an amplitude. To define the amplitudes for the

particle motion, I measured the maximum distance between two points over half

a period of oscillation, but only considered the maximum value obtained from

the experiment. It is worth noting that the velocity profile of the flow creates

spatial variations in the amplitude. Therefore, limiting the analysis to the max-

imum measured value ensures consistency in the analysis. Specifically, I labeled

the maximum amplitude for measurements at TJ-1 as ATJ−1 and the maximum

amplitude for measurements at TJ-2 as ATJ−2.

Given that the main feature of interest of the system is its ability to produce a

net directional flow from an oscillatory flow, I estimated the efficiency of produc-

ing a net directional flow from an oscillatory flow in the system using the same

methodology as described by [12]. I calculated the efficiency of producing a net

flow by employing

E = unet/(2ATJ−1f). (8.2)
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The average particle speed in TJ-1 can be calculated as (2ATJ−1f). Equation 8.2

provides a ratio of energy input and output, with the input being the oscillating

flow caused by the syringe, and the output being the net flow produced. Figure 8.5

illustrates the relationship between frequency and efficiency. The analysis showed

that the highest absolute efficiency was achieved at lower frequencies, which was

associated with a negative net flow direction. As the frequency increased, the

efficiency declined until the net flow became positive. Subsequently, the efficiency

increased, but slower than in the negative regime and with high diminishing re-

turns.
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Figure 8.5: The data presented in the figures demonstrate the efficiency of generating a net flow

through a calculation. Notably, the lowest frequencies are associated with the highest absolute

efficiency.
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Another important feature that I was able to analyze using the amplitudes of

particles was the maximum average speed. The maximum average speed at the

channel s as

sTJ−1 = 2ATJ−1f. (8.3)

The maximum average speed s is a useful parameter for validating my ob-

servations. Note that the maximum average speed and maximum amplitude are

considered to be the maximum that is measured, just as in the case of amplitude.

To conduct experimental measurements, I selected the ten longest particle paths

in terms of duration for each experiment I performed. For each path, I extracted

the maximum speed at every half-cycle and calculated the average of these val-

ues to obtain ten measurements. The highest value among these measurements

represents the experimentally measured maximum average speed. Since the high-

est quality measurements were typically obtained near the center of the tubes

where speeds were maximized, the values of the ten measurements did not dif-

fer significantly, usually less than a 5% difference. This method worked well in

my experiment because the oscillations resembled a triangle wave, as depicted in

Figure 8.3. To understand what the maximum average speed s says about the

system, consider the experiment in a steady-state scenario, where instead of an

oscillatory flow, the flow is one where the syringe continuously injects fluid. For

the case where L1 = L2, one can easily estimate the maximum average speeds

at each tube sTJ−1 and sTJ−2. All we need is the inlet (or syringe) flow speed.

For my experimental system, one can estimate sIO from the parameters of the

syringe. The syringe pump produces a maximum average flow rate that is equiv-

alent to Qsyringe = ssyringeΛsyringe = 2ΛSf . Due to continuity, we can calculate

that the same maximum average flow rate must be maintained through the rest

of the system, thus flow at the IO channel must be Qsyringe = QIO. I can estimate

the speed at IO as sIO = ssyringeΛsyringe/Λtubing. Then the flow must split evenly

between the two symmetric channels, meaning that sTJ−1 = sIO/2.
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Figure 8.6: Shown is a plot of the maximum amplitude measured at TJ-1 versus the loop ratio

γ. The total loop length was Ltot = 80 cm. Each of the colors represents a different value of S.

The scatter clearly shows how the amplitude increases as γ decreases. The values also converge

towards the expected amplitude as γ → 1. The expected amplitudes are plotted as exes.

In the case of an asymmetric channel setup, where L1 ̸= L2, the final step in

this relationship is not straightforward. From my observations in the preliminary

section 7.3, the speed of the fluid is overall lower at TJ-1 compared to TJ-2. This

is not surprising as TJ-1 should produce more resistance than TJ-2 to the flow

towards the membrane due to its longer length. Given this observation, it is not

possible to use the same simple analysis to predict values of sTJ−1 and sTJ−2.

However, it provides a valuable tool to verify measurements. Since L1 > L2,

then it follows sTJ−1 < sTJ−2. As a consequence, ATJ−1 < ATJ−2 to compensate

for the speed differential, and as γ → 1, we should see both measured amplitude

ATJ−1 andATJ−2 converge to the same value as the one estimated in the symmetric

case. Measurements of the amplitude at TJ-1 in the experiment and shown in

figure 8.6, show a clear trend that converges towards the expected value as the loop

ratio trend to one (γ → 1). For my system where γ = 1, the expected amplitude

at TJ-1 for S = 1 mm is ATJ−1 = 4.8 mm, S = 1.5 mm is ATJ−1 = 7.2 mm, and

S = 2 mm is ATJ−1 = 9.6 mm. Furthermore, the results from figure 8.6 suggest
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that the dominant factor in viscous losses in the system is the long tubes, not the

T-junction. I observed that as the stroke S drops, so must the maximum average

speed in the tube since the speeds at the tubes are defined as sTJ−1 = 2ATJ−1f .

I attempted to model the phenomenon where a drop in speeds and amplitudes

is linked to the loop ratio γ. I used the following model, where I consider two-

dimensional steady viscous flow in a T-junction shown in Figure 8.7. In the

experiment the maximum Reynolds number flow I modeled was approximately

1000, given this, I found it adequate to model the steady flow using Poiseuille flow.

The boundary conditions are the following: The inlet imposes a flow rate Q∗
in and

the two outlets have a pressure condition where they both are at atmospheric

pressure Patm. Given that a flow rate is imposed at the inlet, one can consider the

equivalent as the inlet imposes a pressure P0 which achieves a flow rate Q∗
in at the

inlet. From Poiseuille flow theory we know that a pressure difference is defined as

∆P =
8µlQ∗

πR4
, (8.4)

where ∆P is the pressure difference between the inlet and outlets ends, Q∗ is the

flow rate, µ is the dynamic viscosity of the fluid, l is the length of the pipe, and

R is the radius of the pipe. The relationship of pressure loss is linear with the

pipe length and is the only parameter we have changed. Since the pressure is

equivalent at the end of each of the two channels in the simple model, then it

follows

Q∗
1l1 = Q∗

2l2 (8.5)

or

Q∗
2/Q

∗
1 = l1/l2 ≡ γ. (8.6)
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Figure 8.7: Shown is a sketch of the analytic model. The model considers steady flow at a

two-dimensional system of three channels connected by a T-junction. The perpendicular channel

imposes a flow rate, simulating the conditions of the syringe pump. The two outlet channels

are labeled as 1 and 2, they have their own respective lengths and are open to the atmosphere.

Each channel’s flow rate is described by Q∗ with their respective label.

This result is consistent with the measurements shown in figures 7.8 and figure

8.6, as all three demonstrate that γ is linked to the ratio of flow rates between TJ-1

and TJ-2. However, they do not provide insight into what the mechanism driving

the net flow in the loop was. Given this, I reviewed literature that appeared to

have similar systems as mine in chapter 6.

The similarities between Nguyen et al. [12] and my observations prompted me

to perform experimental observations at the T-junction in hopes of observing the

same flow characteristics they had observed. A key takeaway from this analysis

was to observe how the flow at the T-junction differed over the cycle. That is,

what does the flow look like when the syringe is injecting fluid into the system

(which I call the push cycle), versus when the syringe is pulling fluid from the

system (which I call the pull cycle).

8.2.1 Measurements at the T-Junction

I conducted an experiment to test the hypothesis that the geometric properties

of the T-junction are responsible for inducing a flow. To do this, I changed the

geometry of the T-junction by swapping the connections at the T-junction, as
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illustrated in figure 8.8. This was the same approach as what was conducted in

the preliminary study, but this iteration of the experiment allowed me to visualize

the effects on the flow at the junction.

Symmetric Short Longa) b) c)

Figure 8.8: Sketches of the three configurations that were tested. a) The Symmetric configu-

ration connected the central arm of the T to the syringe pump (IO). b) The Short configuration

connected the central arm to the short tube (TJ-2). c) The Long configuration connected the

central arm to the long tube (TJ-1).

Figure 8.9 shows net velocity measurements for each of the different geometric

configurations shown in figure 8.8. The measurements were performed in the same

manner as those for figure 8.4. Plotted measurements are the average of measured

net velocity for ten different measurements. The error bar is the standard devi-

ation of the measurements. The most important result of the experiments was

that I was able to reverse the direction of the net velocity in one configuration.

This agreed with my preliminary observations and confirmed that the geometric

conditions of the loop created a net flow.



102

0.2 0.4 0.6 0.8 1

Frequency (Hz)

-0.1

-0.06

-0.02

0.02

0.06

A
v

er
ag

e 
d

is
p

la
ce

m
en

t 
(m

m
/s

)

Short

Long

Symmetric

Figure 8.9: Measurements of the net velocity in a section of TJ-1 for different interconnection

configurations. For the Long configuration, the direction of the flow is reversed. The effects of

S and f on the magnitude of the net flow remained the same as shown in figure 8.8.

I employed a rheoscopic fluid solution, which can be made using Barbasol [61],

to visualize flow patterns in the system without needing additional analysis tools.

When conducting measurements, I focused on visualizations at one of three key

areas, a section of TJ-1, a section of TJ-2, or the T-junction. Figure 8.10 shows

various images of the flow at the T-junction, which revealed the formation of

a stagnation line where the flow bifurcated from one channel to two. This line

acted as a separatrix, dividing two sections of the flow. The separatrix remained

centered in the case of a symmetrical loop, but shifted towards the longer tube

(TJ-1) in the loop with unequal tubing lengths, likely due to the lower resistance

for fluid to move towards the shorter tube (TJ-2). Additionally, the location of the

separatrix was not constant over time, as it shifted over the cycle, indicating that

the flow paths were different when fluid was pushed into the loop, versus when it

was pulled out of the loop. This temporally asymmetric reaction was likely the

mechanism driving net flow as it suggests that flow resistance is variable over time

and space allowing for a form of valving effect in the system.
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Figure 8.10: Visualizations of the flow at the T-junction during the push and pull portions of

a cycle for two configurations: γ = 1 and γ = 3. Dark regions indicate flow separation, which is

located in the center of the symmetric γ = 1 configuration and shifted towards the inlet of TJ-1

for the asymmetric γ = 3 configuration. This indicates that changing γ induces an asymmetry

in the flow. Reynolds number as defined by equation 8.1 was 30 for all cases shown.
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In order to better measure the effect of the separatrix, I performed PTV mea-

surements at the T-junction which yield more quantitative measurements than

rheoscopic visualizations. Although PIV measurements were initially attempted,

they proved to be unsuccessful due to the absence of tools capable of measuring a

two-dimensional sheet of the fluid, similar to the method employed in chapter 5,

they were unsuccessful. Therefore, PTV was used as it is more forgiving in this

scenario. The measurements obtained are shown in figures 8.11 and 8.17.
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a) c)

d)b)

Figure 8.11: The particle paths at a T-junction for two configurations at two different stages

of the cycle have been analyzed. Magenta lines indicate paths occurring during the pull part of

the cycle, while cyan paths indicate the push part. Blue and red curves mark the approximate

location of the separatrix for each part of the cycle. The green line is the width of the channels,

and the green circle is the analytically approximated separatrix location. Reynolds number as

defined by equation 8.1 was 30 for all cases shown.

Figure 8.11 replicates the conditions presented in figure 8.10, but the fluid was

filled with particles for PTV measurements. The measurements shown are particle

paths divided into the push and pull sections of the cycle. The measurements
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clearly indicate the location of the separatrix at each section of the cycle, and

confirm the qualitative measurements from figure 8.10. The separatrix does not

change location in the case of the symmetric configuration γ = 1, which is expected

given that we always expect both connecting channels (TJ-1 and TJ-2) to have

the same velocity. In the case of the asymmetric configuration γ = 3, I observed

that the separatrix position was always closer to the tube with higher resistance

(TJ-1) and the separatrix changed position over time.

In an attempt to characterize the position of the separatrix, I revisited the

model from earlier in this section delineated in figure 8.7. By taking into account

the experimental speed measurements portrayed in figure 8.6 and preliminary

speed measurements depicted in figure 7.8, I have been able to demonstrate that

a portion of the flow properties can be replicated by considering the steady-state

Poiseuille flow. Consequently, I attempted to determine the location of the sepa-

ratrix utilizing the same model. While my two-dimensional model is not an exact

replica of the T-junction experiment, it should still be able to capture the domi-

nant flow dynamics with less complexity when compared to a three-dimensional

model. Additionally, a two-dimensional model made it feasible for me to perform

simulations for various parameters, as it is much less computationally intensive

than a three-dimensional model.

Since the velocity profile of plane Poiseuille flow uPoi follows a simple parabolic

function of the form uPoi = Us1x
2 + Us2, where x ranges from some value −b to

b, and Us1 and Us2 are constants that determine the velocity magnitude, I posed

the following question: To ensure that the flow rate is properly divided between

the two outlets, creating a separatrix or separation line, which segment of the

inlet velocity profile is required to meet the flow rate demands of each outlet? To

answer this question first consider that mass conservation states

Q∗
in = Q∗

1 +Q∗
2. (8.7)
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Equation 8.7 can be rewritten as

Dcūin = Dcū1 +Dcū2, (8.8)

where Dc is the two-dimensional channel gap width, ūin is the mean velocity at

the inlet, ū1 is the mean velocity at outlet-1 and ū2 is the mean velocity at the

outlet-2. From equation 8.6 and equation 8.8 I can write

ūin = (1 + γ)ū1. (8.9)

The flow rate at the inlet is obtained via the spatial integration of the velocity

field as

Q∗
in =

∫ Dc

0

uindxc, (8.10)

where dxc is the space in the cross-stream direction of the inlet. To visually

interpret what this integral is considering, see figure 8.12, where the purple line

is the line over which the integral is considered. From here I can use equations

8.9 and 8.10 to obtain an expression where I sought the flow rate distributed to

outlet-1 as a function of the flow profile of the inlet velocity profile. In other

words, I seek what section from 0 to an unknown position Da of the inlet velocity

profile will equal the flow rate at outlet-1. The equation is

Q∗
1 = Dc

ū1
1 + γ

=

∫ Da

0

uindxc, (8.11)

which is
D3
c

6 + 6γ
=

∫ Da

0

xc(Dc − xc)dxc. (8.12)

Integrating then yields
D3
c

6 + 6γ
=
DcD

2
a

2
− D3

a

3
. (8.13)

Solving equation 8.13 for Da yields multiple potential solutions. However, only

one should fall will fall in the range of reasonable answers, where 0 < Da < Dc.

Da represents the position at the inlet velocity profile where the separatrix should

be positioned. It is also important to note that this prediction only considers the
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position at the inlet of the square section that makes up the T-junction, the sepa-

ratrix in reality extends further upstream as shown in experimental measurements

such as in figure 8.10.

To determine the validity of my analytic approach to estimate the separatrix

position I used numerical simulations using ANSYS Fluent. ANSYS Fluent is

a commercial computational fluid dynamics software package developed by AN-

SYS. Fluent is widely used for simulating fluid flows in research. Fluent utilizes

numerical methods to solve the equations governing fluid flow.

Figure 8.12 illustrates a simplified view of the model I simulated, which consists

of three elongated two-dimensional channels interconnected by a T-junction. The

size of the channel is defined by Dc. To compare with the experimental model, I

utilized values of Dc = 5 mm, and for numerical validation, I also utilized Dc = 20

mm. For the purpose of my study, I considered two distinct combinations of

boundary conditions. Specifically, as depicted in Figure 8.12, the inlet boundary

condition (highlighted in red) was either a velocity inlet with a specified velocity

of 5 mm/s or a pressure outlet set at zero pascal. In turn, the outlet boundary

condition (shown in green) was either a pressure outlet at zero pascal or a velocity

inlet with a specified velocity of 5γ/(γ+1) mm/s for outlet-1 and 5/(γ+1) mm/s

for outlet-2. Given that the maximum Reynolds number for my experiments was

1000, I employed the laminar model in Fluent and utilized the steady-state solver

to derive the results.
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Figure 8.12: This is a simplified view of the model I simulated using Fluent software. I

created a two-dimensional T-shaped connection with long channels attached to it and labeled

the distances between them. The width of the channels is represented by the variable Dc. The

orange section at the junction is where I focused on understanding the separatrix position, which

is where the flow splits into two channels at the purple dotted line.

I show in figure 8.13 streamlines for the different simulations that were run

usingDc = 5 mm. Of particular interest is panel c) and d) which are comparable to

the experimental results presented in figure 8.11 and show similar results. Notably,

the earlier experimental measurements with γ = 3 from figure 8.11 revealed that

the separatrix changes position depending on the phase of the oscillatory flow

cycle. This characteristic is also present in shown steady-state simulations which

can be seen when comparing panels in figure 8.13.
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Figure 8.13: The numerical calculations shown in the figures depict streamlines for various

γ values, based on the model illustrated in Figure 8.12, with a Reynolds number of 30. The

visualized area of interest is specifically the region highlighted in orange in Figure 8.12. The

position of the separatrix is determined by extracting the position where the streamlines divide

the flow between outlets/inlets along the purple line.

I compared numerical and analytic separatrix positions as shown in figure

8.14. Although the analytical model is not entirely consistent with the numerical

simulations or experiment measurement, it accurately reflects the dependence of

the separatrix position on γ. Specifically, during the push phase of the cycle, the

position is closer to the longer tube (TJ-1), while during the pull phase of the

cycle, the separatrix moves closer to the middle. When comparing the position

during both cycle phases with the analytical model, as illustrated in figure 8.15,

it is evident that the steady model predicts a separatrix position between the two

phases measured in the experiment. This is likely due to the model’s inability to

account for losses induced by flow dynamics at the T-junction since it assumes that

pressure differences are solely determined by the length of the tubes. Furthermore,

it indicates that the flow resistance is temporally asymmetrical.
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Figure 8.14: Shown is a plot of the estimated separatrix position from the analytic model

and numerical simulations. Two cases are shown, one is for a system where the channel gap

Dc matches that of the experiment (5 mm), and another is Dc = 20 mm in order to test the

sensitivity to changes in Dc. Reynolds number was held at ReT = 30 to match experimental

values. The comparison shows the model is perfectly accurate, however, it captures the rela-

tionship between γ and the separatrix position well.
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Figure 8.15: The present illustration presents a comparison between the analytically estimated

separatrix position for a given γ and the numerically measured separatrix position during the

pull and push phases for a given γ. It is noteworthy that the analytic model predicts a position

that lies between the two while correctly reflecting the impact of γ. This suggests that the

model captures only a partial view of the dynamics, as the discrepancy is likely attributable to

dynamics caused by the T-junction that are not accounted for by the Poiseuille flow model.

In addition to the previous results, I performed a test to determine the effect of

different values of Reynolds numbers on the separatrix position. Figure 8.16 shows

the streamlines of three different values. The figure demonstrates that varying

the Reynolds number did not appear to trend in a specific manner or produce

large changes for the Reynolds number range of my experimental measurements

(10 < ReT < 1000).
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Figure 8.16: The figure illustrates a comparison of three streamlines obtained using Fluent

software, specifically at the T-junction section. In each case, we set Dc = 5 cm and γ = 3, while

varying the Reynolds number as labeled. The top left of each panel indicates the position of the

separatrix at the inlet location.

To summarize, I have found that although the measurements and modeling

of the separatrix did not offer an explanation of the mechanism behind the net

flow, they do emphasize the significance of time-dependent dynamics on the ob-

served flow. Moreover, the steady-state model only provides limited information

regarding the system, such as the location and trend of the separatrix, but it fails

to provide comprehensive insight into the intricate behavior at the T-junction.

Therefore, comprehending the T-junction dynamics is crucial in characterizing

the net flow in the loop.

From these observations, it became evident that the asymmetric flow resis-

tance in the channel played a major role in the dynamics. It was clear that the

different geometric configurations shown in figure 8.8 would have a strong effect in

producing an asymmetric resistance to the flow. This made sense in cases where

IO was aligned with TJ-1 or TJ-2. The flow inertia would make the flow prefer

the path towards the channel that was aligned, instead of turning to the other

channel. The following visualizations showed this effect and provided further in-

sight into why the flow had been observed to reverse as shown in measurements

in figure 8.9.
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a) c)

b) d)

Figure 8.17: The particle paths at the T-junction for both the short and long configurations

are marked in magenta and cyan, respectively, to indicate whether they occur during the pull or

push part of the cycle. Blue and red curves give an approximate location of the separatrix for

each part of the cycle. Overall, the different directions of flow create a net velocity in the loop.

The green line is the width of the channels, and the green circle is the analytically approximated

separatrix location.

Measurements for the short and long configurations described in section 8.8 are

shown in figure 8.17. The separatrix over the push and pull cycles are significantly

more different for these configurations. Particularly, the long configuration has
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different flow patterns between each section of the cycle. Notably, it appears that

in the of the short configuration, I am able to approximate the position of the

separatrix of the short configuration using the same methodology that I used for

figure 8.11. Note that I did not perform any special treatment for the change in

the configuration, as the analytic model cannot take into account the angle of the

outlets with respect to the inlet. As such, the estimated position for the short

configuration is the exact same as that for γ = 3 and Dc = 5mm in figure 8.11.

The long configuration is not approximated well. This is likely due to the fact

that the geometry of the flow is a dominant factor in increasing resistance to the

flow, not just the tube length. During the push cycle, few particles travel towards

TJ-1, while during the pull cycle, the particle flow is more evenly distributed.

This finding would explain why the flow direction is reversed and seems to point

towards an asymmetric resistance in flow depending on the section of the cycle.

These findings confirm that comprehending the temporal dynamics of the flow

at the T-junction is critical for understanding the observed net flow inducing mech-

anism in the loop. While I was able to estimate the position of the separatrix and

capture some effects of the tube length asymmetry, the simulations demonstrated

that the analytic model falls short in reproducing all the steady-state features, let

alone accounting for vortex formation caused by temporal variations in the flow

velocity.

8.3 Summary of Findings

It would appear that the mechanism behind the valving effect is due to the sep-

aration of the flow, as observed numerically by Nyguen et al. [12]. It is not easy

to identify a straightforward model to explain the transition to unstable flow and

flow separation in a fluid system. To illustrate this point, consider flow in a pipe,

where we have a relatively simple system and have developed some guidelines to
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predict instability of the flow [62]. In our particular case, we employed a junction

geometry that was not limited to a singular geometric condition, coupled with a

time-dependent flow exhibiting oscillatory behavior. The experimental observa-

tions I presented highlight the significant role of the junction in generating a net

flow within the system. The characteristic flow pattern is consistent with findings

from previous studies of flow in T-junctions, which have established that vortex

shedding can induce complex dynamics in particle transport [63, 64]. Moreover,

the sensitivity of vortex formation to the angle of the junction has been noted

in prior research on T-junction flows [65]. This may explain how altering the

configuration of the connections at the T-junction can result in different flow

characteristics, as demonstrated by the experiments in this chapter. Different

configurations, as illustrated in Figure 8.8, led to distinct net flows, as evidenced

by Figure 8.9. Furthermore, the geometry of the junction itself had an impact on

the flow, as demonstrated in Chapter 7.3 and summarized in Table 7.1.

Despite this, an understanding of this mechanism holds great value in both

engineering applications and systems featuring looped channels and bifurcations.

In particular, this mechanism may prove beneficial in biophysics scenarios, as

demonstrated in the preliminary study where a peristaltic driven channel was

shown to potentially induce flow on a non-driven channel. Moreover, it may also

have utility in fluid logic chips where the ability to rectify an oscillating flow or

vice versa, represents a valuable application [66]. It may be possible to model

with some success using nonlinear resistance models such as those used in related

studies looking at networks of channels some of which can be found in [56–58, 67],

although the models likely will require modification to meet the looped conditions

in some cases.

I did not study the case of highly viscous flows in detail and limited myself

to only one set of measurements (figure A.13), however, the results do show some

flow was produced. While this may seem counter to the separation mechanism
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that appears to be the source of pumping, it was shown in [12] that in that pa-

rameter regime, a flow can still be generated. The likely source is that separation

at complex geometry channels with oscillatory flows can occur at low Reynolds

numbers, i.e. lower values than ReT = 1, as discussed in [60].
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9 Conclusion

In the previous chapters, I showed two studies of oscillatory flows. From chapter 2

to chapter 5, I studied peristaltic flows to better understand the dynamics of hear-

ing in the human inner ear. In my study, I was able to develop an analytic model

that can accurately capture the flow dynamics for physical parameters that have

been observed for the inner ear. Furthermore, I was able to implement my model

in advection-diffusion simulations. I did this in order to determine the impact

of peristaltic flows on the homogenization of fluid in the inner ear. The oscilla-

tory nature of peristaltic flows has an interesting property where the Lagrangian

transport dynamics can allow a simple periodic motion to transport material over

a channel. I found that the combination of these transport properties with dif-

fusion and the dimensional properties of the inner ear led to an effective mixing

mechanism. The findings from this study are not limited to applications in the

inner ear. The analytic model is a general solution that can be implemented in

many applications where the conditions of long wavelengths, small amplitude, and

high Reynolds number are met. Additionally, the model allows for fast mixing

modeling for such systems, which can have an impact in other biological systems,

as they are topics of interest in the stomach [4] and in microfluidic applications

[22]. The experimental design itself has value as well, as the design was proven

to be accurate when validated against analytic and numerical models, and unlike
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previous experimental studies, it is able to model a very large parameter range in

wavelength, wave speed, and amplitude. More notably it is able to model arbitrary

wave shapes, which also allows the experiment to extend to nondispersive waves.

For those interested, I see a path in further developing this study by character-

izing and creating a model that can address nondispersive waves. Nondispersive

waves are a more realistic way of modeling physical conditions in the inner ear,

and perhaps in other biological systems such as the insect hearts, fluid ingestion

in insects, insect locomotion, and many others [68]. Additionally, nondispersive

waves may have characteristics that allow for enhanced mixing due to the time

dependency that is introduced by the nonlinear wave.

From chapter 6 to chapter 8, I studied the effect of channel geometries, where

an oscillatory flow is present. The inspiration for this study was an attempt to

better understand flows in the glymphatic system, although, over the course of

the study, the parameter range of the glymphatic system and my experiment

diverged. Still, the study yielded interesting results, that may have some limited

applications on the glymphatic system, but still has great applicability to other

systems. In short, the study looked at whether a net flow can be generated in

a closed-loop channel where a T-junction is present. The results indicated that

it is possible if an oscillatory flow is present. I was able to determine that the

amplitude and frequency of the oscillatory flow can increase the net flow, as well

as reverse the directionality. In an effort to determine the underlying mechanism

driving this net flow, I used Nguyen et al. [12] as motivation to focus on the

T-junction of the system. I found that changing the T-junction geometry leads to

different net flows. Visualizations of the T-junction flow validate the observations

from Nguyen et al., as I was able to observe that the time-asymmetric response in

the system lead to a valving effect, which in turn produced a net flow in the looped

channel. I developed an analytic model, which in conjunction with simulations,

was able to predict with some accuracy a feature of the T-junction flow. While
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the model is not capable of determining why the net flow is induced, it does signal

that the missing component is a temporally asymmetric viscous effect. This is

likely due to the vortex formation at the T-junction, which the model is incapable

of capturing. As previously mentioned, the glymphatic system was the inspiration

for this study. However, the Reynolds numbers and Womersley numbers at which I

was able to conduct the experiment did not match those of the glymphatic system.

This meant that my study is possibly not a good model of the glymphatic system.

That said, the conditions that I observed to generate flow in a looped channel

are very general. The requirements for a net flow are that a T-junction and an

oscillatory flow must be present. There are many systems in nature, such as lungs

[69], and corals [70], as well as in engineering applications where we see networks

of pipes [71].

Expanding on this work I would focus on two components. First, expanding

the looped channel from a single junction to a full network of channels may lead

to interesting results that are more applicable to complex networks found in the

applications mentioned above. Second, the critical component that leads to a net

flow appears to be the separation of the flow at the T-junction. As I demonstrated,

the phenomenon I observed is not limited to only one geometry in the T-junction,

meaning that establishing criteria that lead to a separation and valving effect at

junctions would likely provide a powerful model to understand looped channel

systems like this one. Additionally, measuring the position of the separatrix ap-

pears to yield information about the effective difference in resistances between the

channels in the loop. Specifically, the key component appears to be the difference

in resistance in time, as this allows for a valving effect to occur. Developing a

model that determines the effective resistance of junctions for bidirectional flows

would likely be able to model flows in looped channels like the one I studied.
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A Appendix

A.1 Experiment Hardware

I designed the channel to be a 2.54 cm (1 inch) square channel. The main con-

siderations were that I needed to be able to deform one of the walls, and since

I wanted to be able to visualize the induced flow, the wall material would have

to be transparent (at least on two ends). As such, I decided to use 1.27 cm (1/2

inch) transparent polycarbonate sheets for the channel fabrication. For the flex-

ible wall, I decided to use rubber and secure it into position via compression. I

machined the polycarbonate walls to size and slotted sections in the sheets for

assembly. I created features for the rubber to sit on top of the side walls and be

compressed by the top section. Inside the slots, I machined smaller slots intended

for sealant as shown in figure A.2, however, I found that they were ineffective due

to limitations in the straightness of the long channel walls. I resolved this issue

by simply filling gaps with silicone sealant.
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End cap

Top plate

Compression point between

top plate and rubber

Figure A.1: The drawing shows the assembly of the experiment using the parts previously

described. Indicated is how the top section of the channel applies compression on the rubber

sheet to secure it in position, and produce a seal.

I fabricated the section responsible for compressing the rubber wall by ma-

chining the same polycarbonate sheet I used for the other walls. Figure A.1 shows

a schematic of the compression plate that keeps the rubber in position. Addition-

ally, the compression on the rubber seals the channel in the indicated section in

figure A.2.
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Figure A.2: Schematic of the bottom component of the channel in the experimental device.

All units are in inches. Notably, I machined a small slot where the side walls are inserted to

introduce a rubber strip to act as a seal.

I revised the design shown in figure A.1 due to the fact that the rubber wall was

too hard for the actuators in the final design to deform. The reason is discussed

in further detail in section 2.3.3. To reduce the stiffness of the wall, I opted to use

a much thinner rubber sheet. To do this, I had to fabricate a structure that would

sandwich the rubber in place, while performing the same role as the previous wall.

Figure A.3 shows a schematic of the structure and rubber membrane. I fabricated

the structure by using a BOSS laser cutter, then stacking the components to

achieve a structure as shown in the figure.
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Figure A.3: Schematic indicating the location of the rubber seal (McMaster Square-Profile

Oil-Resistant Buna-N O-Ring Cord Stock, part number 9700K12).

The effective size of the channel L could be modified by introducing polycar-

bonate sheet spacers as shown in figure 4.1. The polycarbonate sheets matched

the width of the channel (1 inch), spanned the length of the experiment, and had

a thickness of 0.125 inches. Introducing two spacers would effectively turn the 1x1

inch channel into a 1x3/4 inch channel.

Above the top section of the channel, I constructed two plates that hold the

actuators that displace the rubber sheet. The plates are placed in position with

(2.54 cm) 1-inch spacers and have the patterns for NEMA 7 or NEMA 14 stepper

motors machined on them. The original design used NEMA 7 stepper motors and

was fabricated using polycarbonate sheets, however, I found that the polycarbon-

ate sheets also tended to deflect when the actuators were in operation. To fix this

I redesigned the shelves to be steel plates.

The end wall design shown in Figure A.4 remained constant throughout the

study, with the exception of the tubing adapter portion. When a flow was induced
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in the channel, the fluid was forced to pass through the square channel and into

the connected tubing, which had a reduced flow area than the full one-inch square

channel. To investigate the effect of this reduction in flow area, various tubing

sizes were tested, yet no effect was found.

2

4

1.5 1

Ø.63

.25
.25

Figure A.4: The drawing shows the end walls (or caps) of the channel. The middle hole is

an NPT 1/8 threaded hole where a hose is connected to the rest of the fluid system. The units

shown are in inches.

Finally, the system was interconnected with tubing as shown in figure A.5.

These connections ensure that the fluid can recirculate or create different con-

ditions in the system. The valves serve to cut off the flow and create different

configurations without the need to disconnect anything. Additionally, during the

actual preparations for experiments, the valves make it significantly easier to fill

the channel with water.
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Experiment

Tubing

Reservoirs

Valves

Figure A.5: The figure is a sketch that indicates how the major components of the experiment

were interconnected. In essence, the experiment set up was a channel connected to a series of

valves to allow me to fill the channel with fluid, ensure that the system has no trapped bubbles,

and change the boundary conditions of the system by closing or opening valves, or change

the pressure conditions by changing the amount of fluid at each reservoir, creating a pressure

gradient along the experiment.

A.1.1 Limitations and Flaws

In the previous subsection, I showed how I iterated on the design to overcome

certain limitations and flaws. However, not every single issue was resolved and

as such I will detail in this subsection the unresolved limitations and flaws. The

rubber sheet required significant compression to properly seal the channel, this

meant that the polycarbonate walls would flex and stress. Eventually, this led

to the formation of cracks in the polycarbonate walls which had to be sealed.

To address the damage and stress caused by compression I changed two things:

First, the top wall was redesigned to be made out of aluminum. This eliminated

any flexing and did a better job of distributing compression. Second, I added
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small steel plates underneath the bottom wall to distribute the forces on the

bottom polycarbonate wall. The bottom wall must remain transparent since it

is needed for the illumination of particles in the experiment, and the steel braces

act as washers to distribute the compression force and prevent damage. Large

deformations were sometimes an issue. Particularly with the design shown in

figure A.1, the rubber sheet would be displaced in such a way that the seal with

the side walls would no longer be effective. As mentioned earlier, the second design

is a workaround for this, but at the cost of the modeling capabilities of a continuous

wave. To elaborate on the limitations of wavelength modeling, first consider that

the wall is not deformed in a continuous manner. The wall is actuated at discrete

points over the wall, which means the material of the rubber will dictate how

accurately a continuous deformation over the wall is modeled. Figure A.6 is a

sketch that shows the consequences of different materials given a specific setup.

In general, thinner, more stretchable material allows larger amplitudes, but it can

result in what I call ‘dimples’ in the wave because the actuation points are too far

apart. A hard thicker, harder rubber will in general do the opposite, thus making

it much harder to deflect the wall other than for very small amplitudes.

�

thin rubber

actuators

actuation

�)

thick rubber

actuators

actuation

Figure A.6: The sketches contrast the effects of a thick and thin rubber wall on the experiment.

a) Is an example where the rubber is thick, and so as an actuator deforms the sheet, it creates

a smooth curve between actuators. b) Is an example of a thin rubber wall, where the wall only

deformed locally, creating a sort of dimple, instead of a smooth curve between actuation points.

The vertical alignment of actuators, while not a critical component to consider
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for the accuracy of modeling itself, can cause significant issues during operation.

The alignment of the actuators refers to the alignment between a stepper motor,

the shaft coupling, the threaded shaft, and the threaded nut. Figure A.7 shows

how the position of these components is related. One can see from the figure

that if an angle is present, then there will be additional frictional forces between

the components, besides the loading components of the actuation. Not only this,

but severe misalignment (assuming it does not stall the motors) also means that

the translational motion of the actuator will not be accurate, as the actuator will

not displace the membrane just in y (as is the ideal case), but also have an x

component. However, it is unlikely that inaccuracy is a problem, as stalling issues

will almost always occur before the alignment is so poor that the accuracy of the

actuator displacement is severely affected. The only way I found to ensure that

the actuation remained smooth was to assemble the following actuator compo-

nents loosely, then slightly tighten them to ensure the set screw did not produce

significant misalignment due to the compression on the thread.
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Figure A.7: Comparison of an aligned (a) and misaligned actuator (b). The sketch shows how

a misaligned actuator would increase friction in the contact region with the bottom section, as

well as not produce an accurate vertical displacement due to an added horizontal displacement.

A.2 Control

In this section, I will detail the electronic and software components of the exper-

iment.

As I showed in the previous subsection, the flexible wall is deformed by an array

of actuators bolted above the flexible wall. The actuators work by using 16 or 20

stepper motors (Pololu Bipolar NEMA 7 3.9 Volt 0.6 Amp/phase or Pololu Bipolar

NEMA 14 10 Volt 0.5 Amp/phase), each of which drives a threaded shaft in a nut

that displaces the membrane. The assembly of the stepper motor, threaded shaft,

and nut is what I refer to as an ‘actuator’. These actuators are connected to a

custom-made PCB board. The board contains 20 Pololu DRV-8825 stepper motor

drivers, which interface with a MEGA 2560 Arduino. During construction, I used

wire to connect all components, I would seriously recommend against this. The



138

amount of cabling required is significant, one can expect at least 3 connections

per controller to the Arduino board, meaning at least 60 wires must be used to

that, then there are 4 wires per motor, and so on. As such I designed the PCB

board, whose diagram is in figure A.8. At this point, I have described all the

physical hardware that encompasses the experiment system itself. Now I move on

to describe how I developed an interface from a computer to the experiment for

control.

Figure A.8: The figure shows an image of the PCB board I designed for controlling the

experimental hardware.

The software controls for this system are divided into two parts: MATLAB

and Python code. First, MATLAB code is used to define the desired control

parameters, such as the type and parameters of the sinusoidal wave. This code is

then used to generate a text file containing the relevant data, which is then read

by the Python code. The Python code reads the text file data and communicates
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with the Arduino board, which then drives the experiment accordingly.

The Python code receives a text file as input, which contains the stepping

data for the stepper motors. It performs two primary functions: translating the

text file into data that the Arduino can interpret as signals for the motion of

the stepper motors, and controlling the frequency of data input into the Arduino

board. The code communicates with the microcontroller to ensure communication

is not interrupted and prevents the board from being overwhelmed with data.

The MATLAB code is responsible for translating the desired input, a traveling

sine wave deformation with parameters xi, into a signal that the experiment can

use. This signal must take into account the characteristics of the experiment

system, such as the actuator thread and stepper motor characteristics, as well as

the fixed frequency at which the Arduino board will output a signal. Each signal

will instruct the stepper motor controller to step (or not to step) in a specific

direction. The MATLAB algorithm uses the motor hardware parameters Sm and

Tm and the idealized displacement to calculate the necessary motions to model

the idealized wave. The MATLAB code grabs the ideal wave (that which the user

wants to be modeled)

and what action must be taken at each signal that is sent out. To determine

which signal is coded into the output, the code uses the following algorithm.

Figure A.9 illustrates the algorithm that determines the motion.

Consider the ith stepper motor to be located on the flexible wall at position

xi. Each motor can displace the flexible wall in a discrete position, by a distance

ηi(xi, t). The stepper motors have discrete motions with minimum displacement

δym = SmTm. In order to simulate a continuous deformation of the wall in the

apparatus, the MATLAB code calculates the motion required by each motor by

taking the error between the idealized function η(x, t) at the upcoming time t1

and the motor’s current deflection at the current time t0. The scale of the discrete

time is dictated by the signal output rate of the hardware (Arduino MEGA2560
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R3 in our case). For example, if the controller output signals at a rate of 2 kHz,

then the time scale is equal to 500 µs. The error is calculated by

δe = η(x, t1)− η(x, t0). (A.1)

Now the MATLAB algorithm determines that, if δe is larger than half the min-

imum displacement, i.e. |δe| > δym/2, then a step output is produced with the

according direction to minimize the error. For example, in the case of δe being

positive, the algorithm determines a step in the negative direction must be taken.

Otherwise, no step is produced as the current location is where the error is mini-

mized. The MATLAB code uses equation A.1 at each point in time to produce a

text file that contains the motion information for the stepper motors.

Figure A.9: A sketch is presented that demonstrates the algorithm used to determine if a

stepper motor must take a step. The red and blue curves represent conceptualized wall positions,

and the circles symbolize the position of the ith stepper motor. The middle image exhibits the

calculation necessary to decide if a step must be initiated between time n and n+ 1.
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Control Limitations

As with any experimental apparatus, there are limits to the parameters that can

be input into the system. Most of these limitations should not impede experi-

ments from spanning large parameter sets if understood in the planning stages of

a project. Primarily one must be aware that there is a limiting factor to the fre-

quency and amplitude that the actuators can model. This is due to the fact that

any stepper motor controller will have a limit on their rotation velocity. Figure

A.10 shows a torque curve for the stepper motors I used in my experiment. The

figure shows that as the frequency of rotation of the stepper increases, the torque

output decreases. Most stepper motors will share similar characteristics. Given

this, at some point, the motor will stall and be unable to move. How quickly one

reaches this limiting factor is dependent on the stiffness of the actuated membrane,

a stiff membrane will require higher torque to be deformed, meaning stalling will

occur at lower rotation frequencies. That said, there will be a rotation frequency

where the stepper motor will stall even if it has no load. Another factor that can

increase torque requirements is the alignment of the actuators.
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a)

b)

Figure A.10: Stalling torque curves for stepper motors from Pololu’s datasheets [13]. PPS

stands for pulse per second, the vertical axis is units of torque. Both curves are given for the

half-step mode and are expected to have lower values for finer microstepping. a) Pololu Bipolar

NEMA 7 3.9 Volt 0.6 stalling torque curve. Amp/phase b) Pololu Bipolar NEMA 14 10 Volt

0.5 Amp/phase stalling torque curve.

Convection

During experimental measurements at low flow speeds, I found that measurements

showed unusual movement without any input. There were two possible explana-

tions for the passive flow I observed. One was that the particles were failing to

be neutrally buoyant, and the second was that thermal convection was producing
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some sort of flow. To determine the cause of the passive flow, I tracked particle

motion after allowing the experiment to reach thermal equilibrium after being

filled with water. I found that particles moved around in a pattern that resem-

bled convection, and not a vertical motion that would be characteristic of particles

being too dense (falling downward) or too light (floating upward). Figure A.11

shows a plot of measured particle paths with no input.

To get an estimate of how long the system would take to reach thermal equi-

librium, I use the heat equation to calculate a time scale for the system. The heat

equation is
∂T

∂t
=

k

cpρ
∇2T, (A.2)

where the parameters k is the thermal conductivity, cp is the specific heat and

ρ is the density of the material. For our case, I use water as the material. The

experiment’s channel size is a square channel of length L = 2.54cm. I use this as

the spatial length scale for the heat equation. Solving for the time scale in the

equation gives 4510 seconds as shown in equation A.3

t =
cpρL

2

k
= 4510s (A.3)

At this point, I estimated the thermal sensitivity of the experiment by calcu-

lating the critical Rayleigh number. The Rayleigh number is a measure of the

balance between buoyancy and viscosity of a fluid and is used to describe the sta-

bility of convection. The Rayleigh number for a two-dimensional system is given

by

Ra =
gαTh

3∆T

νκ
(A.4)

where g is the acceleration of gravity, αT is the coefficient of expansion of the fluid,

ν is the kinematic viscosity of the fluid, h is the height of the system, ∆T is the

thermal gradient from top to bottom and κ is the thermal diffusivity. The critical

Rayleigh number for a system with solid boundaries was calculated by Jeffreys

[72] to be Rac = 1708. With this information, I want to solve for the thermal
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gradient that would reach a critical Rayleigh number in our system. Rearranging

to solve for the thermal gradient gives that the system is sensitive to thermal

gradients of 6 millikelvin.

∆T =
νκRac
gαh3

= 0.006oC (A.5)

The results from this test suggested that the system is very thermally sensitive

and suppressing convective flows would require extensive modifications. To ad-

dress this the simplest solution was to restrict experiments to flows that produce

much stronger flows than that of the background convection.

I decided to attempt to eliminate the apparent convective flow in the system

I would create a small stable thermally driven stratification. In detail, since the

density of water is dependent on temperature, the goal was to heat the top of

the channel such that a temperature distribution would be induced. In the ideal

scenario, the top of the channel would be the highest temperature and decay to the

lowest temperature at the bottom. Given the linear dependency of temperature

to density, this would ideally create conditions that would eliminate convection.

I used 22AWG Nickel-Chromium wire to create a heating pad on the top part

of the experiment and proceeded to induce a current using a variable power supply.

I calculated the heat input to be 80 W . To track the temperature at the walls

I used thermocouples which I positioned throughout the experiment to measure

temperature at different locations.

I found that even by creating a 5oC thermal gradient between the bottom

and top wall, I could not suppress convection effects. Even after waiting for the

estimated thermal equilibrium time scale, flow patterns of convection were still

present in the experiment. Figure A.12 shows the results of this testing and how

it is not enough to eliminate the background flow.
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Figure A.11: Shown is a plot of experimental measurements. The x and y axis are positions

in the visualization window of the experimental measurements. The red lines show particle

paths measured using PTV when a peristaltic motion is forced in the system. The blue lines

show measured particle paths where a low pass filter was applied on the red measurements,

attempting to eliminate the oscillatory component of the particle path. The green lines were

PTV measurements with no forcing on the system. It is very notable that the particles appear

to follow a path that resembles Rayleigh-Bernard convection, where hot fluid travels upwards,

and cold fluid downwards producing a vortex-like structure.
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Figure A.12: Plotted are temperature measurements over time at three locations in the exper-

imental device. These measurements were conducted while heating the top of the experiment.

The sketch shows the location where I placed thermocouples for temperature measurements, the

color of the plots matches the sketch locations. Over time a temperature gradient is produced

and increases in the experiment between the top and the bottom. Plotted in pink circles are

Vrms measurements of particles in the fluid. My hope from this experiment was to be able

to eliminate the background flow as a stable temperature gradient is induced in the system.

However, as the measurements of Vrms, the added temperature gradient did not eliminate the

presence of a background flow.

Given that I was unable to eliminate this convection-driven flow, I had to find a

way to move forward with experiments without my measurements being affected

by this background flow. The simplest thing to do was to simply measure the

velocity magnitude of the background flow. Using the techniques that I discussed

in section 4.2, I used PTV to track particles in the fluid and obtain their velocities.

I then measured the root-mean-square velocity in order to determine the intensity

of the flow. The root-mean-square velocity was calculated as

Vrms = (u2 + v2)1/2, (A.6)

where u is the velocity in the x-direction, v is the velocity in the y-direction,

and the overline is the spatiotemporal average over the bulk region of the flow,
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which I define as 0.05L ≤ y ≤ 0.9L. From the PTV measurements, I obtained

a root-mean-square velocity of Vrms = 0.1 mm/s. Knowing this value, I simply

constrained myself to model flows that I expected to yield velocities that were

orders of magnitude higher, this would ensure the convection-driven background

flow was a small noise signal in my measurements.

A.2.1 Minor Leakages

A final remark regarding the experimental design; a persistent minor issue with

the experimental apparatus was the existence of minor leaks in the system. These

leaks mainly occurred in components that I frequently removed. When rein-

stalling, I utilized vacuum grease (Dow Corning D-65201) to guarantee no leaks

happened. For components that I infrequently disassembled or were cracked, I

applied silicon sealant (Dow Corning RTV Sealant 732) to eliminate leaks.

A.3 Side Note on Low Reynolds Number Flow

in the System

Before concluding I want to make a brief side note on low Reynolds number

measurements. Ultimately, the motivation for this study was to apply the findings

to the glymphatic system. As such, one important consideration was that the

observations I made with water were done at a much higher Reynolds number

(Re > 1). While the higher flow velocities do not detract from the interesting

results, it was preferable for me to analyze a closer analog to the glymphatic

system by having a much more viscous dominated system. To do this I changed

the fluid from water to glycerin. Doing so changes the viscosity of the system to

approximately 5·10−6 m/s2 from 10−6 m/s2. As a consequence, Reynolds numbers
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fall from the order of 100 to 0.1, and Womersley numbers drop from the order of

10 to 0.1.
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Figure A.13: Shown are measurements of the net velocity at TJ-1 as a function of f . These

are the only measurements where the system used glycerin instead of water. The data was

noisy but clearly shows a net velocity is present. The direction of the flow is negative for all

measurements, unlike previous measurements with water.

The only measurements using glycerin are presented in figure A.13. They

indicate that particles are experiencing a net velocity. The measurements suggest

that the phenomenon causing the net velocity is still present even in highly viscous

flow. Notably, the direction of the net velocity was inverted from that observed in

the case of low values of S and f in figure 8.4. This possibly means that low values

of S and f that lead to a reversal in direction, may also be tied to the viscosity

of the fluid. This implies that inertia is of lesser importance in inducing a net

velocity, suggesting that the direction of the net flow generated in the glycerin

case can potentially be changed by increasing S or f .
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