
Using particle tracking to measure flow instabilities in an undergraduate
laboratory experiment

Douglas H. Kelley
Department of Mechanical Engineering and Materials Science, Yale University, New Haven,
Connecticut 06520

Nicholas T. Ouellettea�

Department of Mechanical Engineering and Materials Science, Yale University, New Haven,
Connecticut 06520

�Received 19 September 2010; accepted 7 December 2010�

Much of the drama and complexity of fluid flow occurs because its governing equations lack unique
solutions. The observed behavior depends on the stability of the multitude of solutions, which can
change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We
have developed a low-cost experiment to study a classical fluid instability. By using an
electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it
quantitatively with a webcam. They extract positions and velocities from movies of the flow using
Lagrangian particle tracking and compare their measurements to several theoretical predictions,
including the effect of the drive current, the spatial structure of the flow, and the parameters at which
instability occurs. The experiment can be tailored to undergraduates at any level or to graduate
students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that
govern them. © 2011 American Association of Physics Teachers.
�DOI: 10.1119/1.3536647�
I. INTRODUCTION

The striking and beautiful patterns formed by flowing flu-
ids have fascinated scientists for millennia. From cloud
dynamics1 to climate change on Jupiter2 to singular jets in a
shaken dish,3 fluid flow encompasses fascinating systems
where complex phenomena can be clearly visualized, easily
related to everyday life, and often explained qualitatively
using simple arguments.

Central to understanding flow pattern formation is the con-
cept of instability. Unlike most examples in undergraduate
mathematics and physics courses, the differential equations
that govern fluid motion have no unique solution. With more
than one solution available, stability determines which will
be observed. The same is true in mechanics, where the equa-
tions of motion of a pendulum allow it to be balanced
upside-down, with its mass directly above its support. Any
perturbation from that unstable position will cause it to fall
and hang downward, and hence in everyday life we observe
hanging pendulums far more often than inverted ones. In
fluids, too, the less sensitive a given flow pattern is to per-
turbations, the more likely it is to be observed. A flow pattern
that persists despite perturbations is called stable. As the flow
parameters are varied, the pattern’s sensitivity to perturba-
tions may increase, leading to a sudden global transition in
the flow. In that case, an instability is said to have occurred.

Many instabilities can be understood qualitatively by con-
sidering the competition between stabilizing and destabiliz-
ing effects. For example, in a quiescent fluid heated from
below and cooled from above, the classic Rayleigh–Bénard
instability4 is a competition between the destabilizing effect
of the temperature gradient and the stabilizing effects of vis-
cous dissipation and thermal diffusion. When the tendency of
the hot, buoyant bottom layer to rise exceeds the tendency of
viscosity to retard motion or of thermal diffusion to conduct
the excess heat away, the fluid will begin to flow. This type

of competition can often be characterized by a dimensionless
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number �in this case, the Rayleigh number� which compares
the two kinds of effects. When the number exceeds some
critical value where the stabilizing effects are too weak, the
system becomes unstable.

In this paper we describe a laboratory experiment suitable
for undergraduates that allows not only visualization but also
a quantitative study of a classic instability. Kolmogorov
flow5 was first proposed as a toy model for studying the
transition to turbulence and is a two-dimensional series of
parallel shear bands that becomes unstable and undergoes a
transition to a vortex lattice when the destabilizing effects of
shear win out over the stabilizing effect of viscosity. The
flow can be generated in the laboratory with little effort or
expense, and fits well in courses on fluid mechanics, nonlin-
ear dynamics, classical mechanics, and in an advanced labo-
ratory course. As a side benefit, the experiment also intro-
duces students to present-day image processing and particle-
tracking methods that are rapidly becoming measurement
tools of choice in experimental fluid dynamics and related
disciplines.6

We first present the basic theory underlying the instability
to be measured. We then describe in detail the experimental
setup �apparatus and measurement technique�, discuss data
obtained from the experiment, and compare to predictions
where appropriate. Finally, we discuss the pedagogical aims
of the experiment and suggest ways to integrate it into cur-
ricula at various levels.

II. THEORY

Like all physical systems, fluids obey conservation of mo-
mentum, which can be written as

�u

�t
+ �u · ��u = −

1

�
� p + ��2u + f . �1�

Here u is the velocity field, t is time, � is the �mass� density,

p is the pressure field, � is the kinematic viscosity, and f
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represents the applied body forces �per unit mass�. The flow
in the following experiments may be assumed to be incom-
pressible because the speeds involved are much less than the
speed of sound. Thus the flow satisfies the incompressibility
condition

� · u = 0. �2�

Taken together, Eqs. �1� and �2� are known as the Navier–
Stokes equations.

To eliminate the inconvenient pressure term, we can take
the curl of Eq. �1�, yielding

��

�t
+ �u · ��� − �� · ��u = ��2� + F , �3�

where �=��u is the vorticity and the last term F=�� f
represents the forcing.

We will study Kolmogorov flow, that is, the flow that
arises from the forcing

F = F0 sin
2�x

L
ẑ . �4�

A more accurate model of Kolmogorov flow in a container of
finite depth would include a linear friction term to account
for viscous drag at the bottom. Including the friction term
turns out to be very important for making predictions of the
experimental conditions at which instabilities occur, but
changes little else,7 and we will exclude it for simplicity.

Equations �2�–�4�, together with appropriate boundary
conditions, completely specify the behavior of the flow and
admit multiple solutions. One very simple solution5 is a se-
ries of steady stripes of alternating velocity �and correspond-
ingly alternating vorticity�, given by

u0 = �3U cos
2�x

L
ŷ , �5�

�0 = � � u0 = − �3U
2�

L
sin

2�x

L
ẑ , �6�

where L /2 is the stripe width and U= �u0 ·u0�1/2 is the root-
mean-square velocity. Substitution shows that the flow pat-
tern given by Eq. �5� satisfies Eq. �3� provided that F0 in Eq.
�4� is F0=8�3�3�UL−3. This solution is plotted in Fig. 1 and
exists for all values of U, L, and �.

Changing the flow parameters does not affect the existence
of the solution u0, but does affect its stability. The stability of
the flow is determined by the dimensionless combination of
its parameters, Re=UL /�, known as the Reynolds number.
The Reynolds number expresses the relative importance of
fluid inertia and viscous damping, and eliminates the need to
consider U, L, and � separately. It can be interpreted as the
ratio of the time scale L2 /�, characterizing viscous damping,
to L /U, characterizing advection. If Re is small, viscous ef-
fects can damp perturbations, and u0 is the stable solution,7

typically appearing first in experiments. As Re increases, a
series of instabilities occur in which u0 gives way to a series
of steady patterns, then traveling waves, and ultimately a set
of period-doubling bifurcations that lead to chaos.8 Students’
opportunity to see this progression of instabilities is limited
only by their experimental care �and perhaps the size of the
power supply�.

The first instability occurs when the stationary pattern of

stripes u0 bifurcates to a stationary lattice of vortices. Their
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length scale, like that of u0, is set by the forcing scale L. Any
instability causes qualitative changes to the flow pattern, but
this instability is especially easy to identify visually because
it corresponds to the onset of motion in the x̂ direction.
Moreover, the instability occurs at modest Reynolds numbers
easily accessible with a simple and inexpensive laboratory
apparatus. This particular instability will be our focus for the
rest of the paper. We sketch the linear stability analysis for
this flow in the appendix.

III. EXPERIMENTAL SETUP

Studying Kolmogorov flow in the laboratory requires an
apparatus that can approximate two-dimensional motion by
constraining flow to a plane as much as possible. The two
most common systems for creating such quasi-two-
dimensional flows in the laboratory are flowing soap
films9–12 and electromagnetically driven thin-layer flows.13–18

We consider the latter class because they are simpler for
students to set up. We place a shallow layer of an electrolyte,
5 mm deep and having lateral dimensions 248 mm
�286 mm, in an acrylic tray above an array of permanent
magnets, as shown in Fig. 2. We used neodymium-iron-

L

(b)

(a)

−31/2 U 2π/L 0 31/2 U 2π/L
ω

Fig. 1. The theoretical base flow u0. �a� Velocity field. �b� Vorticity field.
The x̂ and ŷ directions are horizontal and vertical, respectively.
boron �NdFeB� grade N52 magnets, which produce a mag-
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netic field of B�0.3 T at their surface. Each is 3.2 mm thick
and 12.7 mm in diameter. They are placed in stripes of alter-
nating polarity to approximate Kolmogorov flow according
to Eq. �4�. The stripe width L /2 of the flow u0 is set by the
center-to-center spacing between the magnets, which is 19
mm. The array is a 12�12 square arrangement held in place
by a perforated sheet of polyoxymethylene �Delrin�. The
fluid is a 10% by mass solution of CuSO4 in water, mixed
with glycerol �20% by volume� to increase the viscosity. The
underside of the tray containing the test fluid is painted black
for better imaging. A copper electrode is installed in each end
of the fluid layer, and when a current I passes through the
fluid, it causes a Lorentz force per unit mass

fB =
J � B

�
, �7�

where J is the current density, which produces bulk motion
in the fluid. By using copper electrodes and a copper salt, we
minimize unwanted electrochemical effects and precipitating
reaction products. To produce the flows described below re-
quires a power supply capable of 200 mA at 40 V.

The Reynolds number of the flow produced by an appara-
tus like this one can be estimated from dimensional argu-
ments because the force per unit mass must scale as fB
	U2 /L.19 We use Eq. �7� to estimate the current density as
J=NLI /V, where V is the volume of fluid and NL is the
distance between electrodes. We measured the magnetic field
produced by an NdFeB magnet using an AlphaLab M1ST
hand-held gaussmeter. The results are plotted in Fig. 3,
showing B=B0e−z/� to a good approximation, where z is the
axial distance from the center of the magnet face, B0
=0.28 T, and �=4.70 mm. If we combine these estimates
and measurements with the definition of Re and rearrange

Fig. 2. The experimental apparatus. �a� Partial side view of the fluid layer
and its tray. Tracer particles float at the fluid surface, and one electrode is
visible at right. A current density J flows through the fluid. �b� Partial top
view of an electrode and the magnet array. The polarity of each magnet is
indicated by � and the magnets are arranged in stripes perpendicular to J.
�c� The apparatus as assembled, with lamps, power supplies, camera, and the
data acquisition computer. A second magnet array, arranged not for Kolmog-
orov flow but as an alternating square lattice �checkerboard�, is also visible.
terms, we obtain
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Re =
CL2

�
�NIB0e−z/�

�V
, �8�

where C is a dimensionless constant of order unity.
To visualize the motions that result from this sort of forc-

ing, we add 80 �m fluorescent polystyrene spheres �Ther-
moFisher� to the fluid. With density 1.05 g/mL they are
lighter than the electrolyte and float at its upper surface be-
cause buoyancy inhibits motion in the third dimension. Sur-
face tension effects pose potential problems,20 but can be
minimized by keeping the seeding density low and adding a
small amount of surfactant such as a drop of dish soap. The
polystyrene spheres absorb most strongly in the blue �468
nm� and emit most strongly in the green �508 nm�, making
them well-suited for illumination by blue light emitting di-
odes. Blue LEDs typically have peak luminosity near 470
nm, and high-power versions �up to 50 lm each� are readily
available and inexpensive. They can be powered with com-
mon DC laboratory power supplies. Figure 2 shows two
banks of ten LEDs each, which are much brighter than nec-
essary. Four LEDs, each positioned independently, might
suffice to illuminate the experiments discussed here.

We recorded movies of the flowing particles with an Apple
iSight webcam, which has an autofocus lens and records 30
frames per second, each 640 pixels wide and 480 pixels tall.
Any webcam or digital camera capable of a similar frame
rate and resolution could work as well, and a wide variety of
inexpensive models are available. Manual control of the fo-
cus and gain would allow better scientific images. A frame
rate that varies over time would make accurate measure-
ments very difficult. To reduce glare, we attached a low-pass
optical filter to the camera lens. The filter’s 490 nm cutoff
wavelength attenuates blue light from the LEDs substantially
but allows green light from the particles to pass unaffected.
Aligning the camera with the axis of the magnet array
greatly simplifies the data analysis �see Fig. 7�.

An apparatus to perform experiments like the one we have
described can be constructed for around $250 and stocked
with a large supply of tracer particles for about $250 more.
Approximate costs appear in Table I. We have gathered the
cleanest data when using very few particles so that a one
gram vial would last years. The apparatus also produces vi-
sually compelling, but less quantitative, classroom demon-
strations when seeded instead with a less expensive visual-

21

0 2 4 6 8 10 12

10
−1

z (mm)

B
(T

)

Fig. 3. Axial variation of the field of an example magnet. Circles show
measurements made with a handheld gaussmeter. The dashed curve is an
exponential fit B=B0e−z/� with B0=0.28 T and �=4.70 mm. The vertical
scale is logarithmic.
ization fluid such as Kalliroscope.
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Measurements can be made from movies of the flow by
identifying and following tracer particles using Lagrangian
particle tracking.22 Specifically, we locate each particle in
every frame by searching for local maxima of the brightness
above some threshold, after the steady background image has
been removed. We obtain the particle centers with a reso-
lution of roughly 0.1 pixels �34 �m in the data described in
the following� by fitting a one-dimensional Gaussian to the
brightness field in each direction. With its location deter-
mined, each particle is matched to its location in other
frames for as long as the particle can be followed. Our soft-
ware makes these matches using a predictive three-frame
best-estimate algorithm. For each partially constructed tra-
jectory, the expected position of the particle at the next time
step is estimated using simple kinematics. The measured par-
ticle position that comes closest to the estimate is chosen as
a match, unless none is close enough. Small gaps in time are
bridged with extrapolation. Gathering Lagrangian data is
useful for many reasons.23 In the experiments considered
here, Lagrangian particle tracks conveniently allow a more
accurate numerical differentiation scheme. We differentiate
each trajectory in time by convolving with a Gaussian
smoothing and differentiating kernel,24 yielding a time series
of positions and velocities for each tracked particle. Our
post-processing Matlab software is freely available.25

In other work with higher-resolution cameras, we have
routinely tracked as many as 30,000 particles per frame,26

and an example of this sort of data is shown in Fig. 4. With
a webcam we find that the instability can be more accurately

Table I. Approximate costs of the components of the experimental setup.

Part Cost

Camera $25
Optical filter $30
4 LEDs with collimators $40
Magnets $80
Other construction materials $75
Particles �1 g� $250
Total $500

2 cm

Fig. 4. Tracer particles in Kolmogorov flow, as seen from above. Fluores-
cent particles appear as bright dots in the original image; here the colors are
inverted, so that particles are dark. Each follows local motions of the flow-
ing fluid, as can be seen in the accompanying animation. It plays real-time
and shows the response when a large �1.00 A� forcing current is applied to
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quantified with just a few particles, say 100 per frame.
Tracking particles requires tuning a set of parameters includ-
ing the brightness threshold, the maximum frame-to-frame
displacement of particles, and the number of predictive steps
to perform. In a classroom setting, more or less of this tuning
can be left to the students, depending on the scope of the
experiment and the time allotted.

The natural units of length and time of a digitized movie
are pixels and frames, respectively. By recording an image of
a ruler in place of the fluid, the pixel size can be easily
determined and then used to convert pixel measurements to
an SI length scale. Likewise, knowing the frame rate allows
the use of an SI time scale.

IV. DATA ANALYSIS

Once particle trajectories have been constructed and dif-
ferentiated, a wide variety of scientific questions can be ad-
dressed. It is possible to determine the Reynolds number for
each value of the current I by determining the root-mean-
square velocity U= �u ·u�1/2, where the measured velocity is
u and the brackets � � signify averaging over all particles and
all frames. Expressing Re this way is consistent with the
notation of Eq. �5� when the flow u0 is present. The viscosity
�, also necessary for calculating the Reynolds number, can
be measured using a variety of techniques. We used a capil-
lary tube viscometer, simple enough for students and within
the budget of most courses. From it we find the viscosity �
=2.61�10−6 m2 s−1, which allows for the calculation of Re.
The values of Re can be compared to the Reynolds number
predicted by Eq. �8� after a few other laboratory measure-
ments are made. We found �=1.088 g /mL, z=8 mm, N
=15, and V=350 mL, then minimized the least-squared er-
ror between the measured and predicted values of Re to ob-
tain the fit constant C=0.42; see Eq. �5�. Its value varies with
tracking parameters and other experimental details. Both the
measured and predicted values of Re are shown in Fig. 5.
The agreement is good considering the many approximations
involved in the prediction, and serves as an example for stu-
dents of the usefulness of estimation.

The spatial structure of the flow can also be investigated.
In Fig. 6 we plot the measured vorticity in a subregion of the
flow for Re=33, which confirms the theoretical prediction5

that the stable flow at low Re is the pattern of stripes u0

0 50 100 150
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80

90

I (mA)

R
e

Fig. 5. Measured and predicted Reynolds number. Circles show the actual
Reynolds number from root-mean-square velocities measured at 20 different
currents. The dashed curve shows Re as predicted from dimensional argu-
ments, using a least-squares fit to Eq. �8� which gives C=0.42.
shown in Fig. 1. We also plot the same subregion for Re
fluid at rest �Video 1 �URL: http://dx.doi.org/10.1119/1.3536647.1� en-
hanced online�.
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=72, which confirms that as Re increases, an instability oc-
curs in which stripes give way to an array of steady vortices.
Both plots quantify the qualitative observations that can be
made by eye.

We typically plot vorticity �the local angular velocity� in-
stead of velocity because in a two-dimensional, incompress-
ible flow, the scalar vorticity field uniquely and completely
specifies the flow. Some extra effort is required because cal-
culating the vorticity involves spatial gradients of the mea-
sured velocity field. Once the particle locations and veloci-
ties are known, a velocity field can be constructed via
interpolation onto a regular grid. Spatial gradients can then
be calculated by central differences or related schemes. Al-
ternatively, the spatial gradients of particle velocities may be
calculated at the �irregular� particle locations using tech-
niques from finite element analysis. We used the Partial Dif-
ferential Equation Toolbox in Matlab27 to calculate vorticity

(a)

(b)

2 cm

ω (1/s)

−0.2 −0.1 0 0.1 0.2

ω (1/s)
−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Fig. 6. Measured vorticity fields. �a� Measured base flow, with Re=33. �b�
Measured flow at Re=72, after the first instability. Each field is a composite
of 15 s of data. The x̂ and ŷ directions are horizontal and vertical,
respectively.
in this way.
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From Fig. 6 it is clear that an instability occurs in the
Kolmogorov flow in the range 33�Re�72. By tracking par-
ticles in movies recorded at several Reynolds numbers in this
range, it is possible to locate the instability more accurately.
Because the flow u0 involves no flow in the x̂ direction, this
first instability can be found easily from the quantity �ux

2�1/2,
where ux=u · x̂. Figure 7 shows �ux

2�1/2 as a function of Re.
Over the first seven data points, the overall flow speed �in
terms of Re� more than doubles, while the x̂-direction flow
�as measured by �ux

2�1/2� remains small and nearly constant.
Its value in this range gives an estimate of the magnitude of
the noise in our velocity measurements. As Re passes a criti-
cal value Rec, �ux

2�1/2 increases suddenly and steadily in a
manner characteristic of an instability.

The instability shown in Fig. 7 is a bifurcation of a steady
solution �u0� which depends on a single control parameter
�Re�. The four simplest of such bifurcations, common in
physical systems, are saddle-node, transcritical, pitchfork,
and Hopf bifurcations.28 Kolmogorov flow is governed by
Eqs. �2�–�4�, which have an analytic form different from the
form of any of the four simplest cases. Predicting the precise
shape of the bifurcation from first principles is beyond the
scope of this paper. However, many bifurcations can be
roughly matched to a square root near onset, and a crude
model for the bifurcation observed here is

�ux
2�1/2 = 
ux0, Re 	 Rec

A�Re − Rec + ux0, Re 
 Rec.
� �9�

For ux0 we use the mean value of the first seven data points
plotted in Fig. 7. A least-squares fit to this model yields the
dashed line also shown in Fig. 7, with A=0.6 mm /s. The
instability occurs at the critical Reynolds number Rec=61. A
previous study of Kolmogorov flow found a similar value,
Rec=70.12 The precise value of Rec depends on the magni-
tude of the linear friction above and below the thin fluid
layer,7 a quantity difficult to measure.

V. PEDAGOGICAL AIMS AND CONTEXT

The experiment we have described introduces students to
a number of scientific concepts. Foremost is the role of sta-
bility in governing the behavior of systems whose solutions

30 40 50 60 70 80
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<
u x2

>1/
2

(c
m

/s
)

Fig. 7. Instability onset as a function of the measured Reynolds number.
Circles show measured values of the root-mean-square velocity in the
x̂-direction. The dashed curve shows a prediction made by fitting the mea-
surements to Eq. �9�, yielding A=0.6 mm /s and Rec=61. Squares mark the
data sets shown in Fig. 6.
are not unique, an idea nearly universal in fluid mechanics
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but rarely addressed in undergraduate physics courses. The
important quantity vorticity arises naturally as a straightfor-
ward parameter for addressing two-dimensional flow. If stu-
dents have not previously encountered the Navier–Stokes
equations, this experiment gives appropriate context and mo-
tivation for introducing them. A dimensional argument is
useful to estimate the Reynolds number as a function of the
forcing current, and the instability evident in Fig. 7 is a natu-
ral segue into bifurcation theory.

The experiment also offers students opportunity to de-
velop a number of laboratory skills. They will adjust and
measure the drive current to locate the instability. They will
adjust lights and optics to produce clear images. In post-
processing their data, they will convert movies to images,
build a background image, and choose tracking parameters
such as the minimum brightness threshold and maximum
displacement between frames. Once the particles are tracked,
students will construct plots like Figs. 6 and 7 from the raw
velocity information, perhaps calculating spatial gradients
themselves. They might also seek subsequent instabilities
and make observations of the striking global rearrangements
that occur at each onset.

We implemented this experiment over two weeks of a
semester-long fluids laboratory course of mostly third- and
fourth-year undergraduates. After a brief introduction, a
single 3-h laboratory session was sufficient for groups of two
or three students to mix the fluid, find the first instability, and
record data. With one more hour they might also measure the
viscosity of the fluid, as described. Another 3-h session was
sufficient for tracking particles �using software that was pro-
vided and demonstrated� and performing the bulk of the
analysis. An instructor was present for guidance throughout.
Common mistakes included improper mixing of the test
fluid, insufficient care in leveling the apparatus, using too
many particles, and recording movies without first finding
the instability. Depending on the intended scope, more or
less assistance might be offered during post-processing. We
have written software, available online, to simplify most
steps, but much of the analysis �aside from the tracking it-
self� can be left entirely to the students. If time allows, stu-
dents could also characterize the magnetic field.

Most of the concepts and skills that students will learn in
this experiment fall outside the canon of common physics
curricula and can be included at almost any level without
redundancy. Upper-level undergraduates and beginning
graduate students may have some familiarity with vector cal-
culus and partial differential equations, but have probably
been steered away from nonlinear equations such as the
Navier–Stokes equations. Lower-level undergraduates might
lack the mathematical background necessary to address the
theory that underlies the experiment, but will gain intuitive
understanding of instabilities nonetheless by seeing one with
their own eyes. Because instabilities and bifurcation theory
are rarely covered outside of courses in fluids or dynamical
systems, this experiment could be used either to introduce
those concepts or to complement those sorts of lecture
courses. Particle tracking techniques will likely be new for
all students and require no prerequisites. Students who ex-
pect to encounter fluids in the future—whether in medicine,
science, or industry—have a good chance of benefiting from

practical experience with particle tracking.
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APPENDIX: LINEAR STABILITY ANALYSIS

Here we sketch the linear stability analysis of the Kolmog-
orov flow, from which the critical Reynolds number of the
primary instability can be calculated. The calculation
changes slightly when the flow is bounded or a linear friction
term is present in the governing equations,7 but we give the
stability analysis for the simplest case.

We begin with the vorticity Eq. �3�

��

�t
+ �u · ��� − �� · ��u = ��2� + ẑF0 sin kx , �A1�

where the forcing is given by Eq. �4�, k=2� /L is the wave-
number of the forcing, and the incompressibility condition
�Eq. �2�� applies: � ·u=0. As with any two-dimensional in-
compressible flow problem, it is convenient to work in terms
of the streamfunction �, defined so that

ux =
��

�y
�A2�

and

uy = −
��

�x
. �A3�

We note that � plays the role of a Hamiltonian. In two di-
mensions the vorticity is a scalar �or, equivalently, is a vector
that is constrained to point normal to the plane� given by
�=−�2�. We substitute this definition into Eq. �A1� and
obtain

�

�t
�2� +

��

�y

�

�x
�2� −

��

�x

�

�y
�2� = ��2�2� − F0 sin kx .

�A4�

As can be checked by taking derivatives, the base Kolmog-
orov flow �Eq. �5�� is given by the stream function

�0 = −
�3U

k
sin kx . �A5�

We now introduce an infinitesimal perturbation �̃ so that the

total streamfunction is given by �=�0+ �̃. Our goal is to
determine whether this perturbation grows or decays. We in-

sert this form of � into Eq. �A4� and linearize it in �̃, drop-

ping terms of order �̃2 or higher, because the perturbation is
assumed to be infinitesimal. Because �0 satisfies Eq. �3�, we
have

�

�t
�2�̃ +

��0

�y

�

�x
�2�̃ +

��̃

�y

�

�x
�2�0 −

��0

�x

�

�y
�2�̃

−
��̃

�x

�

�y
�2�0 = ��2�2�̃ . �A6�

If we use the explicit form for �0 in Eq. �A2� and express
lengths and velocities in terms of L=2� /k and by U respec-

tively, we can write Eq. �A6� as
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�

�t
�2�̃ + �3 cos 2�x��2 + 4�2�

��̃

�y
=

�3

Re
�2�2�̃ . �A7�

Following the usual prescriptions in linear stability

theory,29,30 we expand the perturbation �̃ in normal modes.

Because the equation of motion for �̃ is linear in time, we
assume a time dependence of the form e
t, where 
 is the
growth rate of the perturbation. Because the flow is un-
bounded and uniform in the y direction, we represent the y

dependence of �̃ by a Fourier mode of wavenumber q, so
that we can account for a perturbation of arbitrary scale. The
x dependence is more difficult to treat. We assume that the x
dependence is given by some function f�x�. We therefore
have

�̃�t,x,y� = e
teiqyf�x� . �A8�

If we substitute this form into Eq. �A7� and simplify, we
arrive at


� �2

�x2 − q2
 f + iq�3 cos 2�x� �2

�x2 − q2 − 4�2
 f

=
�3

Re
� �2

�x2 − q2
2

f . �A9�

This ordinary differential equation in x is a form of the Orr–
Sommerfeld equation,30 and can be interpreted as an eigen-
value problem for the growth rate 
 and the associated
eigenfunction f . For a given combination of Re, q, and f , Eq.
�A9� can be used to determine the stability of the system. If

�0, the perturbation decays and the base flow u0 is stable,
and if 

0, the perturbation grows and the flow u0 is un-
stable.
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