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Separating stretching from folding in fluid mixing
Douglas H. Kelley and Nicholas T. Ouellette*

Fluid mixing controls many natural and industrial processes,
including the spread of air pollution1, mass transfer and
reactions in microfluidic devices2,3 and the detection of odours
or other chemical signals4. Strongly nonlinear flows enhance
mixing by chaotic advection5,6, stretching and folding7,8 fluid
volumes. Though these processes have been studied in simple
models9,10, stretching and folding are difficult to distinguish
in real flows with complex spatiotemporal structure. Here
we report measurements of these two distinct processes in
a two-dimensional laboratory flow. We decouple stretching
and folding using tools developed for analysing glassy solids11

and colloids12, breaking fluid deformation into a linear, affine
component (primarily stretching) and a nonlinear, non-affine
component (primarily folding). Short-time deformation is
dominated by stretching, whereas folding occurs only after
fluid elements are elongated. The relative strength of the
two processes depends strongly on space and time; folding-
dominated regions are initially isolated, but later grow
to fill space.

Mixing is fundamentally a diffusion process: at the boundary
of an impurity in a fluid, the concentration gradient is large
and material flows until the gradient vanishes. Diffusion alone
is inefficient for large-scale transport, such as is required in
industrial mixers or observed in geophysical flow. Moving fluids,
however, can greatly enhance mixing through chaotic advection5,6.
As the fluid moves, the region containing the impurity is strongly
deformed, the length of its boundary grows exponentially and
diffusion becomes efficient. The key to understanding chaotic
mixing, then, is the characterization of the deformation of
fluid elements8. As first described by Reynolds7, this process is
one of stretching, which increases the length of the interface,
and folding, which constrains the fluid element to fill a finite
region of space. These geometric processes are often studied in
simple mathematical models such as the baker’s or horseshoe
maps9,10. Such models, however, differ from actual fluid flow in
that they are discrete, periodic and highly idealized. Although
stretching and folding have been described qualitatively in
real flows2,13,14, they have not been quantitatively distinguished
spatially, temporally or dynamically in flows with complex
spatiotemporal structure.

Deformation of a material volume consists of the relative mo-
tion, and potentially rearrangement, of infinitesimal fluid elements.
These relative displacements can be broadly characterized as either
affine—that is, some combination of rotation, shear, dilation or
compression15—or non-affine. Affine deformation is linear, and
can be represented by a matrix operator. Non-affine deformation
is nonlinear, and generally consists of irreversible rearrangements
of the constituent volume elements11. This distinction between
affine and non-affine deformation has been used to study shear
transformation zones and plasticity in metallic glasses11,16, flow in
granular systems17 and glassy colloidal suspensions12. As stretching
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is affine and folding is non-affine, we can characterize the chaotic
mixing process in a fluid using this same distinction.

We study the deformation of fluid elements in a nearly two-
dimensional experimental fluid flow that is chaotic in both space
and time. We drive flow in a thin layer of salt water (16% by mass
NaCl), with a lateral area of 86× 86 cm2 and a depth of 4mm.
A square lattice of magnets of alternating polarity lies below the
fluid. When we run d.c. electric current (up to 1A) through the
salt water, Lorentz forces produce motion that lies almost entirely
in the plane13,18–21. We measure the fluid motion by tracking22
51 µm polystyrene particles using a 4megapixel digital camera at
60 frames per second. The particles are small enough to follow the
flow accurately21 and lie at the interface between the salt water and
a less dense pure water layer, eliminating surface-tension-driven
interactions between the particles23. We image only the central
31× 23 cm2 of the flow, so that boundary effects are negligible,
and track up to 35,000 particles per frame. We reconstruct the
full velocity field by projecting the measurements onto a basis of
streamfunction eigenmodes24,25. As the velocity field is well resolved
in space and time, we can construct the trajectories of arbitrarily
located fluid elements by numerically integrating their equations of
motion through the measured fields18,19,21. We define the Reynolds
number Re=UL/ν on the basis of the root-mean-square velocity
U , the magnet spacing L = 2.54 cm and the kinematic viscosity
ν = 0.0124 cm2 s−1. Dimensional arguments give the characteristic
forcing timescale as TL=L/U . At low Re, the flow is a vortex lattice;
as Re increases past a critical value Rec ∼ 75, the symmetries of
the forcing are broken and the flow becomes chaotic in space and
time20. A sample velocity field at Re=185 (well above the transition
to chaos) with TL=2.8 s is shown in Fig. 1a.

To study deformation quantitatively, we need mathematical
measures of the affine and non-affine deformation experienced by
the fluid. Working in the Lagrangian framework, where the fluid
is represented by a continuum of fluid elements, we parameterize
material volumes by a central point x(0)(t ) and a cluster of N
neighbours x(n)(t ) equally spaced on a circle of radius d0 around
the central point, where n indexes the elements of the cluster.
The relative positions of the neighbours are given by d(n)(t ) =
x(n)(t )−x(0)(t ), where |d(n)(t )| = d0. After a time τd, which we call
the deformation time, the vectors describing the new shape of the
cluster are d(n)(t +τd). By fitting the deformation of the cluster to
a linear (affine) model, we extract both the affine and non-affine
parts of the deformation separately.More precisely, we compute the
non-affine (folding) deformation of the cluster as

D2(x,t ,τd) = min
αij

[
1

d2
0N

N∑
n=1

ND∑
i,j=1

(d (n)
i (t+τd)

− (δij+αij)d
(n)
j (t ))2

]
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Figure 1 | Flow and deformation fields. a, Subregion of one frame of experimental data, with particle locations and velocities indicated by arrows and
vorticity ω=∇×u (where u is the velocity) shown in colour. Here Re= 185. b, Reverse-time (red) and forward-time (blue) linear, affine deformation A2 in
the same subregion, computed for |τd| = 2TL= 5.6 s. c, Reverse-time (red) and forward-time (blue) nonlinear, non-affine deformation D2. Both
components of the deformation vary strongly with location. Left scale bar, dimensions of image= 2 cm; right scale bar= 2 cm s−1, and represents the
magnitude of the velocity indicated by arrows.

where all sums are explicit, ND = 2 is the space dimension, δij is
the Kronecker delta and αij is the best-fit (in a least-squares sense)
affine deformationmatrix11.D2, the residual of this fit, is large when
the linear model is poor, that is, when the deformation is far from
affine. We can then express the total affine (stretching) component
of the deformation as

A2(x,t ,τd)=
1

d2
0N

N∑
n=1

ND∑
i,j=1

(αijd
(n)
j (t ))2

where αij is the same matrix that minimized D2. Both A2 and D2

are non-dimensional. In our experiments, we used N = 12 and
d0 = 1.4mm (≈ L/18, the typical distance between particles); the
variation of our results with these two parameters is shown in
Supplementary Figs S1 and S2. We note that, even though pure
rotations are also affine, we have defined A2 so that it measures
primarily stretching in our flow.

By computing A2 and D2 at many x(0)(t ), we construct spatially
resolved deformation fields, as shown in Fig. 1 for both positive and
negative τd; that is, for the deformation that the fluid will experience
(positive τd) and the deformation that it has experienced (negative
τd). Both the affine and non-affine deformation vary strongly
in space, suggesting that stretching and folding are highly non-
uniform. Similar spatial variability has been demonstrated for flow
nonlinearity26. Though these two deformation fields look similar,
we showbelow that their behaviour as a function of τd is quite differ-
ent. Both fields resemble the stretching fields that have recently been
used to identify so-called Lagrangian coherent structures18,27,28,
which are deeply connected to mixing29. This result is unsurprising
for the affine deformation, given that the stretching field is also a lin-
earization of the total deformation, constructed by ignoring high-
order spatial derivatives. It is intriguing, however, that the structure
of the non-affine field is so similar. In particular, we note that the
non-affine field, which shows regions where the evolution of the
flow is highly nonlinear, is large only in a small subset of the total
flow, even though the Reynolds number is both much larger than
unity and larger than the critical value at which the flow becomes
spatiotemporally chaotic (Re/Rec ∼ 2.5). This result suggests that
theReynolds number alone is a poormeasure ofmixing efficiency.

The distinction between our deformation fields and Lagrangian
coherent structures becomes clear by studying the behaviour of
the deformation as a function of τd. Here, we focus only on
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Figure 2 | Deformation varying with time. a, Average values of A2 (red)
and D2 (blue) as a function of τd. The average of D2 begins to increase
rapidly once τd∼ TL. Insets (i)–(vi), Progression of snapshots of the
deformation of an initially circular material area in the same frame as in
Fig. 1. The measured shape of the cluster is shown in blue, and the best-fit
affine deformation is shown in red. One point is marked with an X to make
rotations apparent, and the scale is constant. The indicated scale bar is
roughly 1% of the camera’s field of view. b–e, Probability density functions
of A2 (red) and D2 (blue) for four different τd values. The tail of the D2

distribution grows rapidly once τd∼ TL.
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Figure 3 | Spatially resolved ratio of folding to stretching. The ratio of D2

to A2, plotted on a logarithmic colour scale to show detail, for the same
data as shown in Fig. 1, with τd= 2TL. An outer margin of the measurement
region is not shown so as to avoid spurious edge effects. The dashed
central box indicates the subregion shown in Fig. 1. The relative importance
of stretching and folding varies strongly with location. Scale bar, 5 cm.

positive τd; our results for negative τd are similar (as shown in
Supplementary Fig. S3). By increasing τd we can watch individual
clusters deform over time; one such progression (chosen at random
from our data set; other examples are shown in Supplementary
Fig. S4) is shown in Fig. 2. This example suggests that deformation
is a two-stage process: short-time deformation is dominated by
stretching, whereas folding occurs at longer times. This hypothesis
is borne out by measurements of 〈A2

〉 and 〈D2
〉 as a function of

τd, where 〈·〉 denotes an average over both space and t . As shown
in Fig. 2g, 〈A2

〉 far exceeds 〈D2
〉 at early times, but 〈D2

〉 increases
suddenly at τd ∼ TL and dominates 〈A2

〉 at later times. We also
measured the mean Lagrangian coherent structure stretching field
fromour data; as shown in Supplementary Fig. S5, its average closely
resembles 〈A2

〉 but is very different from 〈D2
〉. The full probability

density functions of A2 and D2, shown in Fig. 2b–e, tell a similar
story. Although the distributions ofA2 andD2 both become broader
as τd increases, the tail of the D2 distribution grows quickly for
τd > TL, and its width soon exceeds that of the A2 distribution.
The rapid change in the growth of the non-affine deformation at
τd∼TL coincides with the time when A2

∼ 1, corresponding to the
doubling of the cluster’s aspect ratio. This observation supports our
hypothesis of a two-stage deformation process: a spherical volume
cannot be folded without first being stretched. Although we show
data from only one Re in Fig. 2, our results are similar for all other
Remeasured (as shown in Supplementary Fig. S6).

Although the averages of A2 and D2 in Fig. 2g suggest that
the relative importance of folding increases rapidly once τd ∼ TL,
the heavy tails in the probability density functions imply that
stretching and folding have significant spatial variability. In Fig. 3,
we show the spatially resolved ratio of D2 to A2. This ratio is highly
heterogeneous in space, varying by many orders of magnitude over
very short length scales. Before τd ∼ TL, stretching exceeds folding
nearly everywhere. Later, however, folding begins to dominate
in isolated, line-like regions. These regions often lie close to the
invariant manifolds of the hyperbolic critical points in the flow,
as would be expected from a lobe-dynamics analysis30. To study
the regions where D2 > A2 in more detail, in Fig. 4a we plot the
fraction of our measurement area where D2 > A2 as a function
of τd. Consistent with our earlier observations, stretching exceeds
folding everywhere when the deformation time is short (τd� TL),
but folding dominates nearly everywhere at later times (τd� TL).
A progression of snapshots in Fig. 4b–e reveals the growth of the
regions whereD2>A2 as τd increases, which proceeds quickly in the
range 2TL<τd<4TL. These regions are point-like at small τd, when
the flow dynamics are well characterized by linearized equations.
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Figure 4 | Regions where folding dominates. a, The fraction of the
measurement region where non-affine deformation exceeds affine
deformation, for the same data as shown in Fig. 2. b–e, Regions where
folding exceeds stretching, for the same data as shown in Figs 1 and 3, at
τd= TL, 2TL, 3TL and 4TL. At short times, these regions are point-like. As τd

increases, they grow into lines that eventually join and become space filling
at long times.

As τd increases, however, these regions become line-like and finally
space filling (with fractal dimension two): eventually, the entire flow
undergoes strong nonlinear deformation.

Our experiments provide new insights in the details of fluid
mixing. By explicitly considering the non-affine part of the fluid
deformation, we can move past the linearized models commonly
used to study this complex problem toward a fully nonlinear
description. We have shown that stretching and folding operate on
different timescales and that their relative strength depends strongly
on space and time; similar effects are likely to be present in other
situations described by stretching and folding, such as the evolution
of magnetic field lines (and therefore magnetic energy density)
in liquid metals and plasmas. Finally, we have shown that tools
developed for studying glassy solids can be used to gain a deeper
understanding of a fluid system, a result that suggests that further
exchange of techniques between these communitiesmay be fruitful.
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