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Onset of three-dimensionality in electromagnetically driven thin-layer flows
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Two-dimensional fluid flow is often approximated in the laboratory with thin electromagnetically
forced fluid layers. The faithfulness of such an experimental model must be considered carefully,
however, because the physical world is inherently three-dimensional. By adapting an analysis
technique developed for oceanographic data, we divide velocity measurements from a thin-layer
flow into two components: one that is purely two-dimensional and another that accounts for all
out-of-plane flow. We examine the two- and three-dimensional components separately, finding that
motion in thin-layer flows is nearly two-dimensional at low Reynolds numbers, but that out-of-plane
flow grows quickly above a critical Reynolds number. This onset is likely due to a shear
instability. © 2011 American Institute of Physics. [doi:10.1063/1.3570685]

I. INTRODUCTION

The physics of two-dimensional flow is rich in theory
and application. Some behaviors that arise in two dimensions
are unique, most famously the double cascade of energy and
enstrophy.lf3 Others are equivalent or analogous to three-
dimensional phenomena, making two-dimensional studies
valuable models for testing, development, and application of
complex analytic tools.*’ Many behaviors manifested by
two-dimensional flows are also important in the geostrophic
flows in the oceans and atmosphere.6 Moreover, rotating tur-
bulence undergoes a continuous transition from three- to
two-dimensionality as the rotation rate increases.” Hence,
studying two-dimensional fluid flow can give insight into a
variety of important scientific questions.

Accordingly, studies of two-dimensional flow have been
undertaken in the laboratory. Laboratory experiments are
valuable because they can quickly access a wide range of
parameters, produce high-resolution data sets, and allow for
complex boundary conditions. One common paradigm for
such studies is the electromagnetically driven thin-layer flow,
in which a thin layer of conductive fluid is placed in a mag-
netic field and stirred by the Lorentz forces that arise when a
current is passed through the fluid. > Studying two-
dimensional flow in a three-dimensional laboratory device,
however, is necessarily an approximation. A key question for
this model system is its faithfulness: how well do thin-layer
flows approximate two-dimensionality?

A series of investigations has addressed the two-
dimensionality of experimental thin-layer flows; for a sum-
mary see the recent review by Clercx and van Heij st.%” Paret
et al’ performed experiments with a lattice of vortices, com-
paring the decay time of the flow on the free surface of their
system and on an internal layer. Their results suggested that,
after an initial transient, the vertical velocity profile was con-
sistent with Poiseuille flow, implying no velocity in the depth
direction and therefore good two-dimensionality. Jiittner et
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al."’ performed numerical simulations of two-dimensional
flow with linear (Rayleigh) friction and found that when
given a Poiseuille profile as an initial condition, the simula-
tions agreed well with experiments, again suggesting good
two-dimensionality. Satijn et al.,'* however, performed ex-
plicitly three-dimensional simulations of decaying monopo-
lar vortices and found that large layer depth and/or Reynolds
number drove appreciable out-of-plane flow, which could be
damped by stratification. More recently, Akkermans et
al."™ used three-dimensional numerical simulations and
stereoscopic particle image velocimetry of decaying mo-
nopolar vortices to visualize the vertical motion directly.
Those studies concluded that out-of-plane flows are driven
primarily by the impermeability of the top and bottom
boundaries and that the vertical profile is inconsistent with
Poiseuille flow. Taken together, their results suggest that
thin-layer flows approximate two-dimensionality only
poorly, at least with the geometry and parameters they con-
sidered.

Here we present a laboratory study of the two-
dimensionality of electromagnetically forced thin-layer
flows. We use a similar forcing method and employ particle
tracking in two dimensions to measure the in-plane velocity
field with higher spatial resolution than previously achieved,
tracking about 30 000 particles per frame. Adapting a tech-
nique developed for oceanographic data analysis,21 we de-
compose the velocity of each particle into two components:
one that is purely two-dimensional and is incompressible in
the plane and one that accounts for all out-of-plane motion.
This technique has not been previously applied to thin-layer
flows and allows us to examine the two components sepa-
rately, quantitatively assessing the characteristics and relative
strength of the out-of-plane flow. We perform experiments
spanning a range of Reynolds numbers not previously exam-
ined by any single study and find that the three-dimensional
component is weak at low Reynolds numbers, but grows
quickly above a critical Reynolds number Re.=205. This
sharp onset is indicative of an instability and has not been
observed previously.
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FIG. 1. (Color online) The experimental apparatus. (a) Partial view from
above, showing one electrode at left and a section of the magnet array. The
polarity of each magnet is indicated with + or —, and a section of the floor
encompassing the observation region is painted black to improve optical
contrast. (b) Partial cross section, showing stably stratified layers of salt
water and fresh water, with tracer particles (not drawn to scale) at their
interface. Electric current with density J flows from left to right in the
saltwater layer. The combination of current and magnetic fields leads to a
Lorentz body force that drives fluid flow.

Below, we begin by presenting a description of our ex-
perimental apparatus and particle tracking techniques. We
then describe the method by which we decompose the mea-
sured velocity of each particle into a purely two-dimensional
component and a component that accounts for out-of-plane
flow: we project experimental data onto basis modes built
from a streamfunction and a velocity potential. We then
present experimental results showing an abrupt onset of
stronger three-dimensional flow at a critical Reynolds num-
ber. We close with a discussion of physical mechanisms that
might be involved and a comparison of our results to those of
previous studies.

Il. EXPERIMENTAL FLOW AND PARTICLE TRACKING

Our apparatus (Fig. 1) consists of a thin layer of an
electrolytic fluid with lateral dimensions of 86X 86 cm?.
The experiments described below were performed with a 5
mm layer of 16% by mass NaCl in water, with a density of
p=1116 kg/m*® and a kinematic viscosity of »=1.24
X 107® m?/s. The electrolyte is supported by a smooth flat
glass floor, which is coated with hydrophobic wax to reduce
friction and painted black on its underside to improve the
visibility of tracer particles.

A square array of 34 X34 cylindrical neodymium-iron-
boron (NdFeB) grade N52 magnets lies beneath the glass
floor. The magnets, with diameter of 12.7 mm and thickness
of 3.2 mm, are spaced 25.4 mm on center with alternating
polarity. Each magnet produces a field with a maximum am-
plitude of about 0.3 T that decays exponentially with the
axial distance from the magnet surface, dropping to half the
maximum in 3.3 mm.”* A pair of bar electrodes are mounted
on opposite ends of the layer, allowing an electric current to
be passed through the salt water. The current and magnetic
field produce a Lorentz body force F=J X B/p, where J is
the current density and B is the magnetic field, on the fluid
that drives flow. The experiments presented were performed
with steady (dc) forcing currents. At low current density J
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=|J|, the forcing is weak and the flow generated is a steady
lattice of vortices of spatially alternating sign. At higher cur-
rents, stronger forcing leads to time-dependent flows, spa-
tiotemporal chaos, and eventually three-dimensional flow, as
we will describe below. We characterize the flow by the Rey-
nolds number, defined here as Re=UL,v!, where Ly
=25.4 mm is the forcing scale and U=/(u>+v?) is the mea-
sured in-plane root-mean-square velocity, with brackets (-)
signifying a spatial average. We describe the flow as ux
+vy+wz in a Cartesian coordinate system (x,y,z) with unit
vectors (£,y,Z), respectively; £ is the direction of the forcing
current and £ is the out-of-plane direction. We studied the
range 30=Re =250, a Reynolds-number range that lies be-
tween previous studies that have found three-dimensional ef-
fects to be negligibleg‘10 and those that have found them to be
important.lz’”_19

To track the motion of the fluid, we add tracer particles
to the fluid. The particles are 51 um diameter fluorescent
polystyrene spheres with density of 1050 kg/m?>. Because
their density is less than that of the salt water, they float on
its surface. If the upper surface of the salt water layer was an
immiscible liquid-liquid interface or a gas-liquid interface,
surface tension effects would lead to a long-range attractive
force between the particle:s.23 This interaction would lessen
the ability of these particle to follow the flow by both modi-
fying their equation of motion and by leading to clumping
and therefore larger effective particle diameters.”* We avoid
this problem by placing a 5 mm layer of de-ionized water,
which is less dense than the tracer particles, above the salt
water. Because the two fluids are miscible, there is no bulk
surface tension between them. When filling the apparatus, we
add fresh water first and then inject salt water slowly from
below to maintain the stable stratification and minimize mix-
ing.

The fluorescent particles absorb most strongly in the
blue (468 nm) and emit most strongly in the green (508 nm).
We illuminate them with blue light emitting diodes with a
luminosity that peaks at 470 nm and record images with an
IDT MotionPro M5 camera fitted with a 24 mm focal length
Schneider APO-Xenoplan lens. An optical filter attenuates
wavelengths below 520 nm, reducing blue glare considerably
while negligibly dimming the green particles. The camera
has a complementary metal-oxide semiconductor sensor with
pixel dimensions of 2320 X 1728 and can record continu-
ously at frame rates of up to 170 Hz. The resulting movies
are recorded to a parallel array of eight high-speed disks for
later processing. The experiments discussed below were per-
formed at a working distance of 40 cm, giving a field of view
of 31.7X23.6 cm? in the center of the apparatus, well away
from the walls. We recorded images at a rate of 60 Hz, which
was sufficient to resolve the motion of even the fastest par-
ticles.

To measure the flow dynamics, we identify and follow
the particles in recorded movies using Lagrangian particle
tracking.25 As is done in classical particle tracking velocim-
etry (PTV), we locate the positions of individual particles
and match them in time. Unlike in PTV, however, which
typically uses only two images to match particles, we keep
the full Lagrangian information about the long-time particle
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trajectories. Lagrangian dynamics are a powerful way to
study fluid flow;?® for the present application, the length of
our trajectories is useful in that it allows us to use a numeri-
cal differentiation scheme that is more robust than simple
finite differences.

Our tracking algorithm has been described in detail
elsewhere,” and so here we summarize the major steps only
briefly. Particles are located by using local maxima in image
intensity (above a small threshold) and the pixels immedi-
ately adjacent to the maxima. We obtain the particle centers
with a resolution of roughly 0.1 pixels (13.7 wm in these
experiments) by fitting one-dimensional Gaussians to the x-
and y-direction intensity profiles. Once the particle locations
have been found, they are tracked using a predictive three-
frame best-estimate algorithm. For each partially constructed
trajectory, the expected position of the particle at the next
time step is estimated using simple kinematics. The mea-
sured particle position that comes closest to this estimate is
then chosen to continue the trajectory. Small temporal gaps
(due to particle dropout) are bridged via extrapolation. The
entire process has been shown to be robust under a wide
range of flow conditions and has been parallelized so as to be
computationally efficient. For the data reported here, we
tracked N,~30 000 particles per frame. We subsequently
differentiate the trajectories temporally by convolving the
measured tracks with a Gaussian smoothing and differentiat-
ing kernel,”"* yielding a time series of positions and veloci-
ties for each tracked particle.

lll. DISTINGUISHING THE THREE-DIMENSIONAL
COMPONENT WITH BASIS MODES

Our apparatus and others like it are used to approximate
two-dimensional flow. In the three-dimensional physical
world, however, they are only approximations, and thus there
will also be some three-dimensional flow. The magnitude of
the out-of-plane component can vary widely depending on
experimental parameters. We have implemented an analytical
technique to distinguish the three-dimensional component
from the two-dimensional component in data where only in-
plane velocity measurements are available. These compo-
nents are not projections onto coordinate axes that are or-
thogonal in physical space but rather projections onto
orthogonal basis functions that satisfy the appropriate bound-
ary conditions. The basis set is composed of two types of
modes, some purely two-dimensional and others that account
for three-dimensionality. With this technique it is possible
not only to measure the magnitude of the three-dimensional
component (that is, the part of the flow contained in the
three-dimensional basis modes), but to study its spatial and
statistical properties separately from the two-dimensional
component or to remove the three-dimensional component
altogether. The remainder of this section describes the tech-
nique in detail.

Central to the technique is the relationship between out-
of-plane motion and apparent in-plane compressibility. Be-
cause the Mach number in our flow is always O(107) or
smaller, the flow is certainly incompressible in three dimen-
sions, and so
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A+ v + dw=0. (1)

If the flow were truly two-dimensional, we would have w
=0 and therefore the flow would also satisfy incompressibil-
ity in the plane, given by

V-u=0, (2

where V=%xd,+yd, is the two-dimensional gradient operator
and u=ux+vy is the two-dimensional velocity field. In a
real-world approximation of two-dimensional flow, Eq. (2)
fails to hold whenever out-of-plane flow exists. Setting d.u
=d,v=0 in Eq. (1) yields d,w=0. Integrating that expression
and using the boundary condition w=0 at the impermeable
floor show that the only solution compatible with apparent
two-dimensional incompressibility is w=0 everywhere. Ap-
parent in-plane compressibility is an indicator of three-
dimensionality.

The component that appears compressible can be sepa-
rated from the incompressible component of the flow. Ac-
cording to the fundamental theorem of vector calculus (often
called Helmholtz’s theorem), if a smooth vector field is de-
fined on some (possibly infinite) domain and if the amplitude
of the field goes to zero at the boundaries, then the field can
be uniquely represented as the sum of a solenoidal part and
an irrotational part.29 In particular, the theorem holds for any
two-dimensional flow field u, which can be written in terms
of a streamfunction W and a velocity potential y, both scalar
fields, such that

u=-2xVV+Vy, 3)

where Z XV is the two-dimensional curl operator. The first
term on the right-hand side of Eq. (3) is solenoidal, whereas
the second is irrotational, that is,

V- EZXV¥)=0,

ZX V(Vy) =0. (4)

Thus, the apparent compressibility associated with out-of-
plane flow is contained entirely in the velocity potential.

One detail, however, remains. This decomposition is not
precisely applicable to data sets typically recorded in experi-
mental devices of this sort because Helmholtz’s theorem re-
quires that the vector field under consideration vanishes at
the boundaries of the domain on which it is defined. Because
the sidewalls of the apparatus lie outside the field of view of
the camera, our recorded velocity fields do not drop to zero
at the boundaries of the field of view. With “open bound-
aries” of this sort, decomposition into incompressible and
irrotational components remains possible but is no longer
unique.w Rather, the results of decomposition depend on the
boundary conditions. Following Lekien et al.” we use a
unique three-part decomposition chosen to maximize the en-
ergy contained in the two-dimensional solenoidal flow field.
We write the velocity as

u=-2XV¥+vVO +Vo, (5)

with the boundary conditions
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\Pll" = O,
i - VOlr=g(s),
i - V| =0. (6)

Here we denote the open boundary as I' and the unit normal
to the boundary as 7i. The scalar function g(s), which de-
pends on the arc length s of the boundary, will be addressed
below. ® and ® together take the place of y. The term VO
gives the inflow and outflow at the boundaries and is both
irrotational [see Eq. (4)] and solenoidal because

V-(VO)=0. (7)

Therefore, the term V& accounts for all apparent
compressibility—and therefore all three-dimensionality—in
the flow.

In order to decompose our experimental data according
to Eq. (5), we first write each part of the flow as an expan-
sion in orthogonal modes,

Ny

\P(X,y) = E a,'/’,(x,y),
Jj=1
Ny

O(x,y) = 2 BrO(x,y),
k=1

No
q)(-x’y) = 2 Yl(ﬁl(xs)’), (8)
=1

with (so far undetermined) coefficients a;, By, and y;; Ny, Ny,
and N give the number of modes for each component. We
refer to i, 6, and ¢; as streamfunction, boundary, and po-
tential modes, respectively. In our experimental measure-
ments, the kinetic energy associated with boundary modes
has varied between 2% and 18% of the total kinetic energy,
which quantifies the error introduced by ignoring them and
using a two-part decomposition instead (see below). Com-
bining Egs. (5) and (8) we can write

Ny N, Ny
u=2, ad, i+ > Bid b+ X Videbrs
=1 k=1 =1

Ny, Ny Ny
v== 2 ad i+ 2 Bid, O+ 2 idy s 9)
j=1 k=1 I=1

which give two-dimensional basis sets onto which measure-
ments can be projected. The coefficients in each sum are set
by the experimental measurements using a linear least-
squares method, discussed further below. For notational sim-
plicity, we define the full set of basis functions (including
contributions from all three parts) as

Uy, =10y} U0, 6, U {0, ),

U ={= 0} U {9,6 U {9, ;} (10)

and the full set of coefficients as 7, ={a;} U{B}U{v}.
Then, Eq. (9) can be rewritten concisely as

Phys. Fluids 23, 045103 (2011)

N
u = Z 7/mum’
m=1
N
V=2 Bl (11)
m=1

where N=Ny+Ny+N,. Choosing Ny=Ny=N = allows the,
in principle, exact representation of any flow with open
boundaries, but in practical situations it is necessary to trun-
cate the series by choosing N, v Nos and Nyto be finite, as we
will discuss further below. The exact forms of ¢;, 6, and ¢,
will also be specified below.

Equation (11) shows that # and v are determined by the
same coefficients 7,,. The best-fit projection of the data onto
this model (in a least-squares sense) is given by the solution
of the matrix equations31

N, N N,
2 E (umpunp + vmpvnp) N = (unpu;neas + vnpv;leas >
p=1 m=1 p=1

(12)

known as the normal equations of the linear least-squares fit.
Here p indexes the N, particles present in the frame, and all
sums are written explicitly. The notation u,,, signifies the
value of the basis mode u,,, as defined in Eq. (10), evaluated
at the location of particle p; u,,, v,,,, and v,, have corre-
sponding meanings. Likewise u}* and v)** are the compo-
nents of the velocity as measured for particle p.

We use singular value decomposition to solve Eq. (12) in
order to avoid numerical issues that may arise due to nearly
singular matrices and due to basis modes that are nearly de-
generate at the particle locations where measurements have
been recorded.”’ Once the coefficients 7,, are known, the
velocity vector components u and v can be reconstructed by
simply summing over the basis modes as given by Eq. (11).

We must therefore specify the form of the modes ;, 6,
and ¢, explicitly. To construct the streamfunction modes ;,
we use the eigenfunctions of the Laplacian given by

V3= Ny, (13)

where )\}/’ is the eigenvalue associated with the eigenfunction
;, subject to the boundary conditions given by Eq. (6).
Eigenfunctions of the Laplacian are used in many situations
where an orthogonal complete set is required. Their exact
form varies with the geometry and the boundary conditions;
examples include scalar and vector spherical harmonics and
Bessel functions. For a scalar field (such as the streamfunc-
tion V) on a two-dimensional rectangular domain, the eigen-
functions of the Laplacian are two-dimensional Fourier
modes. They cannot be specified analytically for an irregular
domain such as the one defined by our tracer particles (note
the irregular boundary in Fig. 3), but they can be calculated
numerically, as we do for the data discussed below. Three
streamfunction modes calculated this way are shown in Fig.
2. Some resemble Fourier modes closely (particularly for
low orders), whereas others do not.

The boundary modes 6, are determined entirely by the
boundary conditions.”' Because they are both irrotational and

np»
meas

Downloaded 11 Apr 2011 to 128.36.47.205. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



045103-5

Onset of three-dimensionality

FIG. 2. (Color online) Example basis modes. (a) Three streamfunction
modes ;. A dot is drawn at the location of each tracked particle, much
larger than the actual particle, with its color representing the value of the
mode at that location; the overall amplitude is arbitrary. (b) Three boundary
modes 6, drawn the same way. (c) Three velocity potential modes ¢, drawn
the same way. A superposition of basis modes such as these is used to
represent each frame of measured data.

solenoidal, they are solutions of Laplace’s equation. To
specify the boundary conditions, let the local outflow at a
point s on the boundary I" be G(s)=7 -u. We can then expand
G in N4 Fourier modes as

Ny
G@=E#ﬁ4?> (14)
k=1 b

where L, is the total length of the boundary (so that 0=y
<L,;) and
sin kx, k even

8 = cos(k+1)x, k odd. (15)

We choose the basis in this way so that each g, is continuous
over the boundary and

L, Ly (o
J G(s)dszf gk<—)ds=0, (16)
0 0 L,

as required by incompressibility. Defined in this way, the g;
provides a Neumann boundary condition on the Laplace
equation that determines the boundary modes 6, so that the
6, are given by

V%6,=0,
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) s
ii-Vor= 8k<L_) (17)
b

r

Three boundary modes calculated this way are shown
in Fig. 2.

We construct the potential modes ¢, in a similar way as
the streamfunction modes, using numerically determined
eigenfunctions of the Laplacian,

Vig=\¢, (18)

but with a different boundary condition, as given in Eq. (6).
Here )\;’S is the eigenvalue associated with the eigenfunction
¢,;. Three potential modes calculated this way are also shown
in Fig. 2.

The number of modes to be used in projection must also
be chosen. One consistent way to choose N, Ny, and Ny is
by choosing a minimum size L ;, and retaining all modes
whose characteristic length scale exceeds that size. Accord-
ing to Eq. (15) we retain all boundary modes 6, satisfying

2L
Tb = Lyin- (19)

Because the streamfunction modes and potential modes are
calculated numerically, their length scales are not immedi-
ately apparent but may be approximated with dimensional
arguments. Following Lekien et al.”" we retain all stream-
function modes ¢; satistying

Lx )\_(// = Lmin’ (20)

where \? is the lowest streamfunction mode eigenvalue and
L, is the extent of the field of view in the X-direction. Like-
wise we retain all potential modes ¢, satisfying

A
L, F = Liin» (21)

where )\f’ is the lowest potential mode eigenvalue. In the
experimental data described below, we have chosen L,
=L/ 2. With that choice, we find that boundary modes ac-
count for about 2% of the kinetic energy of the flow. Increas-
ing L;, does little to change the amount of energy captured
by boundary modes; small-scale boundary modes capture
little energy because their amplitudes are appreciable only in
a narrow margin near the boundary. Small-scale internal
modes, however, have appreciable amplitude everywhere;
neglecting them by increasing L, noticeably reduces the
amount of energy captured by internal modes. Thus, bound-
ary modes account for a larger fraction of the energy. Like-
wise, choosing a smaller region of interest increases the frac-
tion of energy in boundary modes because more of the region
lies in that narrow margin. In the special case of an open
boundary through which no flow occurs, the boundary modes
contain no energy, consistent with Helmholtz’s theorem. On
the other hand, choosing a boundary that maximizes inflow
and outflow also maximizes the fraction of energy in bound-
ary modes. In such an extreme case, we have seen boundary
modes account for as much as 18% of the energy of the flow.

Downloaded 11 Apr 2011 to 128.36.47.205. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



045103-6 D. H. Kelley and N. T. Ouellette

. .0... ‘ o :.:o:‘ ? .‘... o —o ..o oo e ..o ..: <
[ ) .. [ .* < ... ... .. ... ° . L
oo’ :ﬁ: . * e o..' ..o‘ S o*
':.° s’ .o..:.:’.o‘O° . .?".' o~ s o.‘
Py N ° °® .o.o.o. { ..\:: ..o . ot ®
e .O % o © pd y { 1} .. L ] .
" » 5 »e -t .. [ ] o0 ]

FIG. 3. A portion of an example particle mesh as seen from above. Particle
locations are indicated by dots much larger than the actual size of the par-
ticles. The subregion shown contains 395 of the 29 047 particles identified
and tracked in this particular frame. The mesh itself, computed from the
particle locations via a Delaunay triangulation, connects the particles, with
parts of its edge visible along the top and left. We use this mesh to calculate
spatial derivatives of the velocity at the particle locations via finite-element
techniques.

Evaluating Eq. (9) requires calculating spatial gradients.
When data lie on a regular grid, spatial gradients are typi-
cally calculated using finite differences or similar techniques.
However, Lagrangian particle tracking produces data that are
not regularly spaced: measurements are made at the locations
of the particles and nowhere else. We therefore calculate spa-
tial gradients at the (essentially random) particle locations
using finite-element tools. For each frame, we use Delaunay
triangulation to build a mesh whose vertices are the particle
locations and then calculate gradients using that triangular
mesh. A typical mesh constructed this way is shown in Fig.
3.

IV. RESULTS

With a mechanism in place to separate the three-
dimensional flow component from the purely two-
dimensional component, we can address in detail the two-
dimensionality of our electromagnetically forced thin-layer
flow. By projecting the measured data using the technique
described above, we can reconstruct the component that is
incompressible in the plane (which we call simply the in-
compressible component) and the component that shows ap-
parent compressibility (which we call the compressible com-
ponent) separately; they are

Uy =—% X (V¥ +V0O), (22)

Ucomp =V, (23)

respectively, where again £ X V is the two-dimensional curl
operator.

When the forcing current is small and Re is low, we
observe a flow field that closely aligns with the regular lat-
tice of the magnetic forcing, as expected from previous stud-
ies. Figure 4 shows the total vorticity w=Z X Vu in a single
frame of measured data at Re=40. Vorticity provides a con-
cise and convenient description of quasi-two-dimensional
flows. Apparent in the measured vorticity is an alternating
pattern whose characteristic size matches the forcing scale
Ly=25.4 mm. The curl of the incompressible component in
the same frame, w;,.=Z X Vuy,, is also shown in Fig. 4. The
same large-scale spatial pattern apparent in the measured
data appears again in the incompressible component, which
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FIG. 4. (Color online) Example vorticity fields at Re=40 for (a) w and (b)
ine- As in Fig. 2, each tracked particle is represented by a dot; here color
indicates vorticity. We avoid edge effects by considering only a subregion of
the field of view of the camera. The vorticity of the incompressible compo-
nent corrects outliers while preserving the spatial structure of the measured
data.

accounts for the majority of the measured vorticity. The curl
of the compressible component of the flow vanishes to
within our numerical precision, as required by Eq. (4).

The measured in-plane divergence field A=V -u gives a
direct indication of three-dimensionality in a flow. Figure 5
shows the divergence in the same single frame of data at
Re=40. Also shown is the divergence of the explicitly com-
pressible component, Ay, =V ucq,. The divergence of the
incompressible component is identically zero, as again re-
quired by Eq. (4).
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FIG. 5. (Color online) Example divergence fields at Re=40, plotted in the
same way the vorticity is plotted in Fig. 4, for (a) A and (b) A¢opyp. At low
Reynolds number, the majority of the compressibility is due to outliers and
does not project onto any basis mode ¢;.
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FIG. 6. (Color online) (a) Vorticity, (b) velocity, and (c) divergence PDFs at Re=40. The same plots are repeated on semilogarithmic axes with different
horizontal scales in (d)—(f), respectively. Vorticity, velocity, and divergence plots are standardized using the standard deviation of the measured vorticity (o),
velocity (o), and divergence (o), respectively. Each plot is constructed from all particles in the subregion shown in Fig. 4 over 400 frames (order 10°
particles). At low Re, wj,. and u;,. closely match  and u. Although A has wide tails, the data do not project well onto the explicitly compressible component
because Ay, is much more narrow. Together, these results suggest that three-dimensional effects are negligible at this Reynolds number.

Figures 4 and 5 show a small number of outlier particles
whose measured vorticity and/or divergence are unusually
large. Some of these outliers may be due to dust on the
surface of the test fluid, which may be identified as a particle.
However, most of the outliers visible in Figs. 4 and 5, as well
as elsewhere in our data, are likely due to tracking errors.
Some errors are unavoidable in particle tracking. Their num-
ber can be reduced with stringent software parameters, but
only at a steep cost to the number of real tracks recorded. We
therefore use tracking parameters that allow for the identifi-
cation of more particles and more tracks, even if a few out-
liers persist, because those outliers can be easily corrected.
With the parameters chosen for this study, about 60% of the
image intensity maxima become part of a track at least ten
frames long, which are the only tracks we retain.

In fact, outliers are automatically corrected by projecting
data onto an appropriate basis. Because particles with errati-
cally large velocities are rare, they make a statistically insig-
nificant contribution [see Eq. (12)]. The results of projection
are therefore dominated by the large number of measure-
ments that are not outliers. The effect is evident by eye in the
projected vorticity shown in Fig. 4. Because tracking indi-
vidual particles produces data sets of high resolution, the
removal of outliers can also be quantified by statistical mea-
sures, such as the probability density function (PDF) of w at
Re=40, shown in Fig. 6. Here, outliers lead to long tails in
the vorticity distribution of the measured data. The PDF of
i, has much narrower tails, indicating that outliers have
been eliminated.

Outside the tails, o closely matches w;,. (Fig. 6), con-
sistent with single-frame observations like those shown in
Fig. 4. At low Re, the measured flow is contained almost
entirely in the incompressible component. The PDF of veloc-
ity, also shown in Fig. 6, supports this assertion. The mea-
sured velocity closely matches the incompressible compo-
nent except at locations with unusually large velocity, which
are in the tails of the distribution. The PDF of u .y, is

strongly peaked at zero and is typically much smaller than
the PDF of either u or u;,.

PDFs of the in-plane divergence, also shown in Fig. 6,
give additional evidence that the flow is nearly two dimen-
sions at Re=40. Although A is sharply peaked at zero and is
therefore typically small, it has wide tails. The PDF of A gy,
however, is much more narrow and falls substantially below
A at values away from zero, even though A, is the diver-
gence of the component that may be explicitly compressible
in the plane. These results together indicate that the mea-
sured data do not project well onto any compressible basis
mode ¢, at this low Re: the measured divergence cannot be
accounted for accurately by the explicitly nonsolenoidal flow
component. Rather, the tails of the A distribution are due to
outliers caused by tracking errors. Actual flow in the depth
direction is very small at low Re.

Measurements made at increased Re, with stronger forc-
ing, tell a different story. Figure 7 shows the vorticity of a
single frame of measured data at Re=230. The flow field is
clearly no longer pinned to the regular lattice of the magnet
array but instead shows a complex spatial structure that dy-
namically evolves over time, as expected from previous stud-
ies. As before, there are outliers in the vorticity field due to
tracking errors; comparing w to w;,. in Fig. 7, however,
shows again that outliers are eliminated by projection,
whereas the spatial structure of the flow is preserved. PDFs
of the in-plane vorticity, velocity, and divergence at Re
=230 are shown in Fig. 8. The separation between w and w;,.
is larger than at lower Reynolds number, indicating that the
flow is not modeled as well by its incompressible component
alone. A flattening of the velocity PDFs also suggests out-of-
plane motion. Such motion tends to evacuate tracer particles
from vortex cores, causing those low-velocity regions to be
poorly sampled.

In order to understand the evolution from low-Re flow
that is nearly two-dimensional to high-Re flow that has a
non-negligible out-of-plane component, we study the behav-
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FIG. 7. (Color online) Example vorticity fields for (a) @ and (b) w;,. at
Re=230, plotted as in Fig. 4. At higher Re, the forcing lattice no longer
dominates flow structure.

ior as a function of Re. Figure 9 shows the variation of
root-mean-square velocity U= m with Re. The root-
mean-square velocity of the incompressible flow component,
U;,.,» nearly matches U at each value of Re, indicating that
nearly all of the measured flow is contained in the incom-
pressible component. The root-mean-square velocity of the
compressible component, Uy, likewise increases linearly
with Re, though with a smaller slope. Above a critical value
Re., however, the slope of this increase abruptly steepens.
For Re<Re,, Ugonp is well fit by a line that passes through
the origin (i.e., Ucomp=0 at Re=0). For Re> Re,, however,
the data are well fit by a line that does not pass through the
origin. This result suggests that an instability is responsible
for the stronger out-of-plane motions for Re > Re_; we asso-
ciate the weak rise of Uy, With Re below Re, with un-
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FIG. 9. (Color online) Variation of the root-mean-square velocity U with
Re. U and Uj,. have similar magnitude and increase smoothly with Re,
whereas U, rises sharply at Re,=205.

avoidable Ekman pumping, as discussed further below. We
fit a piecewise linear function to the measurements, minimiz-
ing the squared error and leaving Re. unconstrained. The
resulting fit is shown in Fig. 9; it gives Re.=205. Careful
observation also shows that U;,. departs from U with a simi-
lar linear trend beginning near Re=Re,.

The variation of root-mean-square vorticity and diver-
gence with Re, shown in Fig. 10, is also consistent with an
instability to three-dimensional flow at Re=Re,. Like U qpp,
the root-mean-square divergence shows an abrupt increase at
Re=Re,, both in the measured data and in the compressible
component. The measured root-mean-square vorticity like-
wise shows a slow linear increase for Re <<Re, and then a
much more rapid rise at higher Re. This sharp increase in the
vorticity is likely due to three-dimensional motion. The only
source term in the vorticity equation is the vortex stretching
term, which vanishes identically in purely two-dimensional
flow (because in two-dimensional flow the vorticity must
always be orthogonal to the rate of strain). The rapid increase
of the vorticity we observe suggests that this source term is
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FIG. 8. (Color online) (a) Vorticity, (b) velocity, and (c) divergence PDFs at Re=230. The same plots are repeated on semilogarithmic axes with different
horizontal scales in (d)—(f), respectively. Each plot is standardized as in Fig. 6 and is constructed from all particles in the subregion shown in Fig. 4 over 400
frames (order 10° particles). An increased separation between w and w;,, along with flattening of the velocity PDFs, shows that three-dimensional effects have
become appreciable.
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FIG. 10. (Color online) Variation of the root-mean-square (a) divergence
and (b) vorticity with Re for the same data as in Fig. 9. Both quantities
suggest the onset of stronger three-dimensional flow near Re,, in agreement
with measurements of the velocity (Fig. 9).

only present above Re,., indicating that now vorticity is
present with a component in the plane. This observation is
borne out by visual inspection of the motion of particles in
the flow. In Fig. 11, we show single snapshots of the tracer
particles at Re=40 and 230. At the higher Reynolds number,
particles appear to cluster on filamentary structures that ro-
tate about in-plane axes and have larger out-of-plane veloci-
ties. In both cases the flow is dominated by its two-
dimensional component, but the three-dimensional
component is visibly stronger for Re> Re,..

FIG. 11. Snapshots of tracer particles at (a) Re=40 and (b) Re=230.
Whereas the particle density is nearly uniform at low Reynolds number,
particles appear to cluster in filamentary regions at high Reynolds number.
Those regions correspond to structures rotating about in-plane axes, with
larger out-of-plane velocities, as can be observed directly in the correspond-
ing movies.
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V. DISCUSSION AND CONCLUSIONS

We have tracked particles to extract Lagrangian velocity
measurements in an electromagnetically forced thin-layer
flow of the sort commonly used to approximate two-
dimensional fluid flow in the laboratory. By adapting a data
processing technique from oceanography,2l we separated the
purely two-dimensional component of our measurements
that is incompressible in the plane from the three-
dimensional component that shows apparent compressibility.
Examining the two components separately, we find that out-
of-plane flow rises rapidly above a critical Reynolds number
Re,. In this section we will discuss the physical mechanisms
responsible for the behavior we see.

One mechanism that produces out-of-plane motion in
thin-layer flows is Ekman pumping,13 an effect that is ge-
neric in rotating flows over a no-slip boundary. In a flow like
ours, the electromagnetic forcing drives circulation in the
plane. The top and bottom boundary conditions differ, how-
ever: the floor of the flow cell imposes a no-slip condition
either directly9 or through a lubricating layer15 at the bottom
of each vortex. Accordingly, vortices tend to rotate more
slowly at their bottoms than at their tops, producing a verti-
cal gradient in the centrifugal pressure gradient that drives a
secondary vertical circulation.

This secondary Ekman flow, however, is not the result of
an instability. Rather, it occurs at all Reynolds numbers and
its magnitude is directly coupled to the vertical vorticity gra-
dient. Thus, Ekman pumping cannot account for the abrupt
increase in three-dimensionality that we observe at Re,. (Figs.
9 and 10). Instead, the Ekman pumping is the origin of the
slow linear growth in Uy, for Re <Re,. The stronger three-
dimensionality that occurs only at increased Reynolds num-
ber must arise from a different mechanism.

One possibility for producing this stronger vertical flow
is the presence of internal gravity waves™” on the fluid/fluid
interface in our apparatus. Internal waves can produce verti-
cal motion in the bulk of a stratified fluid with an amplitude
far in excess of any associated perturbations visible at the
surface. In the ocean, for example, surface waves have typi-
cal amplitudes of order 1 m but internal waves on the pyc-
nocline have typical amplitudes32 of order 10 m. Nonlinear
phenomena such as wave breaking or interaction occur only
when wave amplitudes become large and thus could poten-
tially account for the onset we observe. Previous studies of
thin-layer flows have shown that stratification reduces out-
of-plane motions'*" while suggesting that internal waves
due to stratification may also cause the remaining
three-dimensionality.12 We have, however, observed similar
three-dimensional effects as those shown here in flows with a
single fluid layer, in which there is no stratification and there-
fore no internal waves. It is more likely that the abrupt in-
crease of three-dimensionality we observe is due to a shear
instability of the vertical velocity profile (which must vanish
at the lower no-slip boundary). When the destabilizing effect
of shear overcomes the viscous smoothing and stratification,
vorticity with its axis in the plane may be generated, with
associated three-dimensional flow.

By separating the measured velocity of each particle into
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two- and three-dimensional components, we have introduced
a new tool for quantifying three-dimensionality in shallow
flows. Our experiments were performed at Reynolds num-
bers higher than in previous studies that reported good
two—dimensionalityg’10 but lower than in previous studies
finding poor two—dimensionality.17_19 Thus, the presence of
an onset in this regime provides a link between these previ-
ous reports. One open question is the relation between the
arrays of vortices as considered here and monopolar vortices
as examined in some previous studies'"™ because vortex
arrays may possibly suppress some three-dimensional mo-
tion. Another open question is the relation between steady
forcing as considered here and decaying flow. Finally, we
note that by using the projection technique described here
and considering the purely two-dimensional component
alone, future experimental explorations may also provide
more accurate experimental approximations of two-
dimensional flow than previously available even when three-
dimensional effects are present.
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