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Abstract
Over the past decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal 
fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely 
initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep 
within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue 
surrounding the brain that drains CSF). These two CSF systems work in unison, and their disruption has been implicated in 
several neurological disorders including Alzheimer’s disease, stroke, and traumatic brain injury. Here, we present experimen-
tal techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We 
discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality 
of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the 
process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF 
pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which 
collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove 
valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for 
other complex biophysical systems.

1 Introduction

Cerebrospinal fluid (CSF) envelops the brain and spinal 
cord, acting as a cushion that provides buoyancy (Wright 
et al. 2012) and supplying nutrients (Wright et al. 2012; 
Spector et al. 2015). Growing evidence suggests that CSF 
also plays an important role in metabolic waste removal 
(Abbott 2004; Iliff et al. 2012; Spector et al. 2015; Hablitz 
and Nedergaard 2021). Since the brain parenchyma is 
devoid of lymphatic vessels, researchers have speculated for 

decades that CSF circulation may serve a pseudo-lymphatic 
role (Milhorat 1975). Tracer injection experiments from the 
past decades (Cserr and Ostrach 1974; Cserr et al. 1981; 
Rennels et al. 1985) demonstrated that solute exchange 
between the CSF and interstitial fluid (ISF) occurs at rates 
faster than diffusion alone, indicating the presence of bulk 
flow through perivascular spaces (PVSs), which are annu-
lar channels surrounding vasculature throughout the brain. 
Several high-profile discoveries from the past decade (Iliff 
et al. 2012; Xie et al. 2013; Louveau et al. 2016; Mestre et al. 
2018; Mesquita et al. 2018; Ahn et al. 2019; Mestre et al. 
2020; Møllgård et al. 2023) have inspired growing interest in 
CSF research due to their profound implications for improv-
ing health. However, many questions remain regarding the 
direction, key compartments, and mechanisms of CSF flow 
throughout the central nervous system.

The precise details of solute exchange between CSF 
and ISF are not well-established, with multiple compet-
ing hypotheses in the literature. The intramural periarterial 
drainage (IPAD) hypothesis posits that basement membranes 
(i.e., vessel walls) of cerebral capillaries and arteries are the 
main efflux route by which ISF exits the brain (Weller 1998; 
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Albargothy et al. 2018; Aldea et al. 2019). This hypothesis 
is largely motivated by observations of amyloid-� (a pro-
tein waste molecule linked to neurodegenerative diseases) 
aggregation on arteries, which is a hallmark feature of cer-
ebral amyloid angiopathy (Yamada 2015). Carare et al. 
(2008) reported that soluble tracers diffuse through the brain 
parenchyma and then drain through basement membranes, 
indicating that ISF is transported retrograde to blood flow. 
However, it is important to note that the vast majority of 
experimental evidence supporting the IPAD hypothesis is 
derived from ex vivo analysis of fixed tissue, which is sub-
ject to anatomical changes and irregular flows that occur 
during the fixation process (Mestre et al. 2018). Alterna-
tively, the glymphatic (glial-lymphatic) hypothesis suggests 
that CSF follows a pathway that is anterograde to blood flow, 
flowing inward along PVSs of arteries, continuing through 
the brain interstitium, then exiting via venous PVSs (Iliff 
et al. 2012; Jessen et al. 2015; Mestre et al. 2017). Within 
the framework of either hypothesis, arterial pulsations are 
widely acknowledged as a likely mechanism driving bulk 
CSF/ISF flow (Hadaczek 2006; Schley et al. 2006; Iliff et al. 
2012; Mestre et al. 2018). Several prior studies have analyti-
cally and numerically modeled arterial pulsations to inves-
tigate the feasibility of this driving mechanism (Wang and 
Olbricht 2011; Diem et al. 2017; Asgari et al. 2016; Rey and 
Sarntinoranont 2018), which has led to a third hypothesis: 
that arterial pulsations generate oscillatory (net zero) flow 
that enhances transport via Taylor dispersion (Asgari et al. 
2016). We point the reader to several review articles for a 
more extensive discussion of CSF/ISF transport hypotheses 
(Ray and Heys 2019; Rasmussen et al. 2021; Agarwal and 
Carare 2021; Hladky and Barrand 2022; Kelley and Thomas 
2022; Bohr et al. 2022).

CSF drains from the skull through multiple parallel efflux 
routes including along cranial nerves that penetrate the cri-
briform plate (Norwood et al. 2019; Decker et al. 2022; Ma 
et al. 2017; Spera et al. 2023), through basal and dorsal 
meningeal lymphatic vessels (Louveau et al. 2015; Aspelund 
et al. 2015), to the spinal canal (Murtha et al. 2014), and 
directly into the blood at the superior sagittal sinus (Møll-
gård et al. 2023); however, the exact contribution of each 
route is not well understood (Proulx 2021). Further compli-
cating the matter, recent research suggests that the rate and 
distribution of CSF production and outflow varies depending 
on the circadian rhythm (Steffensen et al. 2023; Hablitz et al. 
2020). Regardless of the exact details of outflow dynamics, 
it has long been appreciated that a substantial portion of 
CSF drainage eventually reaches cervical lymphatic vessels 
located in the neck (Bradbury and Cole 1980; Arnold et al. 
1973), and the discovery of meningeal lymphatic vessels 
supports the idea that the lymphatic system constitutes a 
significant CSF outflow route. Ultimately, many open ques-
tions remain due to experimental challenges and technical 

limitations associated with probing small length scales deep 
inside or adjacent to the skull.

Numerous experimental approaches exist for measuring 
CSF flow (Bohr et al. 2022), but each has different benefits 
and drawbacks. In this article, we describe image analysis 
techniques for quantifying CSF flow, applied to time series 
of two-dimensional (2D) images that were recorded using 
two-photon microscopy (TPM). TPM offers excellent spa-
tial and temporal resolution (as high as about 0.5 μm/pixel 
at 60 Hz), enabling detailed fluid mechanical analysis of 
CSF dynamics through PVSs at the surface of the brain 
(Mestre et al. 2018, 2020; Raghunandan et al. 2021; Hus-
sain et al. 2023) or through cervical lymphatic vessels in 
the neck (Hussain et al. 2023; Du et al. 2023). An impor-
tant appealing feature of TPM is that it relies on two-photon 
fluorophore excitation which depends quadratically on the 
incident photon flux, and thus by focusing a laser at a pre-
cise location, fluorescence is achieved in a tiny volume of 
approximately 1 μm3 (So et al. 2000). By rastering pixel-
by-pixel throughout a plane, 2D images are achieved at a 
precise depth with negligible fluorophore excition above/
below that plane; this is in contrast with other microscopy 
techniques (e.g., confocal). In 2018, Mestre et al. (Mestre 
et al. 2018) leveraged TPM to demonstrate that CSF flows 
parallel (not anti-parallel) to blood through approximately 
40 μm wide PVSs at the surface of the brain, and the flow 
pulses in synchrony with the cardiac cycle (Mestre et al. 
2018) (anesthetized mice have a heart rate on the order of 
5 Hz, so a Nyquist rate ≳ 10Hz is needed to resolve the 
flow pulsatility). Subsequently, these techniques were fur-
ther refined and utilized to quantify changes in CSF dynam-
ics following stroke (Mestre et al. 2020), cardiac arrest (Du 
et al. 2021), and traumatic brain injury (Hussain et al. 2023). 
We posit that as research interest in CSF flow continues to 
grow due to its increasingly apparent relevance to a variety 
of chronic and acute neurological conditions (Rasmussen 
et al. 2018; Nedergaard and Goldman 2020), in vivo optical 
measurement techniques in animal models will continue to 
provide valuable insight into CSF dynamics. However, it is 
important to note the limitations of TPM: This technique 
requires invasive surgery to place a cranial window ena-
bling optical access to the brain, the field of view is limited, 
and imaging is restricted to the top few hundred μ m of the 
cortex since brain tissue scatters light. Insights from high-
resolution measurements, obtained using techniques such as 
those described in this article, will likely prove most valu-
able when integrated into a comprehensive framework that 
includes other modalities for measuring CSF transport, such 
as magnetic resonance imaging (MRI) (Battal et al. 2011; 
Bradley 2015; Eide et al. 2018; Ringstad et al. 2018), tran-
scranial brain-wide epifluorescence microscopy (Plog et al. 
2018; Sweeney et al. 2019), and ex vivo tissue fixation with 
histological staining (Cserr and Ostrach 1974; Cserr et al. 
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1981; Rennels et al. 1985; Weller 1998; Albargothy et al. 
2018; Aldea et al. 2019; Carare et al. 2008). For a more com-
prehensive discussion of various measurement techniques, 
we point the reader to Bohr et al. (2022).

In this article, we provide an overview of image analysis 
techniques that enable quantitative characterization of CSF 
dynamics. Our MATLAB-based scripts, along with a short 
time series of images and a concise working example, are 
freely available online (Kim et al. 2023). A key component 
of the analysis involves particle tracking velocimetry (PTV), 
which has been used extensively for quantifying biological 
phenomena including respiratory flows (Jonas et al. 2011; 
Wang et al. 2020; Li et al. 2022), cell migration (Hilsenbeck 
et al. 2016; Manzo and Garcia-Parajo 2015; Salminen et al. 
2020), and blood flow (Vennemann et al. 2007; Sengupta 
et al. 2012; Gülan et al. 2012). We perform PTV and not 
particle image velocimetry (PIV) because the latter requires 
high particle densities that may rapidly clog drainage path-
ways and alter CSF flow; furthermore, high particle densities 
would likely exacerbate particle aggregation in the PVSs (a 
challenge discussed in detail below). We do not provide any 
discussion of surgical techniques required prior to imaging 
CSF flow in vivo; rather, we direct the reader to references 
(Sweeney et al. 2019; Xavier et al. 2018).

This article is structured as follows. First, Sect. 2 pro-
vides a brief overview of experimental methods and image 
analysis techniques described in this article. We then discuss 
image preprocessing in Sect. 3, including image registration 
and masking stagnant microspheres, which both improve the 
reliability of CSF flow measurements. We provide insight 
and recommendations for choosing near-optimal tracking 
parameters in Sect. 4. Then, we introduce techniques for 
quantifying changes in vessel diameter, which are thought 
to contribute to CSF transport, in Sect. 5. Next, we demon-
strate in Sect. 6 how the aforementioned techniques can be 
adapted and applied to measure fluid flow through cervi-
cal lymphatic vessels. Finally, a summary and conclusions 
are provided in Sect. 7. An appendix is also included (sec-
tion A) which presents an uncertainty analysis of PTV based 
on TPM imaging.

2  Overview of experimental methods

The image analysis techniques presented in this article 
require injection of fluorescent tracers to visualize differ-
ent fluid compartments in the brain. To enable quantitative 
measurement of CSF flow via PTV, fluorescent microspheres 
(FluoSpheres, diameter 1.0 μm ) were injected into the CSF, 
which is usually performed at the cisterna magna (an acces-
sible region near the posterior skull base) (Mestre et al. 
2018; Xavier et al. 2018; Ramos et al. 2019). Note that the 
number of particles that appear in PVSs is highly variable 

(see Supplementary Table 1 in ref. Mestre et al. (2018)), so 
long time series ( ≳ 20 min) are desirable to obtain a reliable 
estimate of the CSF flow velocity in cases of few particles. 
Although some researchers have raised concerns that inva-
sive tracer injections increase the intracranial pressure and 
may result in non-physiological flow (Smith and Verkman 
2018; Croci et al. 2019; Vindedal et al. 2016; Faghih and 
Sharp 2021; Vinje et al. 2020), Raghunandan et al. (2021) 
demonstrated that flow velocities in PVSs are unchanged 
(compared to prior experimental protocols) when injections 
are performed using a dual syringe that injects and with-
draws fluid, minimally disrupting the intracranial pressure. 
Fluorescent microspheres in the CSF appear as green dots in 
Fig. 1a. Experiments typically also include injection of fluo-
rescent dye into the blood for visualization, which may be an 
intravenous or retro-orbital injection (Yardeni et al. 2011). 
Visualizing the blood compartment is valuable for inferring 
the approximate location of the PVS (by definition, PVSs 
are adjacent to blood vessels and the vascular wall forms 
the inner boundary of each PVS). Such visualization also 
facilitates image registration and enables measurement of 
arterial pulsations, both described below. We note that here, 
as well as in prior publications (Mestre et al. 2018, 2020; Du 
et al. 2021), the color channels for CSF microspheres (green) 
and blood (red) have been swapped from their true fluores-
cence (red and green, respectively) to facilitate an intuitive 
representation of blood with the color red.

After a time series of microspheres flowing through the 
PVSs is recorded, we perform Lagrangian particle tracking 
using a predictive algorithm (Ouellette et al. 2006; Kelley 
and Ouellette 2011). For a given snapshot (e.g., Fig. 1a), 
particles are first detected based on a pixel intensity thresh-
old, and the centroid is identified for each contiguous region 
above that threshold. Identified particles are then linked in 
time by matching a given centroid to a nearby centroid in 
the next frame using kinematic predictions. The maximum 
search radius for linking sequential centroids in time is user-
specified and should be chosen carefully (see below). Once 
particle tracking is completed, we plot the superimposed 
tracks from the entire time-series recording, which provides 
a visual assessment of the PVS size and shape (Fig. 1b). 
PVS size/shape can also be characterized through infusion 
of fluorescent dyes (e.g., dextran and bovine serum albumin) 
into the CSF (Iliff et al. 2012, 2013; Mestre et al. 2018), 
but these small molecules can cross from the PVS into the 
brain interstitium, potentially obscuring interpretation of 
the location of the PVS outer boundary (which is formed 
by astrocyte endfeet). Finally, velocity measurements from 
the entire time series are spatially binned and averaged to 
obtain the mean CSF velocity (Fig. 1c), and the magnitude 
of each vector provides the flow speed (Fig. 1d). Note that 
an inherent limitation is that these measurements are 2D. To 
improve the accuracy and reliability of the resulting velocity 
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measurements, we perform image preprocessing, including 
image registration and masking of stagnant microspheres; 
these two procedures are presented in the next section.

3  Image preprocessing

As described in the previous section, we obtain measure-
ments of net CSF velocity in PVSs at the surface of the 
brain by performing in vivo PTV followed by spatial binning 
and averaging of all measurements. Since these measure-
ments are performed in vivo, some amount of relative motion 
between the microscope and the living mouse is practically 
unavoidable. Our recordings are necessarily obtained in the 
fixed reference frame of the microscope and hence should be 
transformed to a fixed reference frame of the region of the 
brain under consideration. We perform this transformation 
via image registration, which is described next in Sect. 3.1. 
Afterward, in Sect. 3.2, we discuss issues of microsphere 
aggregation and adherence to PVS boundaries, then present 
methods for masking these stagnant particles. Both image 
registration and masking techniques have been applied 
in prior studies (Diezmann et al. 2017; Hill et al. 2001; 
Hand et al. 2009; Ergin 2017; Charogiannis et al. 2015) to 

improve accuracy of particle tracking and/or particle image 
velocimetry.

3.1  Registration

A significant challenge faced when performing in vivo CSF 
imaging is that the field of view may translate, which may 
occur in the x − y plane or perpendicular to it (along z), 
over short or long time scales. These shifts may be attrib-
uted to: (i) cardiac/respiratory cycles (short time scales), 
(ii) thermal expansion of imaging components (long), and/
or (iii) small amounts of brain swelling resulting from 
cranial window placement (long). Five snapshots from an 
imaging time series are shown in Fig. 2a, for which subtle, 
long time scale translations occurred during the recording. 
This shift is perhaps most apparent from features in the top 
left corner, where some vessels are out of the field of view 
at t = 0 , but become visible at t = 337 s. This appearance 
of a new vascular structure near the boundary is indica-
tive of a shift in the x − y plane. Additionally, there is 
an X-shaped configuration of vessels near the bottom 
left corner which is most apparent at times t = 337 and 
1350 s. Appearance/disappearance of vasculature away 
from the boundaries is indicative of a shift in the imaging 

Fig. 1  An example of image 
analysis to quantify CSF flow 
through PVSs at the surface of 
a mouse brain. Fluorescent trac-
ers are injected into the blood 
(bovine serum albumin) and 
CSF ( 1 μm polystyrene micro-
spheres) and then recorded in 
vivo using two-photon micros-
copy by imaging through a cra-
nial window. a A snapshot of a 
pial artery (red) and fluorescent 
microspheres (green) acquired 
at 30 Hz. b Superimposed 
trajectories of the microspheres 
obtained from PTV, which can 
be used to visualize the size of 
the PVSs. c-d Time-averaged 
(c) 2D velocity field and (d) 
flow speed (i.e., magnitude of 
the velocity field) quantifying 
the net CSF transport
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plane along the z-direction (recall that for TPM, images 
are acquired at a precise plane with depth of about 1 μm ). 
There are limited means for accounting for a shift along z. 
Translations of the field of view, if not corrected for, will 
result in erroneous velocity measurements for two reasons: 
(i) Motion of a particle between sequential frames will be 
due to both fluid flow and imaging plane translation, and 
(ii) PVSs will appear wider with blunted time-averaged 
peak flow speeds.

To register images, we perform a spatial cross-correlation 
between a reference snapshot and every other snapshot in 
the time series to determine the transformation necessary to 
shift each image in the time series to a common reference 
frame. For flow through PVSs, we have found that registra-
tion that only accounts for rigid translation is adequate (i.e., 
rotation and deformation are unnecessary). We choose the 
reference snapshot typically as a frame (or time-average a 
short segment of frames to reduce noise) from a relatively 
stable instant in the recording, which we identify by visu-
ally inspecting a sped up animation of the TPM time series. 
After obtaining the cross-correlation peak for each frame, all 
frames in all channels are registered to the reference frame 
by applying a rigid translation (Fig. 2b). We note that it 
is necessary to increase the dimensions of the registered 
images by a number of pixels equal to the absolute value 
of the difference in maximum and minimum translations 
along each direction (e.g., based on Fig. 2b, approximately 
4 − (−15) = 19 pixels must be added). This is so that the 

original image may be translated within the bounds of the 
registered image domain.

A successful application of image registration is illus-
trated in Fig. 2c-d wherein two snapshots of a pial artery are 
superimposed with different colors indicating time: green 
at t = 0 s and magenta at t = 950 s. Figure 2c shows these 
snapshots prior to registration, where there is a clear offset 
in the position of the vasculature; in Fig. 2d, which shows 
the post-registration snapshots, the colocalization of green 
and magenta indicates that the alignment is excellent. This 
figure also conveys details of the translation that occurred 
during imaging: Near the top left of Fig. 2d, a segment of 
vasculature is purely magenta with no green, indicating that 
segment became visible at later times ( t = 950 s) as the field 
of view translated in the positive y-direction.

3.2  Masking

As the fluorescent microspheres advect with the CSF flow, 
some of these particles adhere to the boundaries of the PVS. 
Once this occurs, they rarely become unstuck. In general, 
the reasons for particle aggregation and adherence to tissue 
are not well understood, but may be due to surface charge 
interactions or regions with fibrous obstructions forming a 
mesh that particles become trapped in (e.g., stomata that 
enable CSF exchange between pial PVSs and the subarach-
noid space Abbott et al. 2018). Figure 3a shows a snapshot 
with an inset that provides an enlarged view of a region with 

Fig. 2  Example illustrating image registration in the vicinity of a pial 
artery. a Snapshots from a time series which show a small, gradual 
translation in the field of view. b Plot of the x-directional and y-direc-
tional translations that occur in time series, computed via cross-cor-

relation with a reference frame; these translations are used for image 
registration. c–d Comparison of images at t = 0 s (green) and t = 950 
s (magenta) (c) before and (d) after registration is performed
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a cluster of stuck particles (yellow box). Stagnant particles 
may interfere with measurement of CSF flow velocity by 
generating erroneous zero-velocity measurements. Hence, 
masking the stuck region will improve the measurement 
accuracy.

A variety of masking approaches have been implemented 
in velocity measurement applications (Ergin 2017). One 
common masking approach is to create a “background 
image" by time-averaging an entire time series, then that 
background image is subtracted from all frames in the time 
series, enabling isolation of only the moving components. 
Figure 3b shows the time-averaged background image for the 
inset shown in Fig. 3a, where the pixel intensity of the back-
ground image varies from 0 to 255 (i.e., the grayscale back-
ground image has black, gray, and white values). The white 
regions of the image correspond to particles that stagnated 
early in the imaging times series, whereas gray regions cor-
respond to regions where particle stagnation occurred later. 
For comparison, three sequential background-subtracted 
images are superimposed in red, green, and blue, indicat-
ing the time evolution of a free-flowing particle that does 
not adhere to the stagnant cluster. This figure illustrates that 
masking with a standard time-average background image 
may or may not obscure a free-flowing particle. Detrimen-
tally, late in the time series when the particle aggregate 
becomes large, the background image intensity may not be 

great enough to mask the entire stagnant aggregate, leading 
to zero-velocity measurements. Such measurements are erro-
neous, as particles are still clearly flowing through the PVS 
at a slightly different depths from the stagnant aggregate.

A second masking approach is to replace the time-aver-
aged background image with a binary background image. 
The purpose of generating a binary background image is 
to completely mask any region with stagnant particles. 
Figure 3c shows the background image obtained when a 
low pixel intensity threshold is used to binarize the back-
ground image presented above (i.e., values above or below 
the threshold become 255 or 0, respectively). Again, three 
sequential background-subtracted images are superimposed 
in red, green, and blue, but the green particle is not visible, 
indicating that this free-flowing particle is indeed removed 
by this mask. However, at late times, this approach will sat-
isfactorily mask regions with stagnant aggregates, avoid-
ing erroneous zero-velocity measurements. Note that this 
approach was used in Mestre et al. (2018) and explains why 
Figs. 1d and 5a in that manuscript have interspersed voids 
in the flow speed heatmap plots.

A third and final approach is dynamic masking whereby a 
separate background image is generated and subtracted from 
each image in the time series based on the average of the 
closest n frames in time, where n is user-specified (usually 
corresponding to about 5 s). In this approach, at any given 

Fig. 3  Comparison of masking methods. a Image of a pial artery with 
colored curves indicating the tracking of fluorescent microspheres 
flowing in the adjacent PVSs. No background has been subtracted for 
this image. (Inset) A zoomed-in image of a region containing a stag-
nant microsphere aggregate, which may lead to erroneous measure-
ments of zero velocity if not properly masked. b–d Plots characteriz-
ing three different masking techniques (average, binary, and dynamic 
masking), with the mask superimposed in white/gray. Three sequen-
tial unmasked images are also superimposed in red, green, and blue 

indicating the trajectory of a flowing particle. e–g Net flow speed 
(i.e., the magnitude of the time-averaged velocity) obtained from 
particle tracking for a long time series with the indicated masking 
technique applied. e Average masking incompletely masks the region 
with stuck particles, leading to erroneous low-velocity measurements. 
f Binary masking completely removes measurements from the por-
tion of the domain with stuck particles. g Dynamic masking leads to 
the best results with large velocities near the center of the channel, as 
expected, and no measurement voids, as in f 
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frame, the spatial region that is masked will have a size and 
intensity that is much closer to optimal for masking the stag-
nant region. Hence, stagnant particles are masked, and flow-
ing particles are visible (Fig. 3d). This often even allows for 
tracking of particles that pass directly over/under a stagnant 
region, wherein the flowing particle transiently increases 
the local image intensity. The superiority of dynamic back-
ground masking is readily apparent when comparing Fig. 3e-
g, where average masking yields reduced flow speeds near 
the center of the channel (Fig. 3e), binary masking yields 
measurement voids near the center of the channel (Fig. 3f), 
and dynamic masking yields reasonable, large velocities 
near the center of the channel (Fig. 3g). Note that dynamic 
masking was used for all particle tracking results presented 
in Mestre et al. (2020), Du et al. (2021), Holstein-Rønsbo 
et al. (2023), and Hussain et al. (2023).

4  Particle tracking parameter selection

In this section, we introduce some best practices and provide 
general guidelines for optimizing input parameters for PTV. 
The goal of PTV is to obtain reliable estimates of fluid flow 
velocity which generally become increasingly accurate as 
more measurements are added. Hence, it is ideal to maxi-
mize the total number of (reliable) measurements, which 
can be achieved by increasing the number of particles that 
are tracked and/or by increasing the number of frames over 
which a given particle is tracked. Here, we discuss three 
important parameters that affect the efficacy of PTV: thresh-
old, minimum area, and maximum displacement (these three 
quantities are defined in Table 1). Figure 4a shows in blue 
how the mean particle track length (i.e., the average number 
of measurements per tracked particle) and in orange how the 
total number of tracks vary with each of these three param-
eters. Note that in all three cases, the “mean length" curve 
is non-monotonic with a peak, indicating that an optimal 
parameter value exists that maximizes the mean length of the 
tracks. These peaks help guide the choice of the approximate 
optimal parameters, which is explained in more detail in the 
following paragraphs. An uncertainty analysis of PTV is 
presented in Appendix A.

As mentioned above, the threshold sets a minimum pixel 
intensity value for identifying a particle. The two-photon 
microscopy images we analyze are 16-bit, meaning that the 
pixel intensity values vary from 0 to 65,535, so the threshold 
should also be chosen in this range. The choice of a high 
threshold (purple in Fig. 4b-c) will lead to smaller identified 
particles (since fewer pixels are above that given thresh-
old). Conversely, the choice of a lower threshold (yellow 
in Fig. 4b-c) will lead to larger particles, but too low of a 
threshold (orange in Fig. 4b-c) will lead to erroneous iden-
tification of many particles if that threshold approaches the 
noise floor of the images (orange specks in the bottom of 
Fig. 4b and green spikes in Fig. 4c). Indeed, this effect is 
responsible for the large number of tracks at low threshold 
in Fig. 4a (top). Thus, the choice of approximate optimal 
parameters is more nuanced than simply maximizing the 
total number of measurements (equal to the mean length × 
number of tracks), which would occur for minimal thresh-
old. By maximizing the mean track length, PTV typically 
achieves the greatest fidelity since the Lagrangian trajecto-
ries of particles will often pass through regions with differ-
ent flow speeds—long tracks suggest that certain regions are 
not being systematically under-sampled.

The choice of minimum particle area (“Min Area" in 
Fig. 4a middle) is closely tied to the threshold intensity. This 
parameter specifies the minimum number of contiguous pix-
els (adjacent and diagonally connected) that must be above 
the chosen intensity threshold to identify and track a given 
particle. Consequently, as visualized in Fig. 4b-c, smaller 
values of the minimum area should be chosen when higher 
intensity thresholds are used; similarly, larger values of min-
imum area can be used when the intensity threshold is low, 
and this choice may help reduce erroneous particle identifi-
cation when the threshold begins to approach the noise floor 
(e.g., for a threshold of 500 in Fig. 4b, which corresponds to 
orange, a minimum area of six would lead to identification 
of only three particles—the true particle in the center and 
two erroneous ones). In general, the choice of threshold and 
minimum area should be made together and may vary across 
different experiments depending on the fluorescent particle 
size, spatial resolution, and magnification.

The third parameter considered here is the maximum dis-
placement (“Max Disp" in Fig. 4a bottom). As mentioned 

Table 1  Definition, tested range, and optimal range for particle tracking parameters from one example data set (Fig. 4)

Parameter Definition Tested range (optimal range)

Threshold Minimum pixel intensity value used to identify particles (16-bit images) 500–10,000 (4000)
Minimum area Minimum number of neighboring pixels (adjacent and diagonal) above threshold required to 

identify a particle
1–20 (4)

Maximum area Maximum allowable distance between a particle’s predicted location and actual location when 
tracking a particle through two sequential frames

1 – 20 (6)



 Experiments in Fluids          (2023) 64:181 

1 3

  181  Page 8 of 17

above, the particle tracking algorithm uses kinematic predic-
tions to link and track a particle through sequential frames 
in time. Briefly, the maximum displacement specifies the 
radius over which a particle’s expected position (based on a 
kinematic prediction, such as the average displacement over 

the previous few frames) can be linked to a particle identified 
in the next sequential frame. Note that a kinematic prediction 
is not available for a newly identified particle, so the maxi-
mum displacement is applied to link particles in sequential 
frames based on their positions (see the “Nearest Neighbor” 

Fig. 4  Parameter selections for PTV. a Plots with two y-axes charac-
terizing the mean length of the particle tracks (blue) and the number 
of particle tracks (orange) for variations in: (top) threshold (mini-
mum pixel intensity value used to identify particles), (middle) mini-
mum area (minimum number of neighboring pixels above threshold 
required to identify a particle), and (bottom) maximum displacement 
(maximum allowable distance between particle’s predicted and actual 
location when tracking). b–c Visualization of particle area as the 
pixel intensity threshold changes. Particles are identified more often 
and more reliably for lower threshold values, as long as the threshold 
is above the noise floor. d Higher maximum displacement increases 

the number of tracks, but the length of the tracks is modestly low-
ered. The mean track length decreases because of erroneous tracking 
when maximum displacement is excessively large, leading to poor 
kinematic predictions that result in tracking failures. This erroneous 
tracking appears as a sudden sharp turn in a particle trajectory and 
is more prevalent for a maximum displacement of 20 (bottom) than 
8 (middle). For the images analyzed here, the resolution is 1.17 μm/
pixel at 29.53 Hz. For tests depicted in (a), the variable on the x-axis 
was varied while the other two variables were fixed (threshold 3000, 
minimum area 3, and maximum displacement 15)
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heuristic discussed in ref. Ouellette et al. (2006)). When the 
choice of the value of maximum displacement is too small, 
new particles cannot be linked across sequential frames 
because their true displacement is larger than the maximum 
displacement, leading to very few tracks and a small mean 
track length (Fig. 4a bottom; also compare Fig. 4d top and 
middle). As the maximum displacement is increased, the 
number of tracks will also increase, but as the maximum 
displacement becomes excessively large, the rate of errone-
ously linked tracks will increase (compare Fig. 4d middle 
and bottom). When an erroneous link occurs, it has the ten-
dency to perturb the kinematic predictions which sometimes 
causes the linking to fail in sequential frames. Hence, when 
the maximum displacement becomes excessively large, the 
mean track length will decrease, as shown in Fig. 4a bottom. 
The ideal maximum displacement varies with spatial resolu-
tion, magnification, frame rate, and fluid velocity, so it may 
be difficult to predict a priori. Ideally imaging parameters 
would be chosen such that the maximum displacement is 
large enough to not heavily rely on subpixel identification 
of the particle centroid (i.e., maximum displacement ≳ 3 ). 
However, the maximum displacement should be smaller than 
the mean particle spacing in the image, so as to reduce the 
likelihood of erroneous links.

5  Vessel diameter measurements

The mechanism(s) driving CSF through PVSs in the brain 
are not yet well understood (Kelley and Thomas 2022). How-
ever, substantial evidence—both experimental (Hadaczek 
2006; Iliff et al. 2013; Kiviniemi et al. 2015; Mestre et al. 
2018) and theoretical (Schley et al. 2006; Wang and Olbricht 
2011)—suggests that arterial pulsations arising from sys-
tolic–diastolic variations in blood pressure over the cardiac 
cycle contribute to CSF bulk flow via pulsations in arterial 
diameter. In addition to systolic–diastolic variations, recent 
experiments (Bojarskaite et al. 2023; Holstein-Rønsbo et al. 
2023) have also demonstrated that large amplitude varia-
tions in vessel diameter occur over longer time scales due to 
neurovascular coupling, a process in which neuronal activity 
in the brain elicits arterial dilation that enhances glymphatic 
transport. Hence, here, we describe techniques for meas-
uring changes in vessel diameter which can be correlated 
with observations of changes in CSF flow characteristics, as 
described in refs. Mestre et al. (2018, 2020), Du et al. (2023, 
2021), and Hussain et al. (2023).

The vessel diameter measurement function we have 
developed requires three key user-specified inputs: The 
number of locations for which a vessel diameter measure-
ment should be performed (N), the vessel’s centerline, and 
the region of interest (ROI). The user first inputs N, then 
clicks two points on a representative image to specify the 

centerline of the vessel; finally, a region of interest is input 
via clicking, enabling exclusion of some regions from the 
analysis (e.g., adjacent vessels). Based on these inputs, the 
function first computes the direction perpendicular to the 
vessel centerline (red dashed line in Fig. 5a), then automati-
cally computes the positions for N evenly-spaced profiles to 
be used for automatic vessel diameter measurement through-
out the time series of images (colored solid lines in Fig. 5a; 
N = 5 in this case). Anything outside of the ROI is excluded 
from the measurements.

To measure the vessel diameter, the pixel intensity profile 
of the fluorescence channel corresponding to the vasculature 
(red, in this case) is automatically interpolated from each 2D 
image to create N one-dimensional profiles at each evenly-
spaced location. Each pixel intensity profile is typically 
interpolated with higher resolution than the raw image (typi-
cally, tenfold to 100-fold). One example profile is depicted in 
Fig. 5b. We next identify the edges of the vessel by comput-
ing the spatial derivative of pixel intensity using a second-
order accurate central finite difference (Fig. 5c). Two local 
maxima are then identified which we define as the edges of 
the vessel (red vertical lines in Fig. 5b-c). This calculation 
is repeated at multiple locations throughout space and in 
multiple frames, resulting in time series such as those shown 
in Fig. 5d. Such curves can be correlated with changes in 
CSF velocity, providing valuable insights into the underlying 
mechanism of CSF bulk flow in PVSs.

6  Extension of techniques to cervical 
lymphatic vessels

The image analysis techniques previously introduced can 
be effectively applied to cervical lymphatic vessels, which 
play an important role in draining CSF from the skull (Brad-
bury and Cole 1980; Arnold et al. 1973; Decker et al. 2022; 
Norwood et al. 2019; Spera et al. 2023), as discussed in 
the Introduction. Lymphatic vessels typically transport fluid 
against a mean adverse pressure difference across adjacent 
lymphangions (i.e., segments of lymphatic vessel separated 
by valves) via the combined action of contracting smooth 
muscle cells lining the lumen circumference and the open-
ing/closing of bileaflet valves. This transported fluid, which 
includes CSF, eventually drains into the venous blood. We 
have recently shown that following traumatic brain injury, 
cervical lymphatic function becomes impaired contributing 
to brain edema and poor functional outcomes, but pharmaco-
logical interventions that restore lymphatic function improve 
functional outcomes (Hussain et al. 2023). All image analy-
sis techniques presented above can be adapted to quantita-
tively measure efflux through the cervical lymphatic vessels, 
which we next describe.
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Figure 6a shows a snapshot of a TPM recording of a 
cervical lymphatic vessel which has been visualized using 
green fluorescent dye and red fluorescent microspheres. 
Both tracers were injected into the CSF and within about 
5 min both appear in the lymphatic vessel, demonstrating 
that CSF directly drains via this route. The time series of 
images were registered using the same method described 
in Sect. 3.1, which is critically important. The neck region, 
which contains cervical lymphatic vessels and nodes, is in 
close proximity to the carotid arteries and respiratory tract 
which generate copious motion artifacts. Without registra-
tion, Fourier analysis of a velocity time series reveals sub-
stantial power associated with frequencies that coincide with 
the cardiac and respiratory cycles (data not shown). How-
ever, after registration, the power associated with cardiac 
and respiratory frequencies is greatly diminished, suggesting 
that image registration is crucial for obtaining accurate and 
reliable velocity measurements. Whereas only rigid transla-
tions were adequate for measurements in PVSs (Fig. 2), we 
find that including a rotational transformation significantly 
improves the registration quality for cervical lymphatic ves-
sels (Fig. 6b, purple curve).

Once registration is complete, we perform particle track-
ing on the microspheres flowing through the cervical lym-
phatic vessels (red channel), enabling quantitative meas-
urement of the spatially-averaged instantaneous flow speed 
(Fig. 6c). We also apply the same vessel diameter measure-
ments introduced in Sect. 5 to the green channel to obtain 
measurements of the change in cervical lymphatic vessel 
diameter (Fig. 6d). Such diameter measurements can be used 
to characterize the intrinsic pumping of lymphatic vessels 
(Moore and Bertram 2018). Together, identifying changes in 
flow speed and contraction amplitude/frequency can provide 
crucial insights into disrupted fluid transport, as occurs fol-
lowing traumatic brain injury (Hussain et al. 2023).

7  Conclusions

Rapidly growing scientific evidence demonstrates that alter-
ations to CSF flow through PVSs and cervical lymphatic 
vessels play an important role in many acute and chronic 
neurological conditions (Rasmussen et al. 2018; Li et al. 
2022) (e.g., stroke Mestre et al. 2020, traumatic brain injury 

Fig. 5  Quantitative measurements of changes in arterial diameter. a 
Two-photon microscopy image of a pial artery (red) and its adjacent 
PVS with several stagnant aggregated particles (green blobs). The 
solid colored lines indicate measurements of arterial diameter, while 
the dashed red line indicates an example region over which we inter-
polate the pixel intensity to identify the vessel diameter. b Plot of the 
interpolated pixel intensity along the red dashed line in (a). c The 
second-order accurate central finite difference of the pixel intensity 

profile in (b). The edges of the vessel are identified based on the two 
local maxima, indicated by the solid, vertical red lines. d Time series 
of the change in artery diameter with locations corresponding to the 
same color scheme used in panel (a). The solid black curve corre-
sponds to the median across space evaluated at each instant of time. 
Note that the large amplitude oscillations with a period of about 9 s 
arise due to neurovascular coupling (alterations in local blood flow 
due to neuronal activity) and not cardiac pulsations
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Hussain et al. 2023, and Alzheimer’s disease Ringstad et al. 
2018). In this study, we outline image analysis techniques 
applied to images acquired from TPM which enable quanti-
tative measurement of CSF flow at the surface of the brain. 
These scripts, as well as a short working example, are freely 
available online (Kim et al. 2023). Microspheres injected 
into the CSF are tracked via a predictive algorithm. These 
particle tracks can be superimposed to estimate the size and 
shape of PVSs, and velocity measurements can be binned 
in space and time-averaged to obtain a reliable estimate of 
the net flow speed. However, generating high-quality PTV 
requires image preprocessing. To account for minor shifts in 
the field of view that can result in erroneous CSF flow quan-
tification, we performed registration via rigid translation 
using spatial cross-correlation on a time series of images. 
We highlighted a unique challenge that is encountered in 
this experimental protocol: Some microspheres may become 
stuck to the boundaries of PVSs, causing erroneous zero-
velocity measurements. To solve this problem, we intro-
duced three different masking methods and reported that 
dynamic masking is the most promising strategy. We also 
offered some tips for optimizing PTV parameters including 

threshold, minimum area, and maximum displacement. We 
demonstrated that near-optimal parameter values are typi-
cally identified iteratively with the criteria of maximizing 
the mean track length. Furthermore, we demonstrated how 
changes in vessel diameter, hypothesized to be an impor-
tant driving mechanism of CSF flow, and can be measured 
in TPM images by identifying the location of the largest 
pixel intensity gradient to define the edges of the vessel and 
measure the diameter in time. Finally, we explored how the 
same image analysis techniques can be applied to cervical 
lymphatic vessels, which multiple studies indicate is an 
important route for CSF drainage (Bradbury and Cole 1980; 
Arnold et al. 1973; Ma et al. 2017; Hussain et al. 2023).

Our image analysis techniques for quantifying CSF 
dynamics offer a significant advantage in their automated 
tracking feature, whether for particle tracking or vessel 
diameter measurement. Some previous pioneering efforts 
have quantified CSF or lymph fluid flow through manual 
tracking of particles/cells (Bedussi et al. 2018; Dixon et al. 
2005) and vessel edges across frames (Dixon et al. 2005). 
Such approaches are time consuming and prone to errors 
from operators. Our algorithm overcomes these limitations, 

Fig. 6  Image analysis techniques presented above, applied to a cer-
vical lymphatic vessel. a TPM image of a cervical lymphatic ves-
sel visualized using fluorescent dye (green) and microspheres (red). 
Magenta arrows represent instantaneous velocity of the particles 
inside the vessel. Three perpendicular colored lines indicate profile 
locations where the vessel diameter is measured. b A time series of 
normalized cross-correlation values with a moving average of 60 
frames applied for three different cases: unregistered images (gray 

curve), images registered using rigid translation only (green curve), 
and images registered using both rigid translation and rotation (purple 
curve). c A time series of the spatially-averaged instantaneous veloc-
ity obtained from particle tracking. Positive value indicates prograde 
flow, while negative value indicates retrograde flow. d A time series 
of the instantaneous vessel diameter which reveals large amplitude 
contractions of the vessel that closely matches the timing of changes 
in fluid velocity plotted in (c)
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allowing for efficient and reliable analysis of tens of thou-
sands of frames or more, leading to accurate measurements 
of velocity fields and vessel diameters (Mestre et al. 2018). 
Such measurements have enabled the first-ever estimates 
of key fluid mechanical parameters including the Reynolds 
number Re, Womersley number Wo, and volume flow rate Q. 
For a pial PVS Re ≈ 1 × 10−3 (Mestre et al. 2018), Wo ≈ 0.1 
(Tithof et al. 2019), and Q ≈ 3 × 10−3 μl/min (Mestre et al. 
2018), while for a superficial cervical lymphatic vessel 
Re ≈ 8 × 10−3 , Wo ≈ 5 × 10−2 , and Q ≈ 2 × 10−2 μl/min 
(Hussain et al. 2023).

The image analysis techniques presented here offer vari-
ous advantages over other measurement modalities, largely 
owing to the capabilities of TPM. In particular, TPM stands 
out by its ability to generate high-resolution images (e.g., 
512 × 512 dimensions with 0.5 μm/pixel) while maintain-
ing an excellent frame rate (in excess of 30 Hz) at a precise 
imaging depth of up to several hundred micrometers into 
opaque tissue. These features are valuable when monitor-
ing the flow of microspheres within the CSF and tracking 
vessel wall dynamics. We highlight that application of these 
techniques extends beyond the brain and cervical lymphatic 
vessels; these tools could be utilized to quantify flow in 
peripheral lymphatic vessels, assess CSF circulation in the 
spine, analyze blood flow within the cardiovascular system, 
or quantify a wide range of other biological processes.

The image analysis techniques discussed here utilize 2D 
imaging within a precise plane, estimated to have a depth of 
approximately 1 μm . It is important to note that this imaging 
plane is typically not perfectly aligned with the axis of the 
artery/lymphatic vessel, which is parallel to the direction 
of the net flow. Consequently, our measurements capture a 
2D projection of a 3D flow, and the 3D flow can likely be 
accurately estimated from purely geometric considerations 
if the relative angle of the imaging plane and vessel axis is 
known. This could be achieved by reconstructing the 3D vol-
ume from a series of TPM 2D planes recorded at sequential 
depths (i.e., a TPM “z-stack"). Unfortunately, this approach 
greatly reduces the frame rate, making it unsuitable for 3D 
PTV applications. To achieve more precise measurements, 
fast 3D rastering TPM techniques are needed. Holographic 
PIV constitutes one potential approach that may enable 3D 
velocity measurements (Katz and Sheng 2010), as this tech-
nology has seen drastic improvements in recent years and 
increasing application to biological systems (You et al. 2020, 
2018). However, holographic PIV has not been combined 
with TPM to the best of our knowledge, and doing so would 
likely constitute a tremendous technical challenge.

Many recent and ongoing studies aim to investigate the 
mechanisms by which CSF flow through PVSs is enhanced 
during sleep (Xie et al. 2013; Bojarskaite et al. 2023). The 
methodology presented here has previously been applied 
to mice that are anesthetized—not sleeping naturally 

(Mestre et al. 2018, 2020; Du et al. 2021; Raghunandan 
et al. 2021). Recent studies indicate that CSF flow varies 
substantially across different types of anesthesia (Hablitz 
et al. 2019) and in comparison with natural sleep (Ben-
veniste et al. 2019). Training mice to fall asleep under a 
TPM is quite challenging but possible (Bojarskaite et al. 
2023). A promising alternative approach to more easily 
image CSF dynamics under natural sleep may utilize a 
portable miniaturized TPM (Piyawattanametha et al. 2009; 
Ozbay et al. 2018). By attaching the portable TPM, CSF 
flow could be measured during normal behaviors, includ-
ing natural sleep.

In this article, we have presented techniques for PTV 
applied in vivo in mice to quantify CSF dynamics. Such 
techniques have been used previously to characterize 
changes in CSF flow in acute arterial hypertension (Mes-
tre et  al. 2018) and neurovascular coupling (Holstein-
Rønsbo et al. 2023), as well as following stroke (Mestre 
et al. 2020), cardiac arrest (Du et al. 2023), and traumatic 
brain injury (Hussain et al. 2023). These direct, quantita-
tive measurements provide both parameterization (e.g., 
PVS size and Reynolds number) and validation (e.g., flow 
speed) which can be used to improve analytical/numeri-
cal models (Wang and Olbricht 2011; Mestre et al. 2020; 
Carr et al. 2021; Tithof et al. 2022; Boster et al. 2022). 
Future measurements may help quantify flow in differ-
ent compartments to help settle open questions related to 
CSF/ISF transport (including IPAD, glymphatic, and other 
hypotheses). We emphasize that the techniques outlined 
here enable robust and efficient in vivo measurements. 
Such an in vivo approach is more reliable than inferring 
transport rates from ex vivo analysis of fixed tissue since 
recent studies (Mestre et al. 2018; Ma et al. 2019; Du et al. 
2021) have revealed anatomical changes and irregular 
flows generated during the tissue fixation and/or death. 
However, despite consistent experimental protocols, the 
number of microspheres that appear in PVSs/cervical lym-
phatic vessels is quite variable for reasons that are not 
well-understood; future studies could vary microsphere 
injection protocols to optimize particle delivery to the 
imaging field and improve reliability of particle tracking. 
Measurement techniques outlined here may also prove 
valuable if applied to animals beyond mice, such as pigs, 
whose brains are gyrencephalic (i.e., have cortical folds, 
like the human brain) (Bèchet et al. 2021; Shanbhag et al. 
2021). Finally, in vivo PTV may help in building a mecha-
nistic understanding of how neuromodulation enhances 
glymphatic flow (Cheng et al. 2020; Choi et al. 2022; Min 
et al. 2023), perhaps facilitating the development of future 
medical devices and pharmaceutical approaches aimed 
at reducing the cognitive decline associated with a wide 
array of neurological conditions.
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Appendix A Particle tracking uncertainty 
analysis

In this Appendix, we analytically calculate the approximate 
uncertainty in particle tracking velocity measurements using 
propagation of error based on estimated uncertainties in par-
ticle position and image acquisition time. The numbers used 
here are specific for one particular data set (Kim et al. 2023), 
serving as a concrete example, but the reader could readily 
repeat these calculations for different imaging parameters. 
This derivation applies to two-photon microscopy, wherein 
each 2D image is assembled over a finite window in time 
during which each pixel is individually rastered. Hence, for 
images acquired at 29.6 Hz, each acquired image has an 
uncertainty of approximately Δt = 33.8 ms. Note this value 
is an upper bound for the temporal uncertainty, this upper 
bound will generally be larger/smaller when a greater/lesser 
number of pixels are recorded, and more precise (smaller) 
values of Δt could be obtained by accounting for details of 
the TPM rastering technique.

The velocity of a tracked particle in frame n can be esti-
mated, to the first order, as Un =

Δx

Δt
 , where Δx is the meas-

ured displacement of the particle since frame n − 1 , and Δt 
is the measured time elapsed since frame n − 1 . Denoting the 
error in Δx as ux and the error in Δt as ut , the error in Un is

Our image processing algorithm locates each particle by 
finding the centroid of a contiguous bright region above a 
given threshold, typically achieving error on the order of 
0.1 pixel. In these data, each pixel has lateral dimension 
1.04 μm , so we estimate ux ≈ 0.104 μm . As mentioned 
above, for a frame rate of 29.6 Hz, Δt = 33.8 ms. Now sup-
pose the root-mean-square single-frame displacement is 
Δx = 2.158 μm (this value is obtained empirically by per-
forming particle tracking). Estimating the timing error ut 
for a two-photon microscope is subtle because images are 
produced not by making simultaneous measurements from 
an array of sensors but by making subsequent measurements 
as the single focal point rasters the field of view. If the focal 
point traces column-by-column, then measuring a particle 
moving to an adjacent column involves greater timing error 
than measuring a particle moving to an adjacent row. Con-
sidering image dimensions 512 × 512 pixels, the two timing 
errors would be roughly Δt∕512 and Δt∕5122 , respectively. 
To be conservative, we take ut ≈ Δt∕512 = 66.0 μs . Using 
these values, we find �U = 3.08 μm/s.
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In practice, we estimate the velocity with a higher-order 
method, convolving the measured position with a kernel 
that provides differentiation and smoothing. Explicitly, the 
numerical scheme used in our code makes the estimate

where � = 2∕(�1∕2erf(3) − 6e−9) ≈ 1.129 and

The velocity error is

where un−3 is the measurement error associated with location 
xn−3 , un−2 is the measurement error associated with loca-
tion xn−2 , and so on. Assuming homogeneity implies that all 
those errors have the same value, which we again denote ux . 
Then, the velocity error becomes

where � = 18e−18 + 8e−8 + 2e−2 ≈ 0.273. To estimate the 
value of Δx̃  , we consider the case in which a particle’s 
displacement between any two frames is the measured 
root-mean-square value Δx , implying xn+1 − xn−1 = 2Δx , 
xn+2 − xn−2 = 4Δx , and xn+3 − xn−3 = 6Δx . Therefore, 
Δx̃ = �1∕2Δx, where � = (2e−1 + 8e−4 + 18e−9)2 ≈ 0.782 . 
Altogether, the velocity error is

Comparing to Eq. (A1), we see that the error in velocity 
estimated with the higher-order numerical scheme differs 
from the error in the first-order velocity estimates only by 
factors of order unity. Again taking the same values for ut , 
ux , Δt , and Δx , the velocity error in the higher-order scheme 
is �U = 1.82 μm/s , about 40% lower than with the first-order 
estimate.
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