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Effects of forcing geometry on two-dimensional weak turbulence
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Using high-resolution particle tracking velocimetry, we study the effects of the forcing geometry on the statistics
of an electromagnetically stirred thin-layer flow. We consider two forcing arrangements: one that produces a
lattice of vortices as a base flow, and one that produces an array of shear bands. We find that the vortex flow drives
stronger fluctuating kinetic energy while the shear-band flow leads to more intense fluctuating velocity gradients.
We explain our results by considering the spectral flow of energy in the system. Our results have implications for
the design of two-dimensional flow experiments.
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I. INTRODUCTION

Many large-scale geophysical flows can to a degree be ap-
proximated as two-dimensional (2D) [1,2]. Although at small
scales flows in the atmosphere and oceans are undeniably 3D,
their lateral extent is so much larger than their depth that (with
the added effects of planetary rotation and density stratifica-
tion) large-scale motion lies primarily in the plane. This obser-
vation has motivated the development of 2D fluid mechanics,
and particularly of 2D turbulence, via theory and modeling,
computational studies, and laboratory work. But even though
experimental 2D fluid mechanics is developing rapidly, the
understanding of the quirks of typical experimental systems is
not as well developed as it is for standard 3D flows [2].

Two dominant systems have emerged for studying 2D
turbulence in the laboratory: thin layers of electrolytic fluid
that are stirred by electromagnetic Lorentz forces and soap
films that flow under gravity [2]. Soap films are the 2D analog
of wind tunnels. They typically have a mean flow that is large
compared to the turbulent fluctuations, and the turbulence is
advected downstream. In contrast, electromagnetic thin-layer
flows are closer in spirit to the zero-mean-flow turbulence
generators such as von Kármán swirling flows and oscillating
grid systems that have been well studied in recent years for 3D
turbulence [3]. Turbulence is driven in soap films by running
the film through a comb, which plays the role of the grid
in a wind tunnel. In an electromagnetic thin-layer flow, an
electric current is driven through the (electrolytic) fluid, which
itself lies above an array of magnets; the current and magnets
together produce Lorentz body forces that stir the fluid.
Intrinsic flow instabilities excite the turbulent fluctuations.

Because of the tendency of 2D flows to transfer energy from
the injection scale to larger length scales [4–6], the details of
the forcing may matter more in 2D systems than they do in
3D turbulence. Here, we study how the layout of the magnets
(and therefore the geometry of the forcing) in an electromag-
netic thin-layer system affects the flow field. We consider two
magnet arrangements: a checkerboard pattern (producing a
vortex lattice at low Reynolds number) and parallel stripes
(producing parallel shear bands at low Reynolds number). We
show that the magnet layout does indeed affect the velocity

*nicholas.ouellette@yale.edu

statistics. The vortex flow tends to produce stronger velocity
fluctuations, while the shear flow leads to stronger velocity
gradients. We interpret these results in terms of the symmetries
of the forcing and the spectral transfer of energy in the flows.
Thus, depending on what one wants to study, different magnet
layouts will be appropriate.

We begin in Sec. II by describing our apparatus and
experimental methods in detail. Then, in Sec. III, we present
our results. We measure how the injected energy is distributed
between the mean flow and the velocity fluctuations, and how
the gradient statistics depend on the magnet layout. We also
show how the transfer of energy between length scales changes
in the two flows. Finally, in Sec. IV, we summarize our findings
and draw conclusions.

II. EXPERIMENTAL METHODS

A. Apparatus

Our experimental apparatus, sketched in Fig. 1 and de-
scribed in detail elsewhere [7], is similar to other electromag-
netic thin-layer flows [8–13], though it is larger than many.
The lateral size of the driven area measures 86 cm × 86 cm.
The working fluid is a solution of 16% by mass NaCl in
water, with a density of ρ = 1116 kg/m3 and a kinematic
viscosity of ν = 1.24 × 10−6 m2/s. The depth of this layer was
approximately 5 mm. A second layer of pure water (also 5 mm
deep) lies above the electrolyte to provide an interface with
vanishing surface tension on which we float tracer particles to
measure the flow field. The electrolyte sits on top of a glass
bottom plate; beneath the glass is a square 34 × 34 grid of
neodymium-iron-boron (NdFeB) grade N52 magnets, spaced
2.54 cm on center. Each magnet is cylindrical, with a diameter
of 12.7 mm, a thickness of 3.2 mm, and a peak magnetic field of
about 0.3 T [14]. By passing a steady electrical current through
the electrolyte, we produce steady Lorentz forces in the bulk of
the fluid and cause it to flow. By varying the magnitude of the
current, we can vary the bulk Reynolds number Re = ULf /ν,
where Lf = 2.54 cm is the center-to-center magnet separation
distance and U is the measured root-mean-square velocity. As
long as the Reynolds number is not too large (below about 200
for our apparatus), the flow is nearly entirely in the plane and
is 2D [7]. We note that this Reynolds number is essentially a
nondimensional measure of the strength of the electric current,
since the magnet spacing Lf , the kinematic viscosity, and the
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FIG. 1. (Color online) Forcing geometry and typical flow fields.
Magnets are arranged (a) with polarity alternating in one-dimensional
rows for shear-band flow, or (b) in two dimensions like a checkerboard
for vortex flow. Here + and − indicate the magnetic field direction.
A forcing current J flows in the x̂ direction; when it is large, instan-
taneous flow fields (here represented with vorticity) are apparently
disordered in both (c) shear-band flow and (d) vortex flow. Here each
dot is one tracked particle, and its color indicates its vorticity ∇ × u.
The influence of the underlying forcing geometry is apparent in an
ensemble average of flow fields in (e) shear-band flow and (f) vortex
flow. Color indicates vorticity. All panels show the same field of
view, about 30% of the measurement region and about 3% of the
fluid surface.

magnetic field are all fixed and we vary the velocity only by
changing the current [14].

Our magnets always lie on a square grid, but their polarities
can be changed to vary the flow structure. As shown in Fig. 1,
we have studied two configurations: stripes of magnets, which
produce shear bands at low Reynolds number, and an alternat-
ing checkerboard pattern, which produces a vortex lattice. The
stripes inject energy into the flow at a length scale that is well
defined in only one direction, whereas the checkerboard injects
energy at a length scale that is well defined in both directions.
At high Reynolds number, instantaneous flow fields appear
disordered for both configurations. Nevertheless, the statistical
signature of the underlying forcing geometry remains and is
apparent in time-averaged mean flow fields (also shown in
Fig. 1).

B. Particle tracking

We measure the flow quantitatively using particle tracking
velocimetry (PTV). We seed the flow with small (51 μm
diameter) fluorescent polystyrene spheres. With a specific

gravity of 1.05, these tracer particles float at the interface
between the salty layer and the pure water layer; since this
interface does not have a bulk surface tension, there are no
long-range forces coupling the particles. We illuminate the
particles with blue light-emitting diodes, and record their
green fluorescence from above with a 4 megapixel camera
at a rate of 60 frames per second. We process the movies
and construct particle trajectories using a predictive tracking
method described in detail elsewhere [15].

In the present study, we perform experiments at statistically
steady conditions, allowing the flow to stabilize before record-
ing data. We then track roughly 30 000 particles per frame for
5000 frames (between 3 and 37 eddy turnover times, depending
on the Reynolds number) in each experiment, ensuring that
the flow field is well sampled in space and time. We compute
particle velocities by convolving the measured trajectories with
a Gaussian smoothing and differentiating kernel [16].

C. Velocity field conditioning

Despite taking care to minimize any forcing or flow in
the depth direction, some residual three-dimensionality will
always remain in any physical apparatus due to effects such
as Ekman pumping [7]. Thus, we post-process our velocity
field data in order to remove the (small) third component of
the velocity.

Since we observe our particles only in a single plane, we
cannot directly measure the third component of the field. But
any flow in the depth direction will be manifest in the in-plane
velocity field as an apparent compressibility. This component
of the field can be removed via a Helmholtz decomposition
[17], since any vector field that vanishes at its boundary
(which may be at infinity) can be uniquely decomposed into a
compressible component and a rotational component. In two
dimensions, the measured velocity field can be written as

umeas = ∇� − ẑ × ∇�, (1)

where

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
. (2)

Since umeas is a velocity field, � is the velocity potential and
� is the stream function. The first term on the right-hand side
of Eq. (1) is irrotational in two dimensions, and the second is
solenoidal; that is,

∇ × (∇�) = 0, (3)

and

∇ · ( ẑ × ∇�) = 0. (4)

Removing the irrotational (compressible) component of the
measured 2D velocity field will leave a field u free of apparent
compressibility and therefore free of out-of-plane motion.

Our velocity fields, however, do not vanish at the boundary
of our measurement region since we measure only the central
10% of the flow in order to avoid edge effects. Thus, our
effective boundaries are open because |u| �= 0 at the edge of
the field of view. With open boundaries, decomposition into
incompressible and irrotational components remains possible
but is no longer unique due to a possible harmonic component
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that is both solenoidal and irrotational and can therefore be
assigned to either term in Eq. (1) [18]. We seek flow fields
that are incompressible in the plane but contain as much of
the measured energy as possible, so we assign the harmonic
component to the second (incompressible) term in Eq. (1). To
do this, we solve the Poisson equation

∇2� = ∇ · umeas (5)

for the minimal velocity potential, subject to the condition that
it vanishes at the boundary. We solve this equation numerically
using finite-element tools that allow gradient calculations at the
particle locations and do not require imposing an arbitrary grid.
Once � is known, we calculate the compressible component
of the flow and subtract it from our measurements to obtain
the incompressible velocity field

u = umeas − ∇�. (6)

For all data shown below, the energy associated with ∇� is
less than 4% of the total flow energy.

We note that one can also remove apparent compressibility
via a least-squares projection of umeas onto a set of incom-
pressible basis functions [7]. Although this projection method
is highly accurate, it can be very computationally expensive,
especially for large numbers of tracer particles. The Helmholtz
decomposition method described here is much faster, and is
sufficiently accurate for our purposes.

Finally, as shown in Fig. 1, we Reynolds-decompose our
measured flow fields, splitting them into a mean component,
computed as the time average of the instantaneous velocity
fields, and a fluctuation around this mean. Note that the mean
flow fields are not uniform or isotropic for either magnet
arrangement. We show the velocity statistics of the mean and
fluctuating components for both flows in Fig. 2.

III. RESULTS AND DISCUSSION

A. Energy

Turbulent flow requires large velocity fluctuations; large
velocity alone does not lead to developed turbulence. Measur-
ing how much of the injected energy goes towards producing
mean flow versus how much drives fluctuations for different
forcing configurations can thus give us insight into how the
forcing affects the efficiency of generating turbulence.

To this end, we plot in Fig. 3 the mean kinetic energy
per unit mass 〈E〉 = 〈u2〉/2, where the average is taken over
space and time, in both the mean flow and the fluctuations as a
function of Reynolds number for our two flows. The error bars
here and below are computed from the statistical variation
between the averages of subsets of our full data sets. In all
cases, 〈E〉 increases with Re, as it must given our definition
of Re. But the partitioning of energy between the mean flow
and the fluctuations is not the same for the two flows we
consider. The energy injected into the mean flow is smaller
for the vortex flow than it is for the shear-band flow at all Re;
the opposite effect is present (though weakly) for the energy
in the fluctuating component of the velocity field. Thus, the
vortex flow is slightly more efficient at generating velocity
fluctuations than the shear-band flow is.
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FIG. 2. (Color online) Distributions of velocity components for
(a) mean flow in the shear-band flow, (b) fluctuations in the shear-band
flow, (c) mean flow in the vortex flow, and (d) fluctuations in the vortex
flow. Solid lines show distributions of u · x̂, and dashed lines show
distributions of u · ŷ. The distributions come from experiments with
Re = 243 (shear-band flow) and Re = 244 (vortex flow). The shear
bands themselves flow along the ŷ direction, as is evident from the
bimodal distribution of its mean flow.

B. Velocity gradients

Energy, however, is not the only quantity of interest
in complex flow. In many cases, we desire a flow with
strong velocity gradients. We therefore also measured the
velocity gradients, again separating them into their mean and
fluctuating components.
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FIG. 3. (Color online) Average kinetic energy 〈E〉 for the
(a) fluctuating and (b) mean components of the flow field as a function
of Reynolds number. Data are shown for the vortex flow (©) and
the shear-band flow (�). Error bars indicate statistical variation as
described in the main text; for some data, the error bars are smaller
than the plot symbols.
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FIG. 4. (Color online) Average enstrophy 〈�2〉 for the (a) fluctu-
ating and (b) mean components of the flow field. Data are shown
for the vortex flow (◦) and the shear-band flow (�). Probability
density functions of the (c) fluctuating and (d) mean vorticity are
also shown. The distributions come from experiments with Re = 243
(shear-band flow) and Re = 244 (vortex flow). Error bars indicate
statistical variation as described in the main text; for some data, the
error bars are smaller than the plot symbols.

In Fig. 4, we show results for the vorticity ω = ∇ × u
and enstrophy �2 = |∇ × u|2/2 in the two flows. We find,
perhaps counter-intuitively, that the vortex flow produces
less fluctuating enstrophy than the shear-band flow does,
although (unsurprisingly) there is more enstrophy in the mean
component of the vortex flow. As shown in Figs. 4(c) and 4(d),
where we plot the probability density functions of vorticity for
the two flows at a fixed Re, the shear-band flow also shows
an enhanced likelihood of very large fluctuations of vorticity
relative to the vortex flow. Thus, it seems that the shear-band
flow drives more intense velocity gradients than the vortex
flow does.

Our conclusions drawn from the vorticity data are supported
by measurements of the rate of strain Sij = (∂iuj + ∂jui)/2,
shown in Fig. 5. We find that, similar to the vorticity, the
shear-band flow produces stronger fluctuating strain and less
mean strain than the vortex flow. Thus, we find that the
shear-band forcing leads to a flow with strong fluctuating
velocity gradients, while the vortex-lattice forcing creates a
flow with more turbulent kinetic energy. Let us also note
that measurements of the velocity increments show nearly no
differences between the two flows.
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FIG. 5. (Color online) Average squared strain rate 〈SijSij 〉, where
summation is implied over repeated indices, for the (a) fluctuating and
(b) mean components of the flow field. Data are shown for the vortex
flow (◦) and the shear-band flow (�). Error bars indicate statistical
variation as described in the main text; for some data, the error bars
are smaller than the plot symbols.

C. Spectral fluxes

To understand these results in more detail, we turn to
a spectral description of these flows to characterize how
energy is driven away from the injection scale. Rather than
taking a fully spectral approach by calculating, for example,
energy spectra, we instead turn to the recently developed
tool of so-called filter-space techniques (FSTs) that allow the
direct measurement of spectral energy fluxes [19–25]. We
have previously applied FSTs to this flow and studied their
Lagrangian properties [26].

The idea of an FST is simple, and relies on a posteriori
low-pass filtering of the velocity. Let u(L)

i be the ith component
of the velocity field filtered at spatial scale L, so that spatial
variation on scales smaller than L is suppressed. The equation
of motion for the filtered kinetic energy E(L) = [u(L)]2/2 can
then be written as [20]

∂E(L)

∂t
= −∂J

(L)
i

∂xi

− ν
∂u

(L)
i

∂xj

∂u
(L)
i

∂xj

− 	(L), (7)

where summation is implied over repeated indices. The first
term on the right-hand side of Eq. (7) is the divergence of a
spatial flux J

(L)
i , and acts to move energy in space. The second

term represents the direct dissipation of (filtered) energy by
viscous effects. Both are directly analogous to terms that
appear in the equation of motion for the full (unfiltered) kinetic
energy. The last term, however, has no analog and accounts for
the coupling of the resolved scales to the filtered scales, and
thus the spectral flux of energy between scales smaller than L

and scales larger than L. It is given by

	(L) = −[
(uiuj )(L) − u

(L)
i u

(L)
j

]∂u
(L)
i

∂xj

. (8)

Defined this way, 	(L) > 0 denotes transfer to smaller scales,
and 	(L) < 0 denotes transfer to larger scales. We use a
Gaussian low-pass filter to implement the FST [26].
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FIG. 6. (Color online) Mean spectral energy flux 〈	(L)〉 in the vortex flow for (a) the entire flow field, (b) the mean flow, and (c) the
fluctuations. The different curves are for different Reynolds numbers, as indicated by the color bar. The scale at which 〈	(L)〉 = 0 in the entire
flow, which we define as the energy crossover scale, is indicated by a dashed line in all three panels.

In Fig. 6(a), we show the mean spectral energy flux 〈	(L)〉,
computed for the whole flow field over a range of Reynolds
numbers, as a function of filter scale L for the vortex flow. For
all Reynolds numbers, the 〈	(L)〉 curves cross zero at the same
length scale Lc ≈ 1.25Lf , as one would expect given that the
length scale of the forcing is fixed by the geometry of the ap-
paratus. We refer to Lc as the energy crossover scale, and note
that it gives the effective energy injection scale for the system.
For L > Lc, energy is driven to larger length scales (negative
energy flux), in a nascent inverse energy cascade. For L < Lc,
we observe a (weaker) transfer of energy to smaller scales.

We also computed the spectral energy flux for the mean
flow and the fluctuations, shown in Figs. 6(b) and 6(c). The
mean flow shows much weaker spectral flux than the whole
flow (note the different vertical scale), as one would expect
given that the mean flow is by definition stationary and locked
to the forcing geometry. Note that the forward and reverse
transfer peaks are of similar magnitude. The spectral-flux
curves computed from the fluctuating velocities are much
more similar in size and shape to those of the whole flow.
We note that the energy crossover scale Lc measured from the
fluctuating velocities is slightly different (roughly 6% smaller)
from the value computed for the whole flow. Thus, even though
the magnet spacing Lf is set by the geometry of the apparatus,
the energy crossover scale is a dynamical parameter and is
not fixed. We do find, however, that Lc remains constant as a
function of Reynolds number. Finally, let us note that the mean
energy flux measured for the total flow field is not given by

the sum of the fluxes measured from the mean and fluctuating
components separately. This mismatch is due to the appearance
of coupling terms in the spectral flux equations between the
mean and fluctuating parts of the flow field.

The spectral energy flux computed from the shear-band
flow, shown in Fig. 7, has features that are qualitatively similar
to the vortex flow. We again find that the energy crossover
scale Lc is constant as a function of Reynolds number. Its
value, however, is somewhat different, even though the magnet
spacing is unchanged. We find that Lc ≈ 1.75Lf for the whole
flow; a second minimum in |〈	(L)〉| is also apparent for all
Reynolds numbers at approximately 2Lf , corresponding to the
full wavelength of the shear bands. Above this scale, we again
see inverse energy transfer, while we find forward transfer
for L < Lc. The spectral energy flux computed for only the
mean flow field is also similar to the vortex flow, though again
with a different energy crossover scale. The mean flow shows
〈	(L)〉 > 0 for scales smaller than the crossover scale and
appears to carry the majority of the forward energy flux.

The spectral energy flux computed from the fluctuating
component of the shear-band flow, however, is qualitatively
different from the vortex flow. First, we find that 〈	(L)〉 < 0 for
all scales, even for L < Lc. Although this behavior is expected
for L > Lc, it is surprising for L < Lc. 〈	(L)〉 < 0 for L < Lc

implies some small-scale source of fluctuating kinetic energy.
The nature of this source is at present unclear: it might be due
to a weak small-scale energy source due to instabilities of the
shear-band forcing or with coupling between the fluctuating
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FIG. 7. (Color online) Mean spectral energy flux 〈	(L)〉 in the shear-band flow for (a) the entire flow field, (b) the mean flow, and (c) the
fluctuations. The different curves are for different Reynolds numbers, as indicated by the color bar (which matches the color bar in Fig. 6). The
energy crossover scale is indicated by a dashed line in all three panels.

and mean components of the flow. We leave its detailed
investigation for future work. We also find that the energy
crossover scale for the fluctuations is much smaller (nearly
25%) than it is for the whole flow, a variation that is much larger
than it is for the vortex flow. Thus, the dominant dynamical
length scale in the shear-band flow is smaller compared to its
value for the whole flow than it is for the vortex flow.

D. Discussion

To summarize our findings, we find that the vortex flow
shows more fluctuating kinetic energy but weaker fluctuating
gradients than the shear-band flow over a similar range of
forcing strengths. The dynamical energy crossover scale Lc

varies only slightly between the fluctuating field and the whole
flow for the vortex lattice, while the difference is much larger
for the shear-band flow, with Lc for the fluctuations almost
25% smaller than it is for the whole flow.

To explain these differences, we first consider the forcing
symmetries of the two flows. The checkerboard magnet
arrangement of the vortex flow has a discrete translational
symmetry in both the x̂ and ŷ directions. Thus, the flow is
highly constrained by the forcing, and fluctuations are not
completely free to develop except at very high Reynolds
numbers; the flow tends to lock onto the magnet lattice quite
strongly for this arrangement [27]. The situation is different
for the shear-band flow. In this case, the flow is free to develop

along the shear bands, allowing the production of smaller
length scales and thus larger velocity gradients.

Our measurements of the spectral energy fluxes also shed
light on why the vortex lattice shows more kinetic energy
while the shear-band flow shows stronger gradients. At any in-
dividual Reynolds number, the total amount of energy injected
into the flow is the same for both geometries, given how we
have defined the Reynolds number, but the energy crossover
scale Lc is measured to be larger for the shear-band flow.
Thus, it is reasonable to hypothesize that more of the injected
energy flows to smaller scales in the shear-band flow, where it
drives small-scale motion and therefore larger gradients. More
of this energy, however, is directly dissipated by small-scale
viscous effects. Further study will be required to understand
the detailed implications of our finding that the mean energy
flux due to the fluctuating component of the velocity field is
always negative for the shear-band flow. In contrast, the vortex
flow drives most of its injected energy to larger scales via
an inverse cascade. At these larger scales, viscous forces are
weak, and thus more kinetic energy persists in the flow field,
since the large-scale friction in our flow is also weak. On the
other hand, the velocity gradients associated with these larger
scales are smaller, leading to the phenomena we observe.

IV. SUMMARY AND CONCLUSIONS

We have studied the statistics of the weak turbulence
produced in a thin electromagnetically stirred fluid layer under

036306-6



EFFECTS OF FORCING GEOMETRY ON TWO- . . . PHYSICAL REVIEW E 86, 036306 (2012)

two different forcing configurations: a checkerboard lattice of
magnets that produces a steady vortex flow at low Reynolds
number and stripes of magnets that produce steady shear bands.
We showed that the geometry of the forcing has measurable
consequences. The vortex flow leads to more fluctuating
kinetic energy, while the shear-band flow drives stronger
gradients. These results can be explained by considering
the symmetries of the forcing and the spectral transfer of
energy.

Our results show that the geometry of the forcing is a non-
negligible factor in determining the dynamics of the flow field,

since the Reynolds number in this type of apparatus must be
kept low to avoid three-dimensional secondary flows [7] and
thus an asymptotic regime independent of forcing cannot be
reached. Thus, we suggest that the forcing can be chosen in
experiments to optimize the effects of interest (for example,
strong large-scale motion or large velocity gradients).
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