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By studying the shape dynamics of three-particle clusters, we investigate the statistical geometry of a
spatiotemporally chaotic experimental quasi-two-dimensional flow. We show that when shape and size are
appropriately decoupled, these Lagrangian triangles assume statistically stationary shape distributions that
depend on the flow scale, with smaller scales favoring more distorted triangles. These preferred shapes are
not due to trapping by Eulerian flow structures. Since our flow does not have developed turbulent
cascades, our results suggest that more careful work is required to understand the specific effects of

turbulence on the advection of Lagrangian clusters.
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Accurately modeling the transport of scalar fields by
complex flows has been a tremendous challenge, since
the scalar displays highly anomalous scaling. The scalar
field retains its intermittency even when the advecting flow
field is not itself intermittent [1,2], as is thought to be the
case, for example, for the inverse cascade in two-
dimensional (2D) turbulence [3]. Recent breakthroughs
in the mathematical description of scalar transport have
succeeded in tying scalar intermittency to the multipoint
Lagrangian dynamics of the flow via the phenomenology
of “zero modes” [3-9]. A key quantity to consider in
Lagrangian dynamics is the evolution of material volumes
in the flow. Such volumes (or areas in 2D flow) can in turn
be parametrized by clusters of fluid elements that evolve
with the flow [3,10,11]. Both experiments [12] and simu-
lations [11,13] have shown that Lagrangian clusters tend to
assume statistically stationary shape distributions in
turbulence.

A minimum of three fluid elements is required to pa-
rametrize a material area, the highest-dimensional struc-
ture in 2D flow. Such Lagrangian triangles have been
studied previously in 2D in kinematic simulations [14]
and experiments [15]. Both studies found similar results:
under the action of the flow, triangles distorted from ini-
tially symmetric shapes, eventually reaching the uncorre-
lated random limit after long times. In both cases, and in
related work in three-dimensional turbulence [11-13], this
distortion was presumed to be due to the turbulence, par-
ticularly since the growth of the clusters appeared to follow
expected turbulent scaling laws [11,13] and the time scale
of the cluster distortion could be explained by
Kolmogorov-type scaling arguments [12]. But since purely
random fields without turbulent dynamics can lead to
complex scalar advection [1,2], unsteady but nonturbulent
flows may also drive nontrivial shape distortion.

In this Letter, we study the Lagrangian evolution of
triplets of fluid elements in a quasi-2D flow that is unsteady
and spatiotemporally chaotic, but not turbulent: we see no
energy or enstrophy cascades and no inertial subranges
[16]. Since our experimental apparatus and field of view
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are very large, we can follow the triangles for unusually
long times. Surprisingly, we observe the same type of
shape distortion as was previously found for turbulent
flows. We also find that the size and shape of the triangles
are strongly coupled: each length scale of the flow shows a
statistically stationary distribution of triangle shapes, but
the distributions change as a function of scale. We find no
direct connection between the shape distributions and the
mean Eulerian structure of the flow field on corresponding
length scales. The shapes we see must therefore be the
result of the flow dynamics, even without energy or ens-
trophy cascades. Our results indicate that turbulence is not
a prerequisite for complex statistical geometry, and suggest
that multiscale shape dynamics may be much more generic
in nonlinear systems than has been previously recognized.

We drive quasi-2D flow electromagnetically in a thin
layer of conducting fluid in a flow cell that has been
described in detail elsewhere [16]. Briefly, we place a layer
of salt water (16% NaCl by mass) roughly 4 mm deep
above an array of strong permanent magnets arranged in a
square lattice of alternating polarity. The magnets are
placed with a center-to-center separation of 2.54 cm, and
this spacing sets the forcing length scale L. Our flow cell
is quite large, with a total driven area of 86 X 86 cm?, of
which we typically study the central 31 X 23 cm? region
so that the effect of the sidewalls is negligible. The salt
water is separated from the magnets by a thin glass plate,
which is coated with a layer of hydrophobic wax in order to
reduce bottom drag. By driving electric current (up to
roughly 1 A) laterally through the electrolyte, we generate
Lorentz forces that set the fluid into motion [17-20]. We
characterize the nondimensional strength of the forcing
with the Reynolds number Re = u'L /v, where u’ is the
in-plane root-mean-square velocity and » is the kinematic
viscosity. We estimate the time scale of the forcing to be
T, = L;/u’. We measure the dynamics of the flow by
seeding it with 51 um fluorescent polystyrene particles
that follow the flow [20]; we track their motion at a rate
of 25 Hz and with a precision of roughly 13 wm using a
multiframe predictive tracking algorithm [21]. The par-
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ticles lie at the interface between the salt water and a less
dense fresh water layer (of similar depth). Because of the
miscibility of the layers, surface-tension-driven interac-
tions among the particles [22] are negligible. Since we
follow up to 35000 particles per frame, we can construct
high-resolution velocity fields at each time step. We then
project the measured velocity fields onto a basis of stream-
function eigenmodes [ 16], which both filters noise from the
data and ensures that the fields are robustly 2D and incom-
pressible in the plane. We note that even though our
particle loading is high, the tracers are typically at least
17 diameters apart; hydrodynamic interactions among the
particles are therefore negligible.

In this work, we are concerned with triangle shape rather
than position or orientation; as the shape of a triangle has 2
degrees of freedom, we require two independent parame-
ters to describe each three-particle configuration. It has
become common to follow the lead of Refs. [23,24] and
define vectors p; = (r, — ry)/~2 and p, = 2r; —ry —
r1)/~+/6, where r, is the position of the nth triangle vertex,
to describe the reduced dynamics of triangles
[3,7,10,11,14,15]. The quantities x = (1/2)X
arctan[2p; - po/(p3 — pH)] and w = 2lp; X pl/(p} +
p3) can then be defined to characterize the triangle shape
[3,11,14,15]. This approach is useful in that it is straight-
forward to generalize to clusters with more points (such as
four-point Lagrangian “tetrads” [10]); for all but the sim-
plest shapes, however, y and w do not have clear geometric
meanings [15]. We prefer, therefore, to work with a more
straightforward shape parametrization. Let us label the side
lengths of a triangle as A, A,, and A3, with A; = A, =
A5, and the internal angles as 6, #,, and 65, again with
6, = 6, = 65. We describe the shape of a triangle with the
largest internal angle 6, which tells us how obtuse the
triangle is, and y = A5/ A,, the ratio of the smallest side to
the intermediate side, which tells us how close together the
nearest two points are. We note that 6, € [7/3, 7] and
v € [0, 1]. In Fig. 1, we show triangles at different points
in this two-dimensional shape space.

In order to follow the evolution of triangles for long
periods of time, we compute the trajectories of virtual
Lagrangian points through our measured velocity fields
using the same method as in Ref. [20]. As has been
demonstrated previously in similar quasi-2D electromag-
netically forced flows [17,18,20], our results are similar,
though noisier, when using actual measured particle tracks.
Of primary concern for this work, however, the measured
trajectories tend to be short or broken, since we use a very
high tracer seeding density, and therefore sample only the
short-time behavior of the triangles. Long measured tracks
may also be plagued by finite-volume biases [25]. Studying
unbiased long-time statistics therefore requires a numerical
approach like the one we use.

The energy spectrum of our flow shows no power-law
scaling [16], suggesting that we have no turbulent cas-
cades. The only well defined length scale in the flow is
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FIG. 1. Example triangle shapes in the 2D phase space

spanned by y and 6. Shapes in the gray region are not allowed.

therefore the forcing scale L;. We might therefore expect
that triangles should behave differently when they are large
or small compared to L. In Fig. 2, we show the evolution
of the mean shape for initially equilateral (0, = 7/3, vy =
1) triangles with four different initial sizes Ay: Ay =

L;/20, Ag=Ls/2, Ag =Ly, and Ay = 2L;. Data are
shown for Re = 185; our results are similar for other
Reynolds numbers above the transition to spatiotemporal
chaos [19]. At long times, all four sets of triangles ap-
proach the same limits. The final values can be found by
computing the mean shapes of triplets of points drawn
from an isotropic uniform distribution, as has been shown
previously [11]. We find a nearly identical long-time limit
by simulating triangles evolving via simple Brownian dy-
namics. Strikingly, however, the two experimental curves
for triangles with their initial sizes smaller than the forcing
length L, overshoot the long-time values before subse-
quently relaxing to the random limit. The trends are per-
haps more evident in Fig. 2(c), where we plot the evolution
of the triangles in the 2D shape space spanned by 6; and .
This type of behavior has been observed previously
[11,14,15], but typically has been ascribed to the action
of turbulence. Here, however, we have no energy or ens-
trophy cascades and no inertial subranges [16].

If turbulence is not driving the initial strong distortion of
the triangle shapes and their subsequent relaxation to the
random limit, there must be an alternative explanation. We
argue that the overshoots result from a failure to decouple
triangle size from triangle shape. Perhaps different flow
scales have different preferred statistical geometries, and
the resulting nonmonotonic triangle-evolution curves sim-
ply mark the passage of the triangles into different scale
regimes. It is certainly true that the triangles grow at the
same time as they change their shape; such rapid growth is
generic in both turbulent [13,26] and chaotic flow [27]. The
conflation of these two effects has been suggested as a
contributing factor in the difficulty of observing
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FIG. 2 (color online).

(a) (6;) and (b) (y) (where {-) denotes ensemble averaging) as a function of time for initially equilateral

triangles of varying initial size A, at a Reynolds number of Re = 185. For triangles with A, < L, the shape factors overshoot their
stationary values before relaxing to the random limit. In (c), the same data are plotted in the 2D shape phase space; as in Fig. 1, shapes

in the gray region are not allowed.

Richardson pair dispersion in fully developed turbulence
[18,28].

To test the hypothesis that the size of the triangles is
affecting the shape distributions, we dynamically separated
the shape distributions of triangles that grow at different
rates as they evolve. We began with a population of equi-
lateral triangles of initial side length Ay = L,/20. At each
time step, we computed the mean shapes for triangles with
sizes falling in one of five bins, ranging from triangles that
remained the same size or shrank to triangles much larger
than the forcing scale. The fraction of the total number of
triangles in each bin is shown as a function of time in
Fig. 3, giving an indication of how fast the population of
triangles grows. Our results for the evolution of the largest
internal angle for the triangles in each bin are shown in
Fig. 4. Although there are large fluctuations in the long-
time data for the smallest bins (since few triangles remain
small after many forcing time scales), the trend is clear.
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FIG. 3 (color online). Fraction of the total number of triangles
for each of the indicated sizes as a function of time, plotted
semilogarithmically. The triangles were initially equilateral with
side lengths of Ag = L//20. The number of triangles per size
range falls off roughly exponentially with time, as is expected for
a chaotic flow.

The triangles in each size range assume statistically sta-
tionary shapes, but the chosen shape distribution varies
with scale. In general, smaller triangles are more distorted.
Figure 5 shows the same results in the 2D (6, ) space;
again, although there are large fluctuations, it is clear that
different scales show different statistical geometry.

It is natural to try to connect the observed shape distri-
butions to differences in the flow structure at different
scales. Khan, Pumir, and Vassilicos [14], for example,
suggested that the spatial density of straining regions in
their kinematic simulation (which they varied by changing
the energy spectrum) modified the triangle shape distribu-
tions. We have shown that the spatial structure of the
velocity field in our flow changes strongly as a function
of scale [16]; in particular, regions of large enstrophy or
strain become much more elongated at smaller scales [29].
It is therefore reasonable to suggest that the triangles may
be caught in high-aspect-ratio Eulerian coherent structures
that are then determining the triangle shapes. To address
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FIG. 4 (color online). (#;) as a function of time for initially
equilateral triangles with Ay = L/20. Unlike in Fig. 2, we here
separate the triangle growth from the evolution of the shape
factors by binning the triangles based on their size as time
evolves.
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FIG. 5 (color online). Evolution of triangles binned as in Fig. 4
in the 2D shape phase space. Note that we have removed the
initial transient evolution for each of the binned distributions.
The crosses show confinement-limited shapes; the aspect ratio of
the confinement box is given by the color bar.

this hypothesis, we used a Monte Carlo approach to com-
pute the mean triangle shapes obtained from placing uni-
formly distributed points constrained to lie in ellipses of
aspect ratios (defined as the ratio of the minor to the major
axis) ranging from zero to one. The resulting mean shapes
are shown in Fig. 5. While the final large-scale limit is
close to the isotropic random limit, as shown before in
Fig. 2(c), this type of confinement effect is clearly not
responsible for the small-scale shape distributions. This
result suggests a dynamical origin for the observed
small-scale shape distributions rather than one connected
to Eulerian coherent structures.

To summarize, we have studied the shape dynamics of
Lagrangian triangles in a spatiotemporally chaotic flow. By
following the triangles for very long times, we have shown
that triangles—regardless of initial size—eventually as-
sume a shape distribution close to that expected for ran-
domly placed points. By appropriately decoupling shape
and size, however, we have shown that each scale of the
flow in fact shows a different preferred statistical geometry,
with smaller scales favoring more distorted triangles. Our
Monte Carlo simulations show that these preferred shape
distributions are not due to the trapping of the triangles in
coherent structures, since simple geometric confinement
cannot produce the observed stationary shapes. Our results
therefore point toward a dynamical explanation of triangle
shape. Finally, we note again that we see results similar to
those found before in turbulence, even though our flow is
not turbulent and does not have energy or enstrophy cas-
cades. More work is therefore needed to tease apart the
detailed contributions of turbulence to the shape dynamics
of Lagrangian clusters.
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