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Abstract

Aluminium (Al) is produced in electrolysis cells that con-
tain two molten, broad, and shallow layers, Al beneath
cryolite (bath). A magnetohydrodynamic (MHD) instabil-
ity known as the metal pad instability (MPI) has been a
barrier for reducing anode-to-cathode (ACD) distance and
thus decreasing electric losses. The MPI arises from the
electromagnetic forces amplifying gravitywaveswith sim-
ilar frequencies present at the Al-bath interface. Davidson
and Lindsay suggested a mechanical model of the MPI in
the form of a compound pendulum with a steady electric
current running through it that, in the presence of a vertical
magnetic field, couples the pendulum’s motion in the two
directions. We expand this model to test whether adding
an oscillating (AC) current can stabilize the pendulum’s
motion and consequently have the potential to stabilize
Al electrolysis cells. We show that AC current can indeed
stabilize the motion, and that stability depends in a com-
plicated way on AC amplitude and frequency.

Introduction

Aluminium electrolysis cells consist of two carbon electrodes
with two fluid layers between them: molten cryolite elec-
trolyte (bath) atopmolten aluminiummetal (Al). The two lay-
ers are broad (∼8×3.6m, or larger) and shallow (∼5−20 cm),
and the bath is∼4 orders ofmagnitudemore electrically resis-
tive than the Al and ∼2 orders of magnitude more than that
of the carbon electrodes [1]. During operation, a large, steady
current (reduction current or cell amperage) is passed through
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both layers, reducing aluminium oxide in the bath to Al and
producing CO2 at the anode. However, ∼40% of this electri-
cal energy reduces no Al [2] and instead is lost in the form of
heat, via Joule heating, concentrated at the highly electrically
resistive bath. The losses are directly proportional to the bath
height, quantified by the anode-to-cathode distance (ACD),
and can be mitigated by reducing the ACD, except doing so
below a critical threshold makes the cell unstable [1, 3–8]. To
understand why, think of disturbances that naturally exist on
the Al-bath interface in the form of long-wavelength gravity
waves. Due to the large aspect ratio of the cell and the dis-
crepancy of electrical resistivities of the different materials in
it, the waves cause a redistribution of current that is mainly
vertical in the bath and horizontal in the Al, flowing from
a wave crest towards a wave trough [3, 9]. In the presence
of a vertical magnetic field, this redistribution current pro-
duces horizontal electromagnetic forces that can excite other
gravity waves on the Al-bath interface [1, 5]. This electro-
magnetic coupling, if strong enough, makes the waves on the
Al-bath interface grow in time, creating a magnetohydrody-
namic (MHD) instability known as the metal pad instability
(MPI) [9, 10] that can cause the electrolysis cells to slosh out
of control or the Al to touch the carbon anode shorting the
cell. The MPI usually involves the MHD coupling of two or
more gravity waves of similar frequencies (resonance) and
manifests as a circulating travelling wave [1, 3–6, 9, 11]. The
MPI has been extensively studied due to its industrial impor-
tance and likelihood to occur in other systems such as liquid
metal batteries, a grid-scale energy storage technology [12–
14]. Many attempts at suppressing the MPI were made in the
past, such as inserting baffles inAl [2, 15] and tilting the anode
in synchrony with the Al-bath interface motion [2], with no
success. In practice, the MPI is mitigated by careful design
of the electrolysis cell [16] and busbar network [17], and by
keeping the ACD thick enough.

To provide physical insight to the MPI, a mechanical ana-
logue was given by Davidson and Lindsay [11] in the form
of a compound pendulum (see Fig. 1) that captures much of
the essential physics: A flat and thin rectangular aluminium
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plate (representing the Al) is attached by a rigid strut to a
flat surface (representing the anode) with a poorly conduct-
ing electrolyte between them (representing the bath) and a
steady current density (representing the reduction current)
flowing vertically downwards through the electrolyte to the
plate. The plate can swing about both horizontal axes x and
y (representing Al-bath interface motion). In the absence of
electromagnetic forces, the pendulum’s motion in the x and
y directions is decoupled and the plate oscillates at its natural
gravitational frequency in each direction, ωx and ωy , respec-
tively.However,when a verticalmagnetic field is imposed and
electromagnetic forces are generated, the pendulum’s motion
in the x and y directions can become coupled: the electromag-
netic forces can first shift the gravitational frequencies until
they coincide and the plate oscillates at the same frequency in
both directions, and then supply energy to the pendulum. In
that case, the plate’s oscillations grow and become unstable
(in analogy to the MPI) [11]. The stability threshold for this
model can be derived analytically [11] and offers an accurate
qual i tat ive understanding of the effect of different param-
eters present in the system on its stability: larger currents,
stronger vertical magnetic fields, smaller ACD, and more
square cells make the system more unstable. This mechan-
ical analogue is not only powerful in understating the MPI in
reduction cells but also has been modified and used to study
instabilities in liquid metal batteries [14].

Unstable pendulummotion is a resonance, and resonances
can sometimes be frustrated by introducing a new frequency
to the system. We hypothesized that adding a time-dependent
oscillatory (AC) current component to the pendulum model
would suppress its instability. Below, we start by first deriv-
ing in detail the equations of motion of the pendulum model
when a sinusoidal AC current, with a specified amplitude and
frequency, is introduced into the model. Then we solve for the
pendulum’s motion numerically and show that a previously
unstable scenario can be stabilized by the AC current effect.

Mechanical Model

Consider the compound pendulum placed in a Cartesian coor-
dinate system as shown in Fig. 1. It consists of a solid alu-

minium plate (Al plate) of density ρal and dimensions Lx ,
Ly , and H in the x , y, and z directions, respectively, attached
to a fixed electrode surface by a strut of height h0 and neg-
ligible mass. The strut pivots, allowing the Al plate to swing
about both the x and y axes. The gap, h(x, y), between the Al
plate and the electrode surface is filled with a poorly conduct-
ing electrolyte, and a vertical magnetic field Bz is imposed as
shown. To this point, the model is exactly the same as the one
described in [11]. Now, we consider a current density passing
vertically downwards through the electrolyte and Al plate,
J0, that consists of a steady component and a sinusoidal AC
component:

J0 = J0(1 + β sin(ωbt))(−êz) (1)

where J0 is the steady current density amplitude, β is the ratio
of the AC current amplitude to that of the steady current, and
ωb is the angular frequency of the AC current. σal , σe are
the electrical conductivities of the Al plate and electrolyte,
respectively.

Simplifying Assumptions

Following the same consideration as in [11] and in accordance
with real aluminium electrolysis cell conditions, we make the
following assumptions:

1. The Al plate and electrolyte are broad and shallow such
that (H, h0) � (Lx , Ly).

2. The perturbation in the electrolyte thickness, Δh, is very
small such that Δh � h0.

3. The Al plate’s periods of oscillations are much greater
than the magnetic field diffusion time. This assumption
agrees with experimental observations that the character-
istic time for the wave motion on the Al-bath interface
is much greater than the magnetic field diffusion time in
electrolysis cells, implying that the current relaxes to a
new equilibrium as the Al-bath interface moves [5].

4. The electrode has a fixed potential �0.
5. The perturbed current, j , is purely vertical in the elec-

trolyte. This can be justified by the electrolyte bath hav-

Fig. 1 Schematic diagram of the
compound pendulum model. The
pendulum can swing about both
the x and y axes, with the x-axis
as shown and the y-axis pointing
into the page
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ing amuch lower electrical conductivity than Al and elec-
trodes, and the shallow nature of the layer.

6. The Al plate is treated as an equipotential surface with
potential � = 0 and j is purely horizontal in it. This
is due to the Al layer having a much higher electrical
conductivity than the bath and electrodes in Al cell and
the shallow nature of the layers which make the perturbed
current “short” through the Al layer.

7. The perturbed current in the Al plate is much higher than
the perturbed current in the electrolyte. Thus, we neglect
the perturbed electromagnetic forces in the electrolyte.

8. We ignore the inertia of the electrolyte.
9. The magnetic field induced by j is very small compared

to the imposed magnetic field Bz and is neglected.
10. We assume that the vertical magnetic field is constant:

Bz = B0êz .

Equations of Motion

In what follows, we use superscript “e” for quantities related
to the electrolyte and “al” for quantities related to the Al plate.
We use subscripts to indicate the direction. For example, j ez
refers to the perturbed current density in the electrolyte along
the z-direction. At equilibrium, the Al plate is stationary, the
thickness of the electrolyte h(x, y) = h0, and the current
density J0 = J0(1+ β sin(ωbt))(−êz). Small rotational per-
turbations of θx and θy are then applied to the plate about
the x and y axes, respectively. Let Δhx be the perpendicular
distance from the top of the plate to the y-axis (see Fig. 2).
Then, the angle between the Al plate and the y-axis is θx and
thus

tan θx = Δhx
y

, (2)

but, for small θx , tan θx ≈ θx soΔhx ≈ yθx . Similarly, ifΔhy

is the perpendicular distance from the top of the plate to the
x-axis, Δhy ≈ xθy . Notice that a rotation of θx decreases the
electrolyte thickness by Δhx , while a rotation of θy increases
the electrolyte thickness by Δhy . Hence, the perturbed elec-
trolyte thickness is given by

h(x, y) = h0 + Δhy − Δhx ≈ h0 + xθy − yθx . (3)

Using assumptions 2, 4, and 6, we find the potential in the
electrolyte

�(x, y, z) = �0z

h(x, y)
= �0z

h0 + xθy − yθx
. (4)

Let Je denote the total current density in the electrolyte.
Then, Je = J0+ je, where j e is the perturbed current density
in the electrolyte. Since J0 and j e are both purely vertical
(assumption 5), then Je must be as well. Therefore

Je = −σ
∂�

∂z
(−êz) = −σ

�0

h0 + xθy − yθx
(−êz). (5)

When θx = 0 = θy , the pendulum is at equilibrium and
Je = J0 = −σ�0

h0
(−êz). So

Je = J0(1 + β sin(ωbt))h0
h0 + xθy − yθx

(−êz). (6)

Now we can find the perturbed current density in the elec-
trolyte:

je = Je − J0

=
(−J0(1 + β sin(ωbt))h0

h0 + xθy − yθx
+ J0(1 + β sin(ωbt))

)
(êz)

= J0(1 + β sin(ωbt))
( xθy − yθx
h0 + xθy − yθx

)
(êz).

(7)
Let ε = xθy − yθx . Then, the Taylor expansion of ε

h0+ε
around ε = 0 gives

ε

h0 + ε
≈ 0 + h0 + ε − ε

(h0 + ε)2

∣∣∣
ε=0

(ε − 0) + O(ε2) ≈ ε

h0
.

Therefore, the perturbed current density in the electrolyte can
be approximated as

Fig. 2 Pendulum model at initial
unperturbed state, and under
small rotation about x-axis
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j e ≈ J0(1 + β sin(ωbt))(xθy − yθx )

h0
(êz) = j e(êz). (8)

Now, we want to calculate the net flow of perturbed cur-
rent within the Al plate, and we start by stating the boundary
conditions for jal , the perturbed current density in the Al
plate:

1. jalz
∣∣∣
z=0

= jez ,

2. jalx · n̂
∣∣∣
side boundary

= 0 = jaly · n̂
∣∣∣
side boundary

, and

3. jalz
∣∣∣
z=−H

= 0,

where n̂ is an outwards unit normal vector to the Al plate’s
sides. There are no free charges in the Al plate, so

∇ · jal = ∂ jalx
∂x

+ ∂ jaly
∂y

+ ∂ jalz
∂z

= 0. (9)

We integrate both sides in z and apply boundary conditions
1 and 3 to find

∫ 0

−H

∂ jalx
∂x

dz +
∫ 0

−H

∂ jaly
∂y

dz +
∫ 0

−H

∂ jalz
∂z

dz = 0

=⇒
∫ 0

−H

∂ jalx
∂x

dz +
∫ 0

−H

∂ jaly
∂y

dz + jalz

∣∣∣
0

H
= 0

=⇒
∫ 0

−H

∂ jalx
∂x

dz +
∫ 0

−H

∂ jaly
∂y

dz = − j e.

(10)

Then, integrating Eq.10 in y, and applying boundary con-
dition 2, we find

∫ Ly/2

− Ly/2

∫ 0

−H

∂ jalx
∂x

dz dy +
∫ Ly/2

− Ly/2

∫ 0

−H

∂ jaly
∂y

dz dy =
∫ Ly/2

− Ly/2

− j e

=⇒
∫ Ly/2

− Ly/2

∫ 0

−H

∂ jalx
∂x

dz dy +���������0∫ 0

−H
jaly

∣∣∣
Ly/2

−Ly/2
dz =

∫ Ly/2

− Ly/2

− j e

=⇒
∫ Ly/2

− Ly/2

∫ 0

−H

∂ jalx
∂x

dz dy = −
∫ Ly/2

− Ly/2

j e.

(11)

We integrate Eq.11 in x from some x ′ to Lx
2 . Examining

the LHS and applying boundary condition 2, we find

∫ Lx/2

x ′

∫ Ly/2

− Ly/2

∫ 0

−H

∂ jalx
∂x

dz dy dx ′

=
∫ Ly/2

− Ly/2

∫ 0

−H

∫ Lx/2

x ′
∂ jalx
∂x

dx ′ dz dy

=⇒
∫ Ly/2

− Ly/2

∫ 0

−H
− jalx (x ′) dz dy = −I alx (x ′),

where I alx represents the net flow of perturbed current in x
within the Al plate. Therefore,

I alx (x) =
∫ Lx/2

x

∫ Ly/2

− Ly/2

j e dy dx

= J0(1 + β sin(ωbt))(θy L y)

2h0

[( Lx

2

)2 − x2
]
.

Using the sameprocedure, the net flowof perturbed current
along y inside of the Al plate can be found:

I aly (y) = − J0(1 + β sin(ωbt))(θx Lx )

2h0

[( Ly

2

)2−y2
]
. (12)

Having found the net perturbed current in the Al plate,
we can now find the torques due to the perturbed electro-
magnetic force. The horizontal perturbed currents within the
aluminium plate interact with the unperturbed vertical mag-
netic field, Bz = B0(êz), giving rise to a horizontal perturbed
electromagnetic force per unit volume

f = jal × Bz . (13)

Its horizontal components are

f x = jaly B0 (êx ), (14)

f y = − jalx B0 (êy). (15)

Hence, the distribution of the electromagnetic force compo-
nents along the x and y-directions are

Fx (y) = I aly (y) B0(êx ) = − J0B0(1 + β sin(ωbt))(θx Lx )

2h0[( Ly

2

)2 − y2
]
(êx ), (16)

Fy(x) = −I alx (x) B0(êy) = − J0B0(1 + β sin(ωbt))(θy L y)

2h0[( Lx

2

)2 − x2
]
(êy). (17)

Referring to Fig. 3, the distributions of the torques arising
from the electromagnetic forces about the pivot, along the x
and y directions, respectively, are

τ x (x) = r x⊥Fy(x)(−êz × êy) = (h0 + H

2
)Fy(x) (êx ),

(18)

τ y(y) = r y⊥Fx (y)(−êz × êx ) = −(h0 + H

2
)Fx (y) (êy).

(19)

The net torques are obtained by integrating Eq.18 along the
x direction and Eq.19 along the y direction:
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Fig. 3 Only the electromagnetic
and gravitational forces have a
net non-zero torque with respect
to the pivot

τ net
x =

∫ Lx/2

− Lx/2

τ x (x) dx = −(h0

+ H

2
)
J0B0(1 + β sin(ωbt))(θy L y)

h0

(Lx )
3

12
(êx ),

(20)

τ net
y =

∫ Ly/2

− Ly/2

τ y(y) dy = (h0

+ H

2
)
J0B0(1 + β sin(ωbt))(θx Lx )

h0

(Ly)
3

12
(êy).

(21)

With the net torques due to the perturbed electromagnetic
force found, we can derive the Al plate’s equations of motion
by considering the conservation of angular momentum about
the horizontal axes parallel to x and y axes when the Al plate
is at θx = 0 = θy , and passing through the pivot. As shown
in Fig. 3, the only torques acting on the plate are the ones due
to the electromagnetic and gravity forces, so using Newton’s
second law for rotation

Ixxαx =
∑

τ = τ net
x + τ

gravity
x , (22)

Iyyαy =
∑

τ = τ net
y + τ

gravity
y , (23)

where αx = θ̈x êx and α y = θ̈y êy are the angular accelera-
tions with (̈) indicating the second derivative in time, Ixx and
Iyy are the moments of inertia of the rectangular Al plate

Ixx = ρa Lx L yH
[ L2

y

12
+

�
�
��
small

H2

12
+

������� small

(h0 + H

2
)2

]
, (24)

Iyy = ρa Lx L yH
[ L2

x

12
+

�
�
��
small

H2

12
+

������� small

(h0 + H

2
)2

]
, (25)

and τ
gravity
x , τ

gravity
y are the torques due to gravity

τ
gravity
x = r⊥ × mg = ρal Lx L yHg(h0 + H

2
)θx (−êx )

(26)

τ
gravity
y = r⊥ × mg = ρal Lx L yHg(h0 + H

2
)θy (−êy).

(27)

Substituting Eqs. 20, 21, 24, 25, 26, and 27 into 22 and 23
and rearranging yields

γ̈x + ω2
xγx = −a(1 + β sin(ωbt))γy,

γ̈y + ω2
yγy = a(1 + β sin(ωbt))γx ,

(28)

(29)

where γx = θx
L2
x
and γy = θy

L2
y
are normalized angles, ω2

x =
g(h0+ H

2 )
L2
y/12

and ω2
y = g(h0+ H

2 )
L2
x/12

are the squares of the natural
frequencies of the pure gravitational oscillations in the x and y
directions respectively, and a = (h0+H/2)J0B0

ρal Hh0
is the coupling

parameter.

Numerical Solution

We solved the coupled system of ordinary differential equa-
tions, Eqs. 28, 29, describing the Al plate’s motion numeri-
cally using MATLAB.We used the initial conditions of small
rotations θx , θy , and zero angular velocities θ̇x = 0 = θ̇y . We
set the Al plate dimensions to H = 0.2 m, h0 = 0.045 m,
Lx = 11 m, and Ly = 2.7 m and used g = 9.81 m/s2. We
chose these values to reasonablymimic the lateral dimensions
and fluid layer thicknesses in an Al electrolysis cell. We cal-
culated the natural gravitational frequencies of the Al plate to
be ωx = 1.5302 rd/s and ωy = 0.3756 rd/s.

We first solved for the simple case for a = 0 which decou-
ples the Al plate’s motion about the x and y directions. This
can be thought of as having no current at all (J0 = 0) or no
magnetic field (B0 = 0) which implies that there’s no elec-
tromagnetic forces present. Gravitational forces are the only
ones present, and we expect the Al plate would oscillate with
frequency ωx in x and ωy in y. Our numerical results for
a = 0 also show that this is the case (Fig. 4). γx and γy are
pure sinusoidal oscillations (Fig. 4a, b). The power spectrum
of each shows that the oscillation frequencies coincide with
ωx and ωy (Fig. 4c).
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Fig.4 Numerical solutions for the decoupled case a = 0. a, γx oscillates in time at a single frequency. b, γy oscillates in time at a single frequency
that is lower than that of γx . c The power spectrum of both γx and γy shows that each oscillates exactly at its pure gravitational frequency
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Fig. 5 Numerical solutions at a slightly above and below acrit . a, a = 1.100205, the Al plate is stable with γx oscillating in time and beating
phenomenon is present. The regions appearing in solid blue indicate oscillations too fast to be individually visible. b, an enlargement of the same
data as (a) plotted for only 50s. The oscillations inside the amplitude envelope can now be seen. c, γy is also stable, behaving the same as γx .
d, a = 1.100207, the Al plate is unstable with the amplitude of γx increasing exponentially in time. The regions appearing in solid blue indicate
oscillations too fast to be individually visible. e, an enlargement of the same data as (d) plotted for only 50s. f, γy is also unstable, behaving the
same as γx

Next,we solved for the steady current case by settingβ = 0
which eliminates the oscillatory component of the current.
This case is originally studied in [11], where it was shown that
the onset of instability occurs when the coupling parameter
“a” exceeds the critical value

acrit = |ω2
x − ω2

y |
2

. (30)

For our values of ωx and ωy , the critical coupling parameter
acrit = 1.100206. Our numerical results for a = 1.100205
and a = 1.100207, slightly below and above acrit , also show
a transition in stability. At a = 1.100205, γx oscillates stably

and the amplitude is enveloped by a slowly varying oscil-
lation (Fig. 5a); the beating phenomenon is present. Plotting
only the first 50 s (Fig. 5b) shows the oscillations happening at
a higher frequency inside the amplitude envelope. γy behaves
the same as γx (Fig. 5c). At a = 1.100207, γx is unstable
with the amplitude growing exponentially in time (Fig. 5d).
γx reaches ∼25000, which would exceed θx = π/2 and defi-
nitely violate the small-angle approximation. So, the normal-
ized angles shouldn’t be taken literally but the exponential
growth in amplitude is really an indicator of instability. Plot-
ting only the first 50 s (Fig. 5e) shows the oscillations of γx .
γy is also unstable (Fig. 5f).

We solved again for a = 1.100207 but with an AC cur-
rent present (β 	= 0). We checked the stability of γx and γy

0 0.6 1.2 1.8 2.4 3

 (rd/s)

0

1

2

3

sp
ec

tr
al

 p
ow

er
 (

ar
b)

105

xy

a

b

c

x

0 0.5 1 1.5 2

time (s) 104

-2

0

2

x

10-3

a

0 20 40 60 80 100

time (s)

-2

0

2

x

10-3b

Fig. 6 Numerical solutions at a = 1.100207 with an AC current of β = 0.1 and ωb = 0.94 rd/s. a, γx oscillating in time stably. The regions
appearing in solid blue indicate oscillations too fast to be individually visible. b, an enlargement of the same data as (a) plotted for only 100s. The
oscillations inside the amplitude envelope can now be seen. c, The power spectrum of γx shows two frequencies, one near the AC frequency
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Fig. 7 (β,ωb) phase space. The model is stable for many pairs of AC
frequency and amplitude. The stable pairs cluster at two distinct regions

for a range of AC currents, each with a different amplitude
and frequency. We found that using an AC current frequency
ωb = 0.94 rd/s and β = 0.1 (10% of the steady current)
stabilized the motion, where γx (Fig. 6a–b) and γy no longer
grow in time. The power spectrum of γx shows two dominant
frequencies present: one near the AC frequency of 0.94 rd/s,
and the other near the root-mean-square of the natural gravi-
tational frequencies of ∼1.1 rd/s (Fig. 6c). We summarize the
stability at a = 1.100207 for different pairs of AC amplitude
and frequency, (β,ωb), in Fig. 7, where we varied β from 0.01
to 0.9 in steps of 0.01 and ωb from 0 rd/s to 12 rd/s in steps
of 0.1 rd/s. At ωb = 0 rd/s, the current is only steady and the
Al plate motion is expected to be unstable for all β, as shown.
Forωb 	= 0, two distinct regions of stability emerge. One near
lower frequencies that almost looks like a triangle whose base
is centered at ∼1 rd/s. Having a lower amplitude seems to be
better for stability. The other region is much bigger and at
higher frequencies and seems to be bounded by two curves,
one of which is almost a vertical line at ωb ∼ 2.5 rd/s. At
higher frequencies, a higher amplitude seems to better. Over-
all, the (β,ωb) phase space portrait looks a bit like Arnold
tongue [18].

Discussion

We derived the equations of motion of the mechanical ana-
logue [11] of theMPI but with an added sinusoidal AC current
component added to the steady one. We showed that adding
theACcurrent successfully stabilized themodel at variousAC

frequencies ωb and amplitudes β. The driving AC frequency
was present in the stabilized oscillations power spectrum, in
addition to the root-mean-square (RMS) frequency of the nat-
ural gravitational frequencies ωx and ωy . The presence of the
RMS frequency can also be seen by taking the sum and dif-
ference of Eqs. 28 and 29, and then rewriting in terms of the
new variables Γ1 = γx + γy and Γ2 = γx − γy .

We also found that the stability depends in a compli-
cated way on ωb where distinct regions of stability occur.
For every frequency we checked but one, there was some β

that stabilized the cell, with lower β being generally better for
stabilizing at lower frequencies and vice versa. The one fre-
quency that didn’t stabilize the system was ∼1.9 rd/s, close
to the sum of the natural gravitational frequencies ωx and ωy .
We suspect that when driving at this frequency, a frequency
matching parametric instability occurs.

Our choice ofmodel dimensions,H ,h0, Lx , and Ly ,was to
mimic similar dimensions in an Al electrolysis cells. Chang-
ing any of the dimensions would change the natural grav-
itational frequencies and consequently the critical coupling
parameter acrit . When we solved for the Al plate’s motion, we
would set the value of the coupling parameter a rather than
calculating it for values of J0 and B0 that would be similar
to those in Al cells. Doing so would have given a values so
low that the Al plate is always stable. Thus, the results from
this mechanical model should be only considered in a qualita-
tive rather than a quantitative manner when translating results
to real Al cells. For example, having a larger aspect ratio of
Lx /Ly would increase the difference between the natural grav-
itational frequencies and consequently indicate a more stable
scenario. This translates well to Al cells where a large aspect
ratio is desired for stability [1].

Also, the mechanical model reduces the real two-fluid
layer system in Al electrolysis cells from one with an infinite
number of degrees of freedom to one with only two. In Al
cells, there are many gravitational frequencies and many cou-
plings between them can occur to trigger the MPI [1, 5, 9, 9].
The mechanical model also fails to account for damping
effects in Al cells, such as viscosity and the friction between
the fluid layer and the electrode, which would most cer-
tainly impact stability. The mechanical model is only a low-
dimensional representation of the physical phenomena hap-
pening.

The system of Eqs. 28, 29 is canonically a periodic lin-
ear differential equation system of the form ẏ = A(t) y,
where the matrix A(t) is periodic with period 2π

ωb
. Analyt-

ical techniques such as Floquet theory [19] can be used to
study the stability of the system and perhaps outline the dis-
tinct stable regions present in the (β,ωb) phase space for
a given coupling parameter a in future work. Beyond the
mechanical model, testing whether AC currents can stabi-
lize actual Al electrolysis cells is very interesting. A good
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start is to perform high fidelity numerical simulations of Al
cells, such as those done with MHD-Valdis [20, 21]. We did
so in [22] and verified that AC currents can suppress the MPI
in simulation.
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