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Collective animal behaviour is often modeled by systems of agents that interact via effective social forces,
including short-range repulsion and long-range attraction. We search for evidence of such effective forces by
studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging
and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the
swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering
the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean
free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also
tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains
cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.

F
rom flocks of birds1,2 to schools of fish3,4 to swarms of insects5–7, animal aggregations that display collective
behaviour appear throughout the animal kingdom8. This self-organized, emergent phenomenon has been
the subject of intensive modeling for decades, both because it is extremely common in nature and because of

its potential utility as a biomimetic control strategy for engineered systems. Low-level interactions between
individuals have been shown to allow the percolation of information known by only a few individuals throughout
an entire aggregate9, and to drive the emergence of collective intelligence such as enhanced sensing10.

Many types of models of collective animal behaviour have been proposed, ranging from continuum approaches
based on partial differential equations11,12 to cellular automata that specify only simple rules13. The most common
paradigm, however, is to model the aggregation as a collection of self-propelled, discrete individuals that obey
coupled ordinary differential equations14. The individuals interact via effective forces that affect their motion just
as physical forces would. Typically, these effective forces include a short-range inter-individual repulsion, a long-
range attraction, and an intermediate-range tendency for a individual to align its motion with its neighbours15.
For animal groups that move in a coordinated direction, such as bird flocks, the orientational interaction is often
assumed to dominate; for those that stand still, such as insect swarms, the attraction and repulsion are the most
important factors15. These models are appealing since they are straightforward to simulate, the ‘‘forces’’ that drive
the collective behaviour are easily identifiable, and they can produce behaviour that is qualitatively similar to what
is observed in nature16,17. But simply displaying similar emergent behaviour is not sufficient to claim that a model
accurately captures the dynamics of real biological systems8; instead, models must be validated against real
empirical data18,19. Capturing such data has historically been a significant challenge.

To make progress towards validating models of collective animal behaviour, we made quantitative measure-
ments of a canonical animal aggregation: mating swarms of flying insects, also known as leks. (Note that we use
the term ‘‘swarm’’ to refer to unpolarized animal groups, rather than simply to groups of insects.) We measured
the time-resolved trajectories and kinematics of every individual in several swarms of the flying midge
Chironomus riparius. Previously, we reported our measurements of the group properties of the swarms, including
their shape and velocity statistics. Here, we probe the statistical properties in more detail to look for signatures of
interaction among the midges. Since acceleration is often used as a proxy for social-force information3,18, we
studied the midge acceleration as a function of the distance to neighboring insects. We found clear evidence for a
short-range repulsive inter-individual interaction, a result that we quantitatively confirmed by measuring the
spatial distribution of the midges. At larger scales, however, the interpretation of the acceleration statistics is less
clear, since on average the midges display an approximately equivalent acceleration in the direction of almost any
feature of the swarm. These results suggest that, aside from relatively rare close-range interactions, the midges are
on average only weakly coupled. We find further support for this conclusion by estimating the mean free path of
the midges and showing that our swarms are rarefied. On the other hand, we also find that the midges are strongly
bound to the swarm itself, since the size of the swarm is also on the order of the mean free path. Thus, our results

OPEN

SUBJECT AREAS:
NONLINEAR

PHENOMENA

BEHAVIOURAL ECOLOGY

BIOLOGICAL PHYSICS

STATISTICAL PHYSICS

Received
5 June 2013

Accepted
8 April 2014

Published
23 April 2014

Correspondence and
requests for materials

should be addressed to
N.T.O. (nicholas.

ouellette@yale.edu)

SCIENTIFIC REPORTS | 4 : 4766 | DOI: 10.1038/srep04766 1



suggest that some kind of attraction keeps the midges bound
together, but that this effect does not take the form of a simple
attraction towards nearest neighbours.

Results
We filmed 20 swarming events in a laboratory colony of C. riparius;
the number of individuals in the swarms ranged from 10 to nearly
100. By imaging the swarms with multiple cameras, we pinpointed
the location of each individual insect in three-dimensional space. We
then used automated particle-tracking algorithms, originally deve-
loped to study intensely turbulent fluid flows20, to link these positions
in time, giving us access to the flight trajectories, velocities, and
accelerations of each individual insect. More details on our hus-
bandry procedures and experimental methods are given in the
Methods section.

Acceleration statistics. Models of collective animal behaviour
typically treat interactions between individuals as effective forces.
Modeling social interactions as forces assumes that they will affect
the motion of an animal in the same way as real physical forces (such
as drag or lift, the case of flying or swimming animals). If this
assumption holds, then the interactions between individuals can be
extracted from experimental data by studying accelerations, and this
approach has been taken in other studies of collective animal
motion3,18. Thus, to look for repulsive or attractive forces between
individuals, we measured the acceleration from each insect toward its
nearest neighbour (that is, the projection of an insect’s instantaneous
acceleration vector onto a unit vector in the direction of its nearest
neighbour). The result, averaged over the ensemble of observed
insects, is shown in Fig. 1a. A repulsive zone is clearly visible in the
data: when a pair of insects is closer than a distance rrep 5 12 mm
(about 2 body lengths), the acceleration between them becomes
strongly repelling. At separations greater than rrep, the acceleration
is attractive, with a magnitude that increases linearly with distance.

This apparent long-range attraction towards nearest neighbors is
exactly what would be predicted by typical swarm models. But this
kind of linearly increasing attractive acceleration is not unique to a
model with long-range attraction. Indeed, a cluster of noninteracting
particles moving according to an Ornstein–Uhlenbeck process21

would show similar apparent attraction on average. Therefore, to
test whether our measurements truly imply meaningful long-range

attraction, we measured the acceleration not between an insect and
its neighbours but rather towards empty space. We constructed
Voronoi tessellations of our swarms, and measured the acceleration
from each insect toward the nearest Voronoi centroid–that is,
towards the most empty region of space in the insect’s vicinity. As
shown in Fig. 1a, this acceleration is comparable in both strength and
scaling to the attraction to an insect’s nearest neighbour–so, on aver-
age, the insects are just as strongly pulled towards empty space as
they are towards their neighbours. We also show in Fig. 1a the aver-
age attraction of an insect to the centre of the swarm6, which is
comparable to both of these other forces. These results pose some-
thing of a conundrum: it appears that on the average, the insects
show an acceleration that is attractive and linearly increasing with
distance to almost any feature of the swarm. Since there is no a priori
reason to expect that the form of these three signals should be the
same, these results suggest that the acceleration is not accurately
capturing the insect interactions at distances substantially larger than
rrep. To support this conclusion further, we computed the same
acceleration statistics in a simulation of an effective-force model that
shows a swarm phase15. Details of the model are given in the Methods
section. As shown in Fig. 1b, the results of the model are significantly
different from what we measure for the insects, and long-range
attraction to other individuals is clearly distinguishable in the accel-
eration statistics.

Spatial distribution. At long range, the acceleration statistics we
measure are therefore inconclusive. It is thus appropriate to test
the validity of the observed short-range repulsion as well. If this
result is significant, its effect should also be apparent in the spatial
organization of the midges. We therefore measured the probability
density function of nearest-neighbour distances, shown in Fig. 2;
note that individuals closer to the swarm edge than to their nearest
neighbour were excluded from this calculation to avoid edge effects.
We compare our results with two model predictions. If the distri-
bution of individuals within the swarm were random, the nearest-
neighbour distances should follow a Poisson distribution. Given a
strong repulsive interaction, however, one might expect that the
distribution should be more like that computed for a hard-sphere
gas22. Similar to what has been found in previous work6,23, the Poisson
distribution compares poorly with our data. Fitting the hard-sphere
model, which includes the sphere radius as a parameter, to our data
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Figure 1 | Acceleration statistics. (a), Average acceleration of a midge towards its nearest neighbour (red), empty space (blue), given by the nearest

Voronoi centroid, and the centre of the swarm (green), as a function of separation distance. Negative accelerations are repulsive; positive are attractive.

Shaded areas show the standard error of the mean. Midges are strongly repelled from their nearest neighbours below a separation of rrep 5 12 mm. Above

this distance, midges show attractive interactions towards their neighbours, empty space, and the swarm centre. (b), The same statistics as in a, as

measured in a simulation of the zonal model of Couzin et al.15. Details of the simulation are given in the Methods section.
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again leads to an estimate of 12 mm for the radius of the repulsive
zone, consistent with our acceleration measurements. The measured
nearest-neighbour distance distribution, however, does not show the
discontinuous jump to zero that a hard-sphere model would predict
(see Fig. 2), suggesting that the repulsive interaction is more like a
soft potential.

Mean free path. So far, our measurements suggest that the midges in
the swarms are relatively weakly coupled; they repel each other
strongly at short distances, but do not show clear long-range
attraction (at least, not in the average acceleration statistics). To
probe in more detail how free their motion is as they move
through the swarm, we therefore estimated the mean free path of
the midges. In a hard-sphere gas, defining the free path between
interactions is simple, since the only interaction events are
collisions. Midges, however, do not collide, and rarely come as
close as rrep. Additionally, the trajectories they take in between
such close approaches are far from straight. Thus, we estimate the
free paths of the midges by measuring the distance they travel
between significant changes in their motion. To define these
‘‘scattering’’ events, we use the trajectory curvature k. Curvature is
naturally a geometric quantity; in a system like ours, however, where
a trajectory is parameterized by time, it can be expressed as k 5 an/jvj2,
where an 5 jv 3 aj/jvj is the magnitude of the acceleration normal to
the flight direction and v is the velocity24,25. As shown in Fig. 3a, k is
large when an insect makes a tight turn. Curvature is well suited to
identifying significant changes in motion because it typically has a
very large dynamic range25,26. As shown in Fig. 3b, spikes in
curvature are well separated from the background fluctuations and
can be easily identified with a simple peak-finding algorithm. We
look for curvature peaks above a threshold value k0. By fitting the
curvature peaks with Gaussians, we find that the temporal extent of
these events is on average about 0.1 s, giving a timescale for how
rapidly the midges can manoeuvre. We also note that fewer than 1%
of these curvature peaks occur when the focal midge is within rrep of
a neighbouring midge.

In Fig. 4, we show the distribution of free paths l (that is, the
distances traveled between curvature peaks) normalized by the mean
free path Ælæ, which we measure to be 38 mm. The free-path distri-
bution decays exponentially for long path lengths, as would be
expected for a classical equilibrium gas. The behaviour at small l is
quite different, however, and is likely due to the more complex

interactions that would be expected for animals as compared to
molecules. This result is consistent with our findings above: the
midges appear to interact weakly except at short range. At larger
scales, their mean-field behaviour is similar to a gas. This ‘‘gas’’,
however, is quite rarefied. Our measurements of the mean-free path
allow us to estimate the Knudsen number Kn 5 Ælæ/ÆdN Næ, where
ÆdN Næ is the typical distance between nearest neighbours. Kn is used in
statistical physics to determine whether a continuum approximation
may be applied to a given system. If Kn=1, scattering is very frequent
and a continuum approximation is reasonable. For our swarms, we
find Kn*O 1ð Þ, suggesting that continuum modeling of insect
swarms is not justified and that the swarms are extremely rarefied.

Discussion
Although we find clear evidence for short-range repulsive interac-
tions between the midges in our swarms from both acceleration and
position statistics, our data do not clearly support long-range effec-
tive-force-type attractive interactions. Measurements of mean accel-
eration indicate the same trends at long range to nearly any feature of
the swarm, and are qualitatively different from what we measured in
a model that contains long-range attraction. Measurements of the
mean free path of the midges likewise suggest that the midges are
only weakly coupled.

Nevertheless, the midges are clearly not free particles: something
must be keeping them bound to the swarm. And this binding is
relatively strong: the ratio of the mean free path to the overall linear
size of the swarm is also of order unity, suggesting that the swarms are
dynamically small. This finding is consistent with our previous result
that on average the midges move ballistically through the swarm
rather than diffusively6. The swarms are always much smaller than
the size of the midge enclosure6, so there is no obvious external
pressure that keeps the midges confined to the aggregation. Rather,
they are bound to the swarm due to some kind of interaction, though
our data suggest that this interaction is not a simple long-range
attraction to nearest neighbours. Thus, the midges appear somewhat
paradoxically to be tightly bound to the swarm while at the same time
weakly coupled inside it. Understanding the detailed origin of this
behaviour will be an interesting topic for future research.

Methods
Insect husbandry. We established a self-sustaining laboratory colony of Chironomus
riparius midges from initial egg sacs purchased from Environmental Consulting and
Testing, Inc. Our husbandry and experimental procedures are described in detail
elsewhere6; we outline them briefly here. The midges spend their entire life cycle in a
cubical enclosure that measures 91 cm on a side. The enclosure is illuminated by an
overhead light set to a circadian cycle, providing 16 hours of light and 8 hours of
darkness per day, and the environment is kept at a steady 23uC. Midge larvae develop
in 9 open tanks containing dechlorinated, aerated fresh water and a cellulose substrate
into which they can burrow. Larvae are fed crushed rabbit food twice weekly. Note
that once they emerge as winged, flying adults, the midges do not eat; they live for only
two to three days during this stage.

During their adult stage, male midges spontaneously form mating swarms, also
known as leks, twice daily, at ‘‘dawn’’ and ‘‘dusk’’ (corresponding in our laboratory to
times just before the circadian illumination turns on and just after it turns off). We
typically observe larger swarms at dusk; all the data reported here was taken for dusk
swarms. Females do not participate in the swarming behaviour, but will occasionally
fly through the swarms to find mates. They deposit fertilized egg masses into the water
tanks, closing the life cycle.

Since swarm nucleation depends in part on optical cues, we provide a ‘‘swarm
marker’’ (in our case, a piece of shiny black plastic); it is thought that swarm markers
simulate the muddy streams where C. riparius lives in the wild27. In addition to
encouraging the formation of swarms, the marker also allows us to position the
swarms in the midge enclosure so that we can ensure that the entire swarm is visible to
our imaging system. Even in the presence of such a swarm marker, previous work has
established that the swarms are real self-organized states and not merely groups of
non-interacting individuals sharing a small space28. All of our observed swarms are
much smaller than the size of the enclosure; the insects are not constrained by the
laboratory environment. Finally, we note that since are swarms do not drift in space,
they have no net linear momentum; we also find that they do not circulate, and have
no net angular momentum.
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Data acquisition. To study the swarms quantitatively, we image them with three
hardware-synchronized high-speed Photron Fastcam SA-5 cameras. Each camera
records 1024 3 1024 pixel images at a rate of 125 frames per second. The images are
buffered into the cameras’ onboard memory, and subsequently transferred to disk.
Roughly 5400 frames of data (approximately 45 s) were acquired for each swarming
event. In the 20 swarming events studied, the mean number of participating
individuals was 10, 12, 14, 14, 15, 16, 16, 17, 17, 18, 23, 24, 24, 26, 26, 30, 37, 40, 64, and
89. The midges were illuminated with 20 LED lamps that emitted light in the near
infrared. Since the midges cannot see in the infrared, their natural behaviour was
unaffected by the lighting.

After data acquisition, the images were processed to locate the intensity-weighted
centroids of each individual midge. The redundant information captured by the three
cameras was used to combine the two-dimensional positions of the insects recorded
by the individual cameras into three-dimensional positions using standard stereo-
imaging techniques6,20,29. After determining the three-dimensional positions of the
midges, we tracked their motion in time using a fully automated predictive tracking
algorithm originally developed to study turbulent fluid flows that has been well
documented elsewhere20. Briefly, the algorithm proceeds by using the prior flight
history of a midge to estimate (kinematically) the expected position of the midge in
future frames; the real midge that is found closest to the estimated position is linked to

the trajectory. Once the trajectories have been identified, we compute velocities and
accelerations by convolving the trajectories with a Gaussian smoothing and differ-
entiating kernel30, avoiding noise that can be introduced by simple finite differences.
Our time resolution is sufficient to capture even the most intense acceleration events
displayed by the midges6.

Numerical simulation. Data in Fig. 1b are collected by simulating the zonal model of
collective animal behaviour described by Couzin et al.15 in its swarm phase. The
model consists of a set of point particles that move at a constant speed and that
interact via a set of deterministic rules that depend on the separation distance between
the particles. Particles are repelled from nearby neighbours in a zone of repulsion, are
attracted to distant neighbours in a zone of attraction, and try to align their motion
with neighbours at intermediate distances in a zone of orientation. The model
produces swarm-like behaviour when the orientational interaction is small or
nonexistent15.

In our simulations, we set the radius of the repulsion zone to 2 units and the radius
of the attractive zone to 40 units, and we used no orientational interaction. The speed
of each particle was held fixed at 3 units, and the maximum turning speed of the
particles was set to 50 degrees per time step. These parameters place the model in the
swarming part of its phase diagram15. We ran 200 independent simulations with 100
individuals per realization; each simulation was run for 10000 time steps, of which we
used the last 5000 for this analysis.
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