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Brain waste is largely cleared via diffusion and advection in cerebrospinal
fluid (CSF). CSF flows through a pathway referred to as the glymphatic
system, which is also being targeted for delivering drugs to the brain.
Despite the importance of solute transport, no brain-wide models for
predicting clearance and delivery through perivascular pathways and
adjacent parenchyma existed. We devised such a model by upgrading
an existing model of CSF flow in the mouse brain to additionally solve
advection–diffusion equations, thereby estimating solute transport. We
simulated steady-state transport of 3 kDa dextran injected proximal to the
perivascular space (PVS) of the middle cerebral artery, mimicking in vivo
experiments. We performed a sensitivity analysis of 11 biological properties
of PVSs and brain parenchyma by repeatedly simulating solute transport
with varying parameter values. Parameter combinations that led to a large
total pressure gradient, poor CSF perfusion or a steep solute gradient
were deemed unrealistic. Solute concentrations in parenchyma were most
sensitive to changes in pial PVS size, as this parameter linearly affects
volume flow rates. We also found that realistic transport requires both
highly permeable penetrating PVSs and high-resistance parenchyma. This
study highlights the potential of brain-wide models to provide insights into
solute transport processes.

1. Introduction
The human brain comprises just 2% of the body’s mass but is responsible for
approximately 20% of the body’s energy expenditure, making it a prodigious
producer of metabolic waste. Since brain tissue lacks lymphatic vessels, which
aid in metabolic waste clearance elsewhere in the body [1,2], it has long
been speculated that flow of cerebrospinal fluid (CSF) may aid in the brain
clearance [3,4]. The idea of a glymphatic system, which serves the function of
a lymphatic system in the brain and is controlled by glial cells, was proposed
when bulk CSF flow was first observed to couple with vascular pulsations
[5,6].

In the decade since, additional experiments have confirmed that CSF
passes through perivascular spaces (PVSs), which are annular channels
around arteries and veins, flowing in the same direction as blood [7–11].
While mice and rats have been studied most extensively, similar CSF flows
are seen in pigs [12] and alligators [13]. Human CSF flow has been thor-
oughly investigated on the brain-wide scale [14–16]. However, the spatial and
temporal resolution of non-invasive techniques employed in human studies
is much lower than that achievable in invasive animal experiments, making
quantification of fluid motion in PVSs challenging [17].

To complement and direct future experimental measurements, several
notable brain-wide models of glymphatic fluid motion have been developed.
Analytical models of fluid transport of individual PVSs have been used
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to explore mechanisms driving flow [18,19]. The first brain-wide model of perivascular fluid flow [20] used a branching
tree model of PVSs. This model estimated the hydraulic resistance of branching pathways and was used to ask which
conditions could reproduce previously measured flow rates without the total pressure drop exceeding a theoretical limit.
Another brain-wide model [21] used the model geometry shown in figure 1, accounting for interconnected loops present in
the pial (surface) vasculature [23]. A global pressure drop was selected to reproduce previously measured velocities. All such
models suffer from considerable uncertainty in some of the parameters needed to estimate hydraulic resistances. A sensitivity
analysis subsequently performed on the model of Tithof et al. [21] indicated that the total conductance of the model was highly
dependent on the permeability of penetrating PVSs, suggesting the need for more accurate measurements of that quantity [24].
Models such as these are helpful in guiding in vivo experiments.

While brain-wide fluid transport models have offered useful insight into possible mechanisms that drive flow, no brain-wide
models of solute transport through PVSs as well as brain tissue have yet been developed. Several previous solute transport
models have considered solute motion through porous brain tissue alone [25–27], PVSs alone [28], or through the entire
brain [29]. Additional models have used compartments to represent possible different fluid pathways rather than accounting
for PVS geometry explicitly [30,31]. Studies of solute transport are essential because neurodegenerative disorders are often
caused by accumulation of toxic solutes [32–34]. Solutes are removed more efficiently during sleep, when PVSs expand [14]
and brain tissue becomes more permeable [35]. Further research on solute transport through glymphatic pathways and brain
tissue is needed to understand the relationship between glymphatic clearance, sleep and the development of neurodegenerative
diseases.

In this study, we expanded the hydraulic network model described by Tithof et al. [21] (figure 1a–c) to solve for steady-state
solute transport in the PVSs around arteries and the adjacent parenchyma (figure 1d,g). We calculated solute transport through-
out the network for simulations in which the average fluid velocity in pial PVSs matched experimental measurements [7,21,24].
First, the hydraulic network model was run with the pressure drop for which the mean velocity in the first three generations of
pial segments was 18.7 µm s−1 (figure 1d), to match measurements of CSF speed in pial spaces along the middle cerebral artery
in mice [7]. Then, the steady-state, one-dimensional (1D) advection–diffusion equation was solved analytically in each network
segment. We then varied 11 geometrical parameters of the model, repeatedly simulating, to determine how solute transport
rate, total concentration gradient and parenchymal concentration varied with the geometry, using an approach like that of
Boster et al. [24]. We also explored which parameters are important for realistic model behaviour, as well as for sleep–wake
variations of glymphatic influx and solute transport. These sensitivity analysis results can inform future in vivo experiments, as
they highlight the parameters of greatest impact for estimating solute transport.

2. Methods
2.1. Solute transport equations in perivascular spaces and parenchyma
The network of PVSs in this model represents the middle cerebral artery and the penetrating arteries that descend from it, as
introduced by Tithof et al. [21]. We simulated a dye injection, for which there is a constant high concentration of solute at the
inlet, arbitrarily set to a concentration value of 100. We then assumed solute clearance along perivenous efflux routes to be fast
relative to the time scale for dye injection experiments, which generally are analysed 30 min after injection [22]. Thus, we fix a
zero concentration condition at all pericapillary and parenchymal outlets. This assumption of fast solute clearance is common in
previously published models of solute transport through the parenchyma [25,36].

We approximated PVSs as 1D because they are long and thin and transport solutes primarily along their lengths. We
modelled the PVS network as a collection of connected segments. Steady-state solute concentration in a 1D segment was
governed by

(2.1)ui∂ci∂z = Di∂2ci
∂z2 ,

where i is the segment number, ci is the concentration in that segment, ui is the average velocity, z is the position along the
segment and Di is the solute diffusion coefficient. This ordinary differential equation can be solved by

(2.2)ci = AiDiui euiz/Di + Bi,
where Ai and Bi are constants determined by boundary conditions.

The existing brain-wide fluid model allowed for the possibility that capillary PVSs provide a fluid pathway linking arterial
and venous PVSs, but when run, the model almost always predicted that little fluid flowed along capillary PVSs. Instead, the
dominant pathway in simulations involved fluid flow through the walls of the penetrating PVSs and then outward through the
brain parenchyma [21]. There, it passes through extracellular space, so we modelled the parenchyma as a porous medium, with
the approximations that arterial PVSs are long and straight, and that the surrounding parenchyma is axially symmetric around
the PVS. The Darcy equation that governs the flow is therefore 1D and has solution u = qr̂ (2πr)−1, where u is the (superficial)
fluid velocity, q is the volume flow rate per axial length of PVS, r̂  is the unit vector in the cylindrical radial direction and r is
the cylindrical radius. Again using the same symmetry assumptions, the solute concentration in segment i of the parenchyma is
governed by
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(2.3)q
2πr ∂ci∂r = Di ∂2ci

∂r2 + 1r ∂ci∂r .

The solution is

(2.4)ci = (r/R)qi/(2πDi)(Xi − Yi)Yi,
where Xi and Yi are again unknown coefficients of integration and R is the radius of the parenchymal segment.

To determine the two unknown coefficients in every segment, we set the concentrations of the network inlet and outlets
as boundary conditions and solved the resulting system of equations. Where segments met, concentration was required to be
continuous and solute influx was required to equal solute efflux. The solute flux in a PVS is given by

(2.5)Ji = Si ciui − Didcidz ,

where Si is the area through which the solute passes. Using the expression for ci given by equation (2.2), the solute flux in a PVS
becomes

(2.6)Ji = SiBiui.
The solute flux in a parenchymal segment is given by

(2.7)Ji = 2πrℎ ciui − Didcidr ,

where ℎ is the axial length of the parenchymal segment. Using the expression for ci given by equation (2.4), the solute flux in a
parenchymal segment becomes

(2.8)Ji = πrℎYiui.
Thus, at a bifurcation, we require that the total solute flux entering the bifurcation, Jin, equals the total solute flux exiting the
bifurcation, Jout. At pial bifurcations, some solute efflux is due to CSF escaping into the subarachnoid space, as set by Epial, the
fraction of fluid that escapes [24].
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Figure 1. (a–c) The modelled perivascular geometry, with colours indicating different vessel types, adapted from [21]. Blue and pink dashed lines surround the model
regions that are enlarged in (b,c). (b) Hydraulic resistances model pial PVSs (black), penetrating PVSs (red) and all other segments. (c) Capillary PVSs (green) and
parenchymal segments (purple) branch from each penetrating PVS. (d) The velocities in the first three generations of pial PVSs are used to calculate the appropriate
pressure drop. For all simulations, the mean velocity in these pial segments is set as 18.7 μm s−1 to match corresponding velocity measurements along the middle
cerebral artery in mice [7]. (e) In vivo measurements of 3 kDa dextran concentration in a mouse hypothalamus, 30 min after intracisternal injection, adapted from
[22]. Penetrating PVSs are identified with asterisks. (f) The fluorescence measured along the penetrating PVSs, as indicated by stars in (e), adapted from [22]. The error
bars indicate the standard deviation of measurements from n = 4 mice [22]. (g) The average concentration in each segment, predicted by an example simulation. The
concentration was held at 100 at the inlet and 0 at the outlets.
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2.2. Numerical implementation
Equations (2.6) and (2.8) together form a system of linear equations, which we solved in matrix form in MATLAB. The unknown
coefficients were placed in a column matrix called A, and inhomogeneous terms, namely the applied concentration at the inlet,
were placed in a column matrix called R. The known variables multiplying each unknown coefficient were placed in a sparse

square matrix L. The matrix equation L × A⇀ = R⇀ then represented the entire system.
We determined the matrix of unknown coefficients using the generalized minimum residual method in MATLAB, which

iteratively solves the linear equation A = inv(L) × R. Variable-precision arithmetic was necessary for segments with a large Péclet
number because their outlet concentrations depend on ePe. The Péclet number, which is the ratio of solute advection to diffusion,
is defined as Pe = ul/D, where u is the velocity, l is the length of each segment and D is the diffusion coefficient. The condition
number of the matrix L was large in most simulations. A typical simulation result, which shows the average steady-state
concentration, appears in figure 1g.

To provide enough known values to solve this system of equations, it is necessary to prescribe values for the concentration at
all inlet and outlet points. The units of concentration in this model are arbitrary, with the inlet concentration assigned a value of
100, while the outlet concentrations are assigned a value of 0.

2.3. Diffusion of dextran through open and porous perivascular spaces
Modelling solute transport requires first choosing a solute of interest. Many in vivo experiments, including that of Mestre et al.
[22], used Texas Red-conjugated dextran with molecular weight 3 kDa. The diffusion coefficients of dextran are well studied.
In a dilute agarose solution, the free diffusion coefficient was found to be 2.33 × 10−10 m2 s−1, and in a cortical slice, the effective
diffusion coefficient was found to be 8.11 × 10−11 m2 s−1 [37]. We used these values as diffusion coefficients in the pial PVSs and
the parenchyma, respectively.

The effective diffusion coefficient is a function of the tortuosity of the space λ: Deff = D/λ2. While measurements of the
tortuosity and porosity of the penetrating PVSs and capillary PVSs are unknown, permeability can be estimated from tortuosity
using the Kozeny–Carman equation [38]:

(2.9)κ = α3λS2(1 − α2)
,

where κ is the permeability, α is the porosity, λ is the tortuosity and S is the surface area. Experimental validation is needed
to confirm the tortuosity of the penetrating and capillary spaces, but as an initial approximation, the effective diffusivity was
assumed to vary as a function of permeability.

In a given simulation, the effective diffusion coefficient for a porous PVS was scaled between the diffusion coefficient for an
open space and the diffusion coefficient in the parenchyma. Because the range of permeabilities is several orders of magnitude,
the scaling is based on the log of the permeabilities. The maximum permeability for penetrating and capillary spaces in table
1 corresponds to the equivalent permeability of an open PVS [21], in which case the effective diffusivity is the free diffusion
coefficient D. Since the measurement of the diffusion coefficient in brain tissue was not associated with a specific value of
permeability or tortuosity [37], this was treated as a minimum value for all diffusion in brain tissue or PVSs. Thus, in the case
where a PVS is less permeable than the parenchyma, the low-permeability PVS and parenchyma both have a diffusivity of
8.11 × 10−11 m2 s−1.

2.4. Quantifying global concentration gradients
It is useful to quantify global variation of concentration. To do so, we used the Dirichlet energy E(c) on the network’s line graph,

defined as

(2.10)E(c) = c⇀TLL c⇀,

where c⇀ is an array with a length equal to the number of segments in the network containing the average concentration in each
segment and LL is the Laplacian of the line graph, with indices of −1 indicating which segments are connected. Thus, E(c) is the

sum of the squared differences between all connecting segments. Large values indicate greater variation and often correspond
to high concentration in the pial and penetrating spaces with low concentration in the capillary and parenchymal spaces.

2.5. Model parameters
In total, the hydraulic network model requires 23 material and geometrical parameters as inputs, and the solute transport model
requires two additional parameters describing the diffusion in the pial PVS and parenchyma, since the diffusion coefficient in
the penetrating and capillary PVS scales with the permeability. As the model includes geometrical and material parameters
that are difficult to measure experimentally, there is considerable uncertainty in some of those parameters. Table 1 lists 11
parameters varied for this sensitivity analysis. These are the same parameters varied by [24]. The majority of these parameters
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(Epial, κpen, κcap, Lcap, rcap, κpar, T and Fc) have not been carefully measured experimentally, leading to a large range of measured
or estimated values. Γpial and Γpen were included because PVS area can vary significantly with location in the brain [40]. The
upper bound of the capillary area ratio was set higher than in Boster et al. [24] because recent patient-specific models of solute
transport in human brains found that low resistance could induce pericapillary flow [46], a possibility we wanted to consider.
Other parameter ranges were left unchanged from Boster et al. [24].

The simulations maintained fixed values for several model parameters throughout the sensitivity analysis. One such
parameter was the number of pial PVSs, which follow a branching hexagonal model originally proposed by Blinder et al. [50].
This model comprises 45 hexagonal pial units extending across nine generations, with 324 penetrating arterioles descending
from the pial vasculature. The number of arterioles closely aligns with measurements near the middle cerebral artery [51].
Another fixed parameter, the number of pericapillary branches associated with each penetrating arteriole, was set at 11,
consistent with measurements by [23]. Thus, the number and location of PVSs were consistent across simulations. Additionally,
the artery diameters for pial and penetrating arteries are variable parameters in the model, which we opted to fix in the
sensitivity analysis. Given the area ratios for both types of PVSs were varied in our analysis, independent adjustment of inner
diameters was unnecessary. Lastly, the shapes of PVSs, quantified by Tithof et al. [52], remained the same in each simulation.

Varying the values of the 11 uncertain parameters across their ranges and using Latin hypercube sampling, we solved
the model for 1000 different combinations of parameter values. Any parameter whose range spanned less than one order of
magnitude was sampled uniformly, while any parameter with greater span was sampled with a log-uniform distribution.

In each simulation, we applied a global pressure drop sufficient to drive an 18.7 µm s−1 flow along the first three pial PVS
generations, to match in vivo measurements in mice [7]. This is different from the pressure drop applied previously, which
was chosen to drive a flow with mean velocity 18.7 µm s−1 along all nine pial generations [21,24]. Accordingly, velocities were
typically lower in our simulations than in previous work.

2.6. Sleep–wake simulations
Glymphatic flows are more substantial during sleep [35,53], so we also simulated sleep and wakefulness. In all simulations
in the sensitivity analysis, the velocities in the pial PVSs were set to match velocities observed in mice anaesthetized with
Ketamine-xylazine [7]. Solute transport in mice under Ketamine-xylazine is very similar to solute transport in naturally sleeping
mice [35], so these simulations are also representative of solute transport following a period of natural sleep.

Following the procedure of [21], we modelled the awake brain by decreasing the permeability of the parenchyma by a factor
of 5.5 but keeping all other parameters, including the applied pressure drop, the same. The total resistance in the parenchyma
depends both on the resistance of the extracellular spaces in parenchymal tissue RECS, as well as on the resistance of the
astrocyte endfoot gaps RAE. This is shown in figure 1c, where these two resistances are in series. Simulating wakefulness by
altering the parenchymal permeability in this way linearly increases RECS by a factor of 5.5, while RAE remains unchanged.

2.7. Criteria for realistic transport
While boundary conditions were chosen to produce appropriate flow speeds in the pial PVSs, additional information about
brain fluid motion can also be applied to check if model predictions are consistent with real glymphatic transport. Though
the global pressure drop across a murine glymphatic system has never been measured, it is expected to be less than 1 mmHg.
Additionally, since good perfusion would be necessary for effective glymphatic transport, it is expected that at least 50% of the

Table 1. Parameter range for the sensitivity analysis on solute transport. Ranges are the same as those used for a sensitivity analysis on model conductance [24], with
the exception of capillary area ratio. The upper bound of capillary area ratio has been increased to allow for low-resistance capillary PVSs.

parameter lower bound upper bound

pial fraction pial efflux Epial 0 [39] 0.8 [39]

pial PVS area ratio Γpial 0.5 [7,40] 2 [7,40]

penetrating penetrating PVS area ratio Γpen 0.5 [7] 2 [7]

penetrating PVS permeability (m2) κpen 4.50 × 10−15 [41] 3.71 × 10−12 [42]

capillary capillary PVS permeability (m2) κcap 2.25 × 10−18 [43] 4.66 × 10−14 [44]

capillary area ratio Γcap 0.07 [45] 2 [46]

capillary effective length (m) Lcap 5.00 × 10−5 [21] 4.00 × 10−4 [21]

capillary radius (m) rcap 1.50 × 10−6 [47] 4.5 × 10−6 [47]

parenchymal parenchyma permeability (m2) κpar 1.2 × 10−17 [42] 4.5 × 10−14 [36]

endfoot wall thickness (m) T 2.00 × 10−7 [48] 1.00 × 10−6 [48]

endfoot cavity fraction Fc 0.003 [48] 0.37 [49]
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fluid efflux from PVSs to parenchyma occurs distal to the first of the 11 bifurcations along the penetrating PVSs. This bifurcation
occurs about 90 µm below the pial surface, and the fraction of fluid that exits the perivascular space at that first bifurcation is
defined as ϕ90. Simulations that failed to meet either of these expectations were deemed unrealistic, as in a prior study [24].

An additional exclusion criterion was applied based on our expectations for solute transport. Prior in vivo measurements
found concentration of 3 kDa dextran to be nearly uniform within 500 µm of the cortical surface, as shown in figure 1e,f
[22]. While the concentration along penetrating PVSs, measured via fluorescent intensity, was approximately constant, error
bars on that measurement extending approximately ±10% of the mean indicated that there could still be some variation in
solute concentration along penetrating PVSs (figure 1f). Accordingly, we deemed a simulation unrealistic if the average solute
concentration at cortical depths of approximately 500 µm was less than 80% of the concentration in penetrating PVS prior to the
first pericapillary bifurcation.

Furthermore, we simulated sleep versus wakefulness, allowing an additional criterion to be considered. The previous realism
criteria were determined from experiments on anaesthetized mice, and thus are only applicable to simulations of sleep, not
wakefulness. However, sleep increases glymphatic solute clearance [35] as well as flow speeds [53,54]. For solute injected
directly into brain tissue, glymphatic influx rates are 1.5-fold faster [53] due to circadian rhythms alone. Similarly, solute
clearance rates are up to threefold [35] faster during the early stages of sleep than during wakefulness. Thus, we propose that
simulations are realistic if volume flow rates increase by at least 1.5-fold between sleep and wake.

3. Results
3.1. Simulations of solute transport by advection and diffusion
First, to characterize typical solute distributions predicted by our model, we averaged the concentrations over all segment
types, producing a single-value average for each of the 1000 simulations, to estimate probability density functions (PDFs) in
pial, penetrating, capillary and parenchymal segments, as shown in figure 2a–d. Concentrations were consistently high in the
pial and penetrating segments and low in the parenchyma, with more variation in capillary PVSs. The concentration gradient
E(c) varied similarly. As concentrations in the pial and penetrating PVSs were almost always high and concentrations in the

parenchyma were low, the variation in pericapillary concentration dominated the variation in E(c). Since average velocities near

the inlet were set to 18.7 µm s−1, the volume flow rate at the inlet Qin varied by only a factor of four (figure 2f).
While trends in average concentration were similar in realistic and excluded simulations, PDFs of realistic simulations in

figure 2a–e had sharper peaks, implying lower variability. In particular, most simulations with small cpen were unrealistic (figure
2b). Thus, most simulations with small E(c) were also unrealistic, since E(c) was strongly affected by the difference between cpar,

which was always small, and cpen (figure 2b,f). The median concentrations in each segment for realistic simulations were cpial =
99.3, cpen = 99.1, ccap= 55.6 and cpar= 4.8.

Next, we considered the relative importance of advection (solute transport by bulk fluid motion) and diffusion in pial PVSs,
penetrating PVSs, capillary PVSs and parenchyma. In pial and penetrating PVSs, the Péclet number (the ratio of advective to
diffusive transport) typically exceeded unity, indicating that advection transported 3 kDa dextran more rapidly than diffusion,
as shown in figure 2g. However, in capillary PVSs and the parenchyma, the Péclet number was typically less than unity,
implying that diffusion transported 3 kDa dextran more rapidly than advection.

Next, we considered the fraction of solute mass, Mfrac, found in pial PVSs, penetrating PVSs, capillary PVSs and parenchyma.
Nearly all solute was found in the parenchyma, whose volume far exceeded those of PVSs, in all simulations. The median
fraction of solute found in the parenchyma across all simulations was 0.9994. Pial PVSs, the vessel type which held the second
greatest fraction of solute, contained at most 0.1% of the solute; penetrating and capillary PVSs contained less. The average
concentration in the parenchyma is thus particularly important for characterizing solute transport.

3.2. Global sensitivity
To quantify the sensitivity of model predictions to different parameters, we computed several correlations. Figure 2h suggests
the median parenchymal concentration cpar was the most important quantity for solute transport, as most solute was found in
the parenchyma. Therefore, in figure 3a, we show the Pearson’s correlation coefficient for the relationship between each input
parameter and cpar. A coefficient magnitude close to unity indicates a strong linear correlation and whereas a coefficient near
zero indicates no correlation. The pial area ratio Γpial had the greatest impact on cpar.

To better understand the relationship between cpar and Γpial, we also explored how the underlying fluid motion was
influenced by the input parameters (figure 3b,c). Γpial, κpen and κparen had the strongest correlation with parenchymal volume
flow rate Qpar. More significantly, the volume flow rate at the inlet Qin scaled nearly linearly with Γpial. The global sensitivity ofcpar to Γpial can be attributed to an increase in flow promoting solute transport, both by increasing flow through the parenchyma
and by delivering more solute along pial and penetrating PVSs.

To further explore the relationship between input parameters and solute transport, we also calculated the correlation
between E(c) and the input parameters. Unlike cpar and Qpar, the concentration gradient was not especially sensitive to the pial
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parameters. Instead, the capillary parameters were relatively important. However, the concentration gradient of the network
was not highly sensitive to any single input parameter.

3.3. Local sensitivity
To demonstrate how the sensitivity varied across the parameter space, we isolated the effect of each input parameter using
a local sensitivity analysis. For each simulation shown in figures 2 and 3, we perturbed each of the 11 input parameters Xi
(listed in table 1) by 5% and determined how that change affected either cpar or Qin, both shown to be important by the global
sensitivity analysis. A local sensitivity coefficient of 10 indicates that perturbing parameter Xi by 1% of its value resulted in a
10% change in cpar or Qin.

Figure 4 shows the results. No single input parameter always induced large changes in cpar or Qin, though each induced
significant change in some simulations. This fact contrasts the prior local sensitivity analysis on hydraulic resistance [24], for
which small changes in capillary parameters produced almost no change in total conductance. While we confirmed that the
conductance was changing locally, per the condition on pial velocities, these alterations induced changes in the applied pressure
drop. As a result, the fluid motion typically changes slightly and can change significantly in response to any change in input
parameter. On average, cpar was much more locally sensitive to any given parameter than was Qin. However, when ranking
the sensitivity coefficients for each perturbation in the initial 1000 simulations, the pial efflux Epial was most likely to have the
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largest sensitivity coefficient for both cpar and Qin, as shown in figure 4b,d. cpar and Qin were most sensitive to changes in Epial

in 65.0 and 76.1% of simulations, respectively. While local changes in any of the input parameters influenced fluid and solute
transport, Epial had the greatest effect on Qin, with implications for parenchymal solute delivery.

3.4. Parameter combinations leading to realistic predictions
Few in vivo measurements are available for constraining the predictions of our model, but we can use expectations about proper
glymphatic function to say more about which parameter combinations lead to realistic or unrealistic predictions. Specifically,
we assert that realistic predictions must have a global pressure drop less than 1 mmHg, have good CSF perfusion of brain
cortex, and have near-uniform solute concentration in the outermost 500 µm of cortex (see §2). Previous research emphasized
the significance of the relationship between penetrating permeability (κpen) and pial efflux (Epial) for achieving realistic fluid
motion [24].

Figure 5a shows that penetrating permeability κpen remained an important parameter in our simulations. When penetrating
permeability was low, the pressure drop often exceeded 1 mmHg, an unrealistic result. While not all simulations with a low ofκpen required a large pressure drop to drive realistic pial flow, nearly all simulations for which there is an unrealistically large
pressure drop occurred when κpen < 10−13 m2 s−1. Correspondingly, figure 5c shows that for κpen ≥ 7 × 10−14 m2 s−1, predictions were
likely to be realistic.

Similarly, we find that the parenchymal resistance Rpar is important for realistic fluid efflux (figure 5b). The parenchymal
resistance is the resistance through the astrocyte endfoot gaps plus the resistance in the porous tissue of the parenchyma. When
the parenchymal resistance is low, fluid in the network of PVSs enters the parenchyma at the first available bifurcation, leading
to poor fluid perfusion.

Figure 5d shows which predictions were realistic or unrealistic, depending on the permeability of penetrating PVSs, κpen, and
the total parenchymal resistance, Rpar. When both were low, no simulations made realistic predictions. This is because small κpen

led to unrealistically high pressure drops, while small Rpar led to unrealistically poor perfusion (figure 5a,b). The equation of
the dashed line which bounds the region where all simulations are unrealistic is log(Rpar) = − 1.27 × log(κpen) − 24.60, where Rpar

has units of mmHg × min ml−1 and κpen has units of m2. This relationship allows us to narrow the parameter space based on the
relationship between the values of Rpar and κpen.

3.5. Simulations of sleep and wakefulness
Next, we expanded our analysis by pairing each simulation used in the global sensitivity analysis with a corresponding
wakefulness simulation. To simulate wakefulness, the resistance of the parenchyma was increased to match observed sleep–
wake differences in the exchange of CSF with interstitial fluid (ISF) [21]. With these paired sleep–wake simulations, we explored
the network model’s ability to produce the enhanced glymphatic influx that has been reported during sleep [35,53].

Figure 6a presents a global sensitivity analysis of the ratio of total volume flow rates during sleep and wake, Qsleep/Qwake.
While most input parameters were not strongly correlated with Qsleep/Qwake, there was a negative correlation with the
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parenchymal permeability κpar. Figure 6b shows Qsleep/Qwake and κpar for each simulation. Large parenchymal permeability
apparently prohibited substantial sleep–wake flow variation. Figure 6c demonstrates that the ratio of concentration in the
parenchyma during sleep and wake, cpar, sleep/cpar, wake, and Qsleep/Qwake tended to scale with each other. There are some simula-
tions for which the flow rate ratio exceeded the parenchymal concentration ratio. This effect was previously found to be caused
by a significant portion of the fluid being directed into capillary pathways [21].
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To further explore the effect of parenchymal resistance on solute transport, figure 6d,e depicts how cpar, sleep/cpar, wake varied
with the total parenchymal resistance and the ratio of parenchymal resistances during sleep and wake. cpar, sleep/cpar, wake tended
to increase with Rpar, sleep and was never large when Rpar, sleep was small. Since brain tissue resistance varies inversely with κpar,
this trend is related to the weakly linear relationship shown in figure 6a,b. Figure 6e demonstrates that relative sleep-to-wake
parenchymal solute concentration tended to increase only if the relative sleep-to-wake parenchymal resistance significantly
increased. The total parenchymal resistance Rpar, sleep was the sum of the resistance to flow through endfoot gaps and the
resistance to flow through brain tissue, as these resistances are in series in this model (figure 1c). Since only the resistance of the
tissue was increased for wakefulness simulations, if Rpar, wake/Rpar, sleep ∼ 1, the resistance of the endfoot gaps was much greater
than the resistance of the brain tissue. In this scenario, the sleep–wake variations in tissue permeability had less impact on solute
transport.

3.6. Sleep, wakefulness and realism of predictions
Next, we considered Qsleep/Qwake > 1.5 as its own exclusion criterion, based on the expectation of increased volume flow rates
in pial spaces according to circadian rhythms [53]. First, we examined the values of Qsleep/Qwake in simulations deemed realistic
or unrealistic based on the original three criteria (pressure drop less than 1 mmHg, good fluid perfusion, and near-constant
solute concentration along the penetrating PVSs). As shown in figure 7a,b, Qsleep/Qwake depends on the penetrating permeabilityκpen and the parenchymal resistance Rpar. Qsleep/Qwake was small when the penetrating PVSs were less permeable (corresponding
to high resistance), and when the parenchymal resistance was less than 106. It is worth noting that Rpar depends on both the
resistance to flow through the endfoot gaps as well as resistance to Darcy flow through the porous brain tissue. Interestingly,
simulations with Qsleep/Qwake > 1.5 were also more likely to be deemed realistic based on the original three criteria, which pertain
to the fluid and solute behaviour (figure 7c).

When using Qsleep/Qwake > 1.5 as the sole criterion for realism, we found that simulations were much more likely to be
realistic when κpen was high and Rpar was high (figure 7d). The dashed line is specified by log(Rpar) = − 1.07 × log(κpen) − 15.15, a
relationship intriguingly similar to the one in figure 5d, although fewer simulations had an appropriate Qsleep/Qwake compared
with those that simply met the realistic solute and fluid transport criteria. As the pressure drop was the same for the paired
sleep–wake simulations, changes in volume flow rate were caused by changes in resistance. When the parenchyma had a
higher resistance, changing its permeability by a factor of 5.5 could induce a greater change in the model’s resistance, since
the parenchymal resistance was larger than the astrocyte endfoot resistance, thus increasing Qsleep/Qwake. That said, those sleep–
wake changes in parenchymal resistance could strongly affect the global volume flow rate only if resistances elsewhere were
relatively low. Low-resistance penetrating PVSs are possible only with large κpen, which affects resistance more than any other
parameter [24]. Thus, realistic sleep–wake variation of volume flow rate requires that both Rpar and κpen be large.

3.7. Model sensitivity as a function of outlet concentration
Until this point, we have modelled the injection of a dye that is rapidly removed from the parenchyma along efflux routes
where the solute concentration is assumed to be zero. This assumption is common in glymphatic modelling [25,36]. However,
efflux is difficult to measure in vivo and the exact concentration along efflux routes remains unknown. To explore the implica-
tions of this uncertainty, we performed additional simulations, setting the concentration at the outlet cout to 10, 25 or 50, leaving
other parameters unchanged.

Figure 8a shows PDFs of the average parenchymal concentration as the outlet concentration was increased. For the cout = 0
simulations, the average parenchymal concentration was always low, with a median value of 4.3. However, when cout > 0,
the median parenchymal concentration dramatically increased, climbing to 46.8, 56.6 and 70.7 when cout was 10, 25, and 50,
respectively. The sensitivity of solute transport to input parameters also depended on cout. Figure 8b repeats figure 3a, and
figure 8c–e shows the same correlation coefficients when cout was 10, 25 and 50, respectively. As cout increased, Γpial became
less important. Figure 8c,d shows that when 0 < cout < 50, Γpial, κpen and κpar were relatively important, though their correlation
coefficients never exceeded 0.4 in magnitude. Figure 8e shows that as the outlet concentration continued to increase, approach-
ing the inlet concentration, the model became less sensitive to input parameters, as expected. These findings suggest that
without a low-concentration efflux path, parenchymal solute concentration remains high and good clearance is not possible,
regardless of parameter values.

4. Discussion
In this sensitivity analysis, we found that pial area ratio Γpial and pial efflux Epial are important parameters for fluid and
solute behaviour throughout the network. Additionally, the permeability in parenchymal κpar and penetrating spaces κpen are
important in determining whether a model will have realistic fluid and solute transport properties. In fact, we can narrow our
parameter space to exclude simulations for which the ratio of penetrating permeability to parenchymal resistance is small. Even
with the variations in solute transport behaviour induced by these four parameters, over the time required to reach steady state,
the solute tends to saturate the pial and penetrating PVSs, with concentrations in the pericapillary and parenchymal spaces
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decreasing due to the 0 concentration boundary condition at the outlets. When the concentration at the outlets is allowed to
increase, parenchymal concentration becomes less strongly dependent on individual model parameters.

In most realistic simulations, the average concentration in the pial and penetrating spaces is close to 100, the inlet concentra-
tion. The high average concentration in these spaces is, in part, the result of high average Péclet numbers. In figure 2e–h, the
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Péclet numbers indicate that solute transport in penetrating PVSs is usually dominated by advection, while solute transport
in the parenchyma is always dominated by diffusion. This is consistent with previous estimates of solute transport [38,55].
Necessarily, there is little variation in the Péclet number along pial PVSs, as the mean velocity in the first third of the model is
set. In a PVS segment where transport is purely due to advection (Pe = ∞), equation (2.1) simplifies to

(4.1)u ∂c∂z = 0.

Thus, we expect segments with a high Péclet number to have a near-constant concentration. In the case where several advection-
dominated segments are connected to the inlet, all such segments should have an average concentration nearly equal to the inlet
concentration, according to equation (4.1). While the Péclet numbers are not generally high enough that diffusion is completely
negligible, the reasonably large Péclet numbers combined with a large concentration gradient between the inlet and outlets help
transport solute along PVSs and into the parenchyma and capillary PVSs. Additionally, the solute modelled is a dextran with a
low molecular weight, which is highly diffusive. Many solutes naturally produced in the brain have lower diffusion coefficients.
For such solutes, the Péclet number will be greater than what we report for this study. Lastly, despite the uncertainty in input
parameters, in figure 2, the PDF peaks sharpen when realistic solute transport criteria are considered. Thus, our model predicts
similar transport of injected solutes without strong dependence on parameters.

One important consideration in this model is the role of the diffusion coefficient in simulations. The diffusion coefficients
used in this sensitivity analysis were determined experimentally [37,56]. Quantifying diffusion coefficients within brain tissue
presents challenges, with observed variability suggesting that the actual diffusion coefficient of 3 kDa dextran may deviate
by approximately ±10% from the mean value used in these simulations [37]. However, across the range of parameters used
in the sensitivity analysis, solute transport was nearly always dominated by advection in the PVSs and diffusion in the
parenchyma (figure 2g). Thus, varying the diffusion coefficient by 10% will have negligible impact on transport within the
PVSs. Varying the diffusion coefficient in the parenchyma within that small range will increase or decrease the parenchymal
concentration according to equation (2.4). This predictable change to parenchymal concentration would not substantially
change network-wide solute transport or the correlations between model parameters. Thus, in this sensitivity analysis, we
varied only parameters of physical brain geometry, not diffusion coefficients.

Similarly, for solutes much larger than 3 kDa dextran, we expect advection to play a larger role. Some proteins found in brain
tissue, such as Ovalbumin, have an effective diffusion coefficient an order of magnitude smaller than that of 3 kDa dextran [56],
causing diffusion to play a relatively smaller role in transport. Since advection dominates in most PVSs even for 3 kDa dextran,
we predict the same solute transport in PVSs for any solutes with a smaller diffusion coefficient. Only the relative importance of
diffusion in the parenchyma will change. However, for molecules more diffusive than 3 kDa dextran, such as sucrose or various
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ions in the brain [56], diffusion will hold greater relative importance across the network. For sufficiently small solutes, advection
will no longer dominate in most PVSs. This may lead to simulations in which the PVSs do not saturate with solute, and instead,
the concentration in PVSs decreases significantly further away from the inlet. Solute transport into the parenchyma depends
both on advection in the parenchyma and on the inlet PVS concentration (equation (2.4)). Thus, for small, highly diffusive
molecules, solute transport from the inlet to brain tissue would be reduced.

The total mass in the network, dominated by parenchymal concentrations, is linearly sensitive to Γpial (figure 3). This
sensitivity is caused by the linear relationship between total volume flow rate through the model and the area of the PVS at the
inlet. Since the resistance of pericapillary spaces is high relative to the resistance of the parenchyma, increasing the volume flow
rate at the inlet typically increases the volume flow rate in the parenchyma as well. Moreover, increasing the volume flow rate
causes advection to play a greater role in the pial and penetrating spaces, assisting in the delivery of solute to the parenchyma.
Interestingly, pial PVS area is known to increase with age and in humans, possibly due to inflammation [57], making this
parameter particularly important for simulations of healthy and diseased brain states. However, Γpial is less important if the
boundary condition at the outlet of the parenchyma is greater than zero, as is shown in figure 8. When the inlet and outlet
concentrations differ less, parameters affect the parenchymal concentration less. We also see in the local sensitivity analysis
(figure 4) that small changes in Epial are more likely to significantly affect cpar. The local sensitivity coefficient is independent of
the uncertainties in the parameter range. Of all input parameters, increases in Epial result in the greatest increase in volume flow
rate through the network. Thus, Γpial and Epial are the uncertain parameters that are most likely to influence solute transport.

We find that there are nonlinear correlations between the two criteria for realistic fluid motion and the parameters κpen andRpar (figure 5). The pressure drop depends strongly on κpen, which is consistent with results reported in Boster et al. [24]. Rpar

depends on a combination of parenchymal permeability, endfoot cavity fraction and endfoot wall thickness. When the resistance
to flow into the parenchyma from penetrating PVSs is lower, fluid is more likely to exit penetrating PVSs near the surface of the
brain, leading to poor fluid perfusion. From this, we identified a region of parameter space for which no realistic simulations
could occur.

We find that realistic sleep–wake behaviour depends on appropriate values of both parenchymal resistance to penetrating
permeability. Figure 6 shows that in simulations of glymphatic transport in sleeping mice, the sleep-associated increase in
volume flow rate and corresponding increase in parenchymal solute concentration depend on the permeability of the paren-
chyma. While the relationships are not linear, figure 6 shows that for low parenchymal resistance, the concentration in the
parenchyma does not increase much during sleep. However, if parenchymal resistance is larger, the increase in resistance
during wakefulness significantly affects the volume flow rate (figure 6b,e). This parameter is inversely related to κpar. While the
solute transport quantities were not shown to be highly linearly sensitive to κpar during the initial sensitivity analysis (figure 3),
for accurate sleep–wake simulations improved measurements of κpar are necessary.

The parenchymal resistance depends on the resistance to flow through brain tissue and through the endfoot sheath.
Previously, the resistance to flow through gaps in astrocyte endfeet was estimated to significantly hinder fluid and solute
transport out of the vessel. Specifically, the effective diffusion coefficient was approximately an order of magnitude greater
in astrocyte endfoot sheaths compared with brain tissue [58]. Similarly, we found that the resistance per length of astrocyte
endfoot gaps is large relative to the resistance per unit length in brain tissue. In our simulations, the astrocyte endfoot sheath
is two or three orders of magnitude thinner than the simulated brain tissue region, having a thickness of only 0.2–1 µm.
Nevertheless, a mean of 8.9% of the total parenchymal resistance Rpar is attributed to RAE in sleep simulations. Figure 6e shows
that solute concentrations in the parenchyma rarely increase significantly unless Rpar, sleep/Rpar, wake > 4.5. This corresponds to a
sleep simulation where RAE contributes at most 28.6% of the total Rpar. While the endfoot gap resistance per length is large
compared with the resistance of brain tissue or of PVSs, the thickness of the brain tissue ultimately allows tissue resistance to
dominate Rpar, producing realistic sleep–wake variations in CSF–ISF exchange when the tissue permeability is changed.

Additionally, the sleep–wake behaviour shown in figure 7 reveals a similarity between simulations that accurately reproduce
fluid and solute transport in a sleeping mouse model (labelled ‘realistic’) and simulations that accurately reproduce variation
of volume flow rate from sleep to wake (i.e. large Qsleep/Qwake). The most striking similarity is between figure 7d and figure
5d. The simulations that exhibit realistic fluid and solute motion in a simulation of sleep also predict a large increase in
volume flow rate for sleep conditions compared to awake conditions. Parameter combinations with a high ratio of parenchymal
and penetrating PVS resistances result in realistic fluid behaviour (pressure drops and fluid perfusion) and realistic solute
behaviour (sleep–wake flow ratios). Specifically, simulations with appropriate fluid and solute transport can only occur if
log(Rpar) ≥ − 1.27 × log(κpen) − 24.60 (figure 5d), and simulations with appropriate sleep–wake flow increases occur only for
log(Rpar) ≥ − 0.42 × log(κpen) − 26.15 (figure 7d). Within the range of parenchymal permeabilities estimated for the murine brain,
the condition on sleep–wake volume flow rates is more restrictive, leading to fewer realistic simulations (figures 5d and 7d). The
fact that the sleep–wake criteria result in both realistic fluid and solute transport increases confidence that our model captures
the real murine brain.

Finally, as the concentration boundary conditions at the outlets increase, the concentration in the parenchyma increases
and the distribution widens with no strong correlations to any input parameter (figure 8). This scenario simulates slower
waste clearance through perivenous efflux routes, for which the steady-state concentration within perivenous spaces would be
greater than zero. Currently, velocities in perivenous spaces have not been measured, making estimations about clearance rates
challenging. Additionally, in many imaging modalities the concentration of solute in the parenchyma following a dye injection
into the cisterna magna is too low to differentiate from background noise [38,59]. This suggests that the outlet concentration and
the average concentration in the parenchyma should remain low, but makes quantitative assessments of modelled parenchymal
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concentrations challenging. Further investigation of perivenous clearance would help elucidate the appropriate boundary
condition for representations of dye injections.

Since this model explores solute transport though fluid pathways that have not been well characterized in vivo, there are
several important limitations to the study. First, little is known about capillary PVSs; even their existence is debated. Fortu-
nately, the parenchymal and penetrating concentrations (figure 3) are not highly dependent on any of the capillary parameters,
and include a wide range of capillary resistances. Second, the capillary effective length Lcap used in the model (table 1) is the
length necessary to produce the appropriate hydraulic resistance, not necessarily the length over which advection and diffusion
occur. While the calculated concentrations in the capillary segments (figure 2) may not be representative of real capillary PVSs,
the response of the parenchymal and penetrating segments to changes in capillary parameters (figure 3) is appropriate.

Furthermore, this is a steady-state, 1D model, and many potential drivers of flow depend on time and higher-dimensional
geometry. As a 1D model, it cannot include Taylor dispersion, which drives solute transport when both advection and diffusion
are present [60], except by using an inflated diffusivity. Oscillatory pressure gradients caused by arterial motion are capable of
driving some amount of the net flow in PVSs [61,62]. Additionally, arterial pulsations may be important in pushing fluid and
solutes into the parenchyma from PVSs [18]. Fluid motion caused by arterial pulsations, whether associated with the cardiac
cycle [7,8] or with functional hyperemia [10,63], cannot be accounted for in a time-independent model. Nor can transitions
between brain states, such as sleep and wake, or transient responses, such as those that follow stroke [64] or cardiac arrest [65].
Upgrading the model to allow time-dependent simulations would broaden its applicability.

5. Conclusions
Models can provide insights into fluid and solute transport in regions of the brain that are hard to explore experimentally.
Low-fidelity models such as the hydraulic resistance model used here do not closely resemble an actual biological system,
but are highly computationally efficient allowing for thousands of repeated simulations. Low-fidelity models are particularly
useful for systems where the geometry of fluid pathways is not sufficiently characterized to develop accurate high-dimensional
models. These results can then guide researchers performing in vivo experiments to identify which of the many difficult
measurements are necessary for creating accurate simulations, and to prioritize those measurements accordingly.

In this analysis, we identify four parameters that significantly affect solute transport through PVSs and brain tissue: Γpial,Epial, κpen and κpar. Of these, Γpial is the easiest to measure in vivo. Recently, Γpial was quantified more accurately in mice [40]
and in humans [14]. However, Epial, κpen and κpar are equally important parameters for model behaviour which will be more
challenging to measure. While solute transport is not linearly sensitive to κpen in our model, pressure drop and sleep–wake
variation are sensitive. In simulations where the permeability of the penetrating PVSs is low, Qsleep/Qwake is often low as well,
indicating that the model is unrealistic. The investigation into the relationship between κpen and realistic fluid and solute
motion in figure 5 emphasizes the significance of this parameter in the network model. Simulating repeatedly, we found almost
no realistic predictions when κpen < 10−14 m2, so we conjecture that future measurements will indeed find the permeability of
penetrating PVSs to exceed this value. We conclude that measurements of Epial, κpen and κpar must be performed in vivo so that
more accurate, higher dimensional solute transport models can be created.
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