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Introduction

Pial arteries supply blood to the cerebral cortex, forming a 
network on the cortical surface which connects the major 
cerebral arteries to the cortical arterioles. Pial arteries 
range in diameter from 50 to 280 µm in humans.1 Under 
prehypoxia baseline conditions, the diameters of pial  
arteries and penetrating arterioles in mice are 34 ± 8 µm 
(mean ± standard deviation) and 17 ± 5 µm, respectively.2 
However, their diameters are dynamic. Cerebral vessels 
change size in synchrony with the cardiac cycle3 and at 
lower frequencies (slow vasomotion4), including in 
response to changes in metabolic demand for blood (i.e. 
functional hyperemia5–7) or in response to trauma. For 
instance, a reduction in vessel diameter by more than 50% 
has been observed in vasospasm after aneurysmal suba-
rachnoid hemorrhage.8 Diameter fluctuations affect cere-
bral blood flow and can lead to ischemia or hyperemia. 
Diameter fluctuations also drive flow of cerebrospinal 
fluid (CSF) in adjacent perivascular spaces (PVSs),4,9,10 

with implications for clearance of brain wastes.11,12 
Therefore, vessel diameter changes can be an important 
indicator of pathological and physiological conditions.
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Various diameter measurement approaches have been 
used previously. A basic approach is manually measuring 
the diameter from an image, but manual approaches are 
time-consuming and prone to error.13 Lee et al. presented 
an automated feature-based tracking algorithm for measur-
ing the diameter in intravital microscopic videos.13 For 
regions larger than 69 µm, the average error was under 
0.1 µm. However, for smaller regions (such as 17 µm) the 
error was larger, indicating that not enough features were 
captured. Also, the algorithm was unable to capture the 
vessel wall when it was blurry. An experimental photoa-
coustic imaging technique involved delivering laser pulses 
to vessels to induce a pressure transient and create acoustic 
waves to be detected by double ring sensors. The vessel 
diameter was approximated using a mathematical model 
relating the vessel diameter to the pressure wave’s period, 
the speed of sound in blood, and the laser pulse duration. 
However, this technique was unable to measure large ves-
sel diameters (>1.2 mm) due to the frequency response of 
the system.14

Another common approach for an image showing a 
bright vessel with dark surroundings is to take the vessel 
width to be the distance, along a vessel cross section, 
between the two innermost locations where brightness is 
less than half the maximum brightness—the full width, at 
half the maximum. Fischer et al. used a custom ImageJ 
plugin based on this approach.15 Baran et al. applied it to 
optical microangiography, a label-free imaging tech-
nique.16 Will et al. found better accuracy with this approach 
when the reference intensity was chosen to be the median 
intensity outside the blood vessel.17 Glück et al. fitted 
Gaussian intensity profiles to vessel images, then deter-
mined the widths of those fits.18 Applying the approach to 
a Radon transformation of the vessel image, not the image 
itself, usually produces superior results because it uses the 
entire region of interest (ROI), rather than a single line.19

We developed a new method for determining vessel 
diameters using gradient-based edge detection, which we 
call “find image edges” (FIE). In this work, we compare 
the performance of FIE, a Radon transform-based full 
width at half maximum algorithm19 (FWHM), and an algo-
rithm that locates vessel edges using an intensity thresh-
old,20 here called “cross section threshold” (CST).

This paper is structured as follows. First, we explain the 
algorithms for determining diameters. Then, we describe 
two different methods to quantify vessel pulsatility. Next, 
we use those methods to compare diameter estimates pro-
duced by the three algorithms, for synthetic data (where the 
ground-truth diameter is known) and experimental data.

Materials and methods

Find image edges (FIE)

We developed an algorithm for measuring diameter, “find 
image edges” (FIE), that locates vessel edges at places of 

steepest intensity gradients, using MATLAB’s edge-find-
ing algorithm, which uses the Canny method21–23 by 
default. The algorithm first detects edges in each frame, 
and optionally applies a user-defined mask (the same mask 
for the entire video) to eliminate non-vessel edges. If not 
defined by the user, FIE automatically generates the mask 
based on average edges and allows the user to perform fur-
ther refinement. The mask is then dilated to ensure that the 
vessel edge lies within the mask boundaries. The user 
draws “end caps” perpendicular to the vessel axis to 
enclose a region, which is filled in to segment the vessel as 
illustrated in Figure 1(a). The diameter is evaluated by 
dividing the area of the segmented region by the distance 
between the end caps. The visual output from FIE is illus-
trated in Supplementary Figure S1(b).

Cross section threshold (CST)

The “cross section threshold” (CST) algorithm20 locates 
points on vessel edges as places on vessel cross sections 
where brightness drops below a user-specified threshold 
(given as a fraction of maximum brightness). The user 
also marks the vessel centerline, sets the ROI, and speci-
fies the number of (equally-spaced) vessel cross sections. 
Figure 1(b) shows an example. The median diameter 
across all cross-sections is computed for each frame. The 
visual output from CST is illustrated in Supplementary 
Figure S1(a).

Full width at half maximum (FWHM)

The FWHM algorithm is described by Huo et al.19,24 and 
uses the full-width half-max approach on the Radon trans-
formation of an image (Figure 1(c)) to calculate the vessel 
diameter. The key user inputs are the centerline and the 
ROI. The first step in the algorithm is to correct motion 
artifacts by registering the images (with respect to the first 
frame) via cross-correlation on the two-dimensional dis-
crete Fourier transform of the images and applying transla-
tions in the real domain. Then, a Radon transform is 
applied in the direction of the centerline, effectively aver-
aging the intensity in that direction to generate a projection 
profile. A one-dimensional median filter (with a 5-pixel 
window) is applied to smooth the profile. The vessel diam-
eter is defined as the width of the region where the profile 
exceeds its minimum value by at least half the maximum. 
Linear interpolation is used to determine the width with 
sub-pixel accuracy.19,24

Synthetic data generation

We generated synthetic images that mimic pulsing vessels 
using custom MATLAB code (Figure 2(a)). We used a 
frame rate of 30 Hz and a 4-Hz (sinusoidal) pulsation fre-
quency, typical of the heart rate of an anesthetized mouse. 
The mean vessel diameter was 40 pixels and the image 
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was 100 × 100 pixels. We varied the radial pulsation 
amplitude from 0.2 to 2 pixels, using 1 pixel unless other-
wise stated. The images were blurred using the built-in 
MATLAB function imgaussfilt with a standard deviation 
of 1 pixel. We added random noise to each frame, such 
that the noise-to-signal ratio (NSR) varied from 0 to 2.26 
(inset in Figure 3(d) and (g)); unless otherwise noted, the 
NSR is 0.07.

We also generated synthetic images where the diam-
eter varied axially with an amplitude of 1 pixel and wave 
number 0.05 radians/pixel (Figure 2(b)). We generated 
other synthetic images with a curved vessel (Figure 
2(c)). Specifically, the centerline was modified into a 
parabolic shape by introducing a displacement in the y 
direction that was proportional to the square of the rela-
tive x distance from the midpoint with a displacement 
factor A = 10.

For each synthetic image, we calculated the noise-to-
signal ratio (NSR) by dividing the mean of the square of 
the noise added to the image array by the signal intensity 
squared:
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where S is the intensity of the vessel (S = 1 in all synthetic 
data), Nt is the difference between the intensity of the tth 
pixel before and after adding noise, and T is the total num-
ber of pixels in time and space.

To mimic motion artifacts in real vessel diameter meas-
urements, we varied the vessel position by shifting the 
images in a direction perpendicular to the vessel by a dis-
tance that varied sinusoidally with 4-Hz frequency and 
with an amplitude between 0 and 9 pixels.

To mimic uneven illumination, we added an image-
wide brightness gradient with slope 0.01 (on a 0–1 bright-
ness scale)/pixel and one of three orientations: parallel to 
the vessel (inset in Figure 3(i)), perpendicular to the vessel 
(inset in Figure 3(f)), or at a 45° angle to the vessel.

To mimic unsteady illumination, we added a fixed 
brightness increment (0.01) to all pixels for 10 consecutive 
frames, starting at a randomly selected frame.

Figure 1.  Flowchart describing the different vessel diameter measurement algorithms. (a) FIE, (b) CST, (c) FWHM. Panel (a) shows 
the segmented area (green) confined between the vessel edges (blue) and the end caps (yellow line). The mask is shown in red. The 
ROI and centerline are indicated with a red box and green line, respectively, in panels (b) and (c). The inset in panel (c) shows the 
projected intensity profile for several frames.
FIE: find image edges; CST: cross section threshold; FWHM: full width at half maximum.
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In vivo image collection

We analyzed three time-series of images acquired using 
three different imaging modalities. The reporting of ani-
mal experiments in this manuscript follows the ARRIVE 
guidelines 2.0.25 First, for the publicly available data26 
shown in Figure 2(g), wild-type mice were anesthetized 
using ketamine/xylazine, and cranial windows were 
installed. The mice received an intravenous injection of 
FITC-conjugated dextran (2000 kDa) to visualize the 
blood vessel lumen as described in Boster et al.27 The two-
photon images were acquired at 30 frames/s with a spatial 
resolution of 0.648 microns/pixel.

For the newly acquired data shown in Figure 2(h), the 
mouse skull was thinned at the area of the middle cerebral 
artery (MCA) and fitted with a head plate. The mouse was 

allowed to recover from the surgery for 1 week. Before the 
imaging, the mouse was anesthetized with ketamine and 
xylazine cocktail (80 and 10 mg/kg), then retroorbital 
injected with fluorescent tracer (0.1 ml, 1%, albumin from 
bovine serum 647; Thermo Fisher Scientific catalog: 
A34785). The mouse was head fixed and carefully moni-
tored to be deeply anesthetized during the imaging. 
Branches of the MCA were identified. Videos of the artery 
were recorded at 30 frames/s, with a spatial resolution  
of 0.6 pixel/micron, using a stereo microscope (Leica 
M205FA) with a CMOS camera (Hamamatsu, ORCA-
Flash4.0) and 1× Leica objective (part number: 10450028). 
All experiments were conducted in strict accordance with 
the Guide for the Care and Use of Laboratory Animals and 
were approved by the University Committee on Animal 
Resources (UCAR), University of Rochester Medical 

Figure 2.  Representative images and diameter measurements from the different algorithms for a synthetic straight vessel (a, d), 
a synthetic vessel with diameter variation (b, e), a synthetic vessel with curvature (c, f), and experimental data (g–l), including two-
photon microscopy through a cranial window (ROI indicated with a white box) (g, j), fluorescence microscopy through a thinned 
skull (h, k), and macroscopic imaging of an awake mouse through an intact skull (i, l).
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Center certified by Association for Assessment and 
Accreditation of Laboratory Animal Care.

For the newly acquired data shown in Figure 2(i), a 
wild-type mouse skull was thinned at the area of the MCA 
and fitted with a head plate for fixation. The mouse was 
allowed to recover from the surgery for 1 week and was 
habituated for awake imaging. The mouse was head-fixed 
on a physiological monitoring system (Small Animal 
Physiological Monitoring system, 75–1500; Harvard 
Apparatus), and temperature, electrocardiogram (ECG), 
and respiration rate were monitored. A wide-field bright-
light macroscope (Leica, M205 FA) with CMOS camera 
(Hamamatsu, Orca-Flash 4.0, C11440) was used for imag-
ing. A branch of the MCA was identified and a region of 
interest (ROI) chosen for continuous imaging. The spatial 
and temporal resolution were 1.29 microns/pixel and 
54.47 frames/s, respectively. All experiments were con-
ducted in strict accordance with the Institutional Animal 
Care and Use Committee (IACUC) at the University of 
Copenhagen and all animal procedures were approved  
by the Office of Laboratory Animal Welfare (OLAW)  
and conducted in accordance with the Association for 
Assessment and Accreditation of Laboratory Animal Care.

The three different in vivo datasets shown in Figure 2 
represent different imaging approaches with varying levels 
of imaging quality. The images in Figure 2(g) and (h) show 
fluorescent tracers injected into the blood to mark the ves-
sel. In Figure 2(g), the vessel was visualized through a cra-
nial window, which leads to superior image quality but is 
more invasive, whereas in Figure 2(h), the vessel was visu-
alized through a thinned skull, reducing the image quality 
but being less invasive. In Figure 2(i), the vessel was illu-
minated using a bright light and visualized through a 
thinned skull, leading to the lowest quality imaging but 
least invasive procedure. Two-photon microscopy gener-
ally allows for higher resolution imaging compared to 
macroscopy.

Pulsatility metrics

The amplitude of vessel pulsation has important implica-
tions for both cerebral blood flow and CSF flow in PVSs 
adjacent to blood vessels, and we will refer to this quantity 
as the vessel pulsatility. One way to determine the pulsatil-
ity is by phase-averaging (PA), where the vessel diameters 
from many cycles are averaged together to yield the 

Figure 3.  Effect of Gaussian noise (a, d, g), translation (b, e, h), and brightness gradients (c, f, i) on algorithm performance. 
Gradients were applied either parallel or perpendicular to the synthetic vessel. Pulsatility error was obtained using the IQR 
approach.
RMS: root-mean-square.
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evolution of the diameter over an idealized pulsation cycle, 
and the amplitude is defined as half of the difference 
between the maximum and minimum of the PA waveform. 
However, PA assumes a periodic oscillation of known fre-
quency. Because real vessels pulse aperiodically, we also 
present and compare an alternative approach based on the 
interquartile range of the vessel diameter.

Phase averaging (PA).  PA has been used previously to quan-
tify vessel pulsation.9 Assuming pulsation is cyclical (e.g. 
with cardiac activity), PA starts by binning diameter meas-
urements according to the fraction of the cycle at which 
each measurement was made, then averages all measure-
ments in each bin, producing a waveform that shows how 
diameter is expected to vary throughout the cycle. By 
combining measurements from many cycles, PA reduces 
noise and effectively increases the sampling frequency. 
For example, if the sampling frequency is 30 Hz and the 
pulsation frequency is 4 Hz, only seven or eight measure-
ments are made in each cycle, hindering calculation of the 
vessel wall speed from numerical differentiation. But with 
PA, many more measurements of the wall position over the 
cycle can be combined (often 50 or 100). Using this 
approach requires knowing when each cycle begins, for 
instance, via ECG measurements of the cardiac cycle.

Interquartile range (IQR).  We devised an alternative for 
quantifying the pulsatility: the IQR method. IQR is defined 
as the difference between the 75th and 25th percentiles of 
a dataset. It is particularly useful for cardiac pulsatility 
when ECG measurements are unavailable, or for slow vas-
omotion, which lacks a periodic cycle. For a sine wave, 
IQR and amplitude are related by a factor of 2,  as shown 
in the Supplementary Material, so in order to compare 
with the amplitude obtained from PA, we divide the IQR 
by 2.  The IQR approach provides no information on the 
waveform shape or wall speed.

To validate the IQR approach, we generated synthetic, 
time-varying diameters that contained three different fre-
quency components, as might arise from cardiac pulsa-
tions (f1), respiration (f2), and slow vasomotion (f3):
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Here, Ao = 20, f1 varies over time from 6 to 7 Hz, A1 = 1, 
f2 = 0.25 Hz, A2 = 3, f3 = 0.02 Hz, A3 = 2, t is time, η (t) is a 
series of values sampled from the standard normal distri-
bution, and B is either 1 or 2 so that the standard deviation 
of the noise term is either 1 or 2. The resulting signal was 
sampled at 30 Hz. We subtracted the temporal mean diam-
eter and applied a bandpass filter with 60 dB attenuation in 
the stopband. (We did not filter synthetic data, in which 
only a single frequency was present before noise was 
applied.) The bandpass filter uses cutoff frequencies (listed 
in Table 1) that include the single frequency signal of inter-
est. We calculated the IQR (the difference between the 
75th and 25th percentiles) of the filtered diameter meas-
urements. Then, we compared the amplitude of the syn-
thetic signals calculated using the IQR approach to the 
ground-truth amplitude, as shown in Table 1. Supplementary 
Figure S2 graphically illustrates the validation process. 
Briefly, the sum of three single-frequency signals was cor-
rupted with Gaussian noise and subjected to a filter with a 
passband around the first frequency, and the IQR/ 2  of 
the result was compared to the amplitude of the first sin-
gle-frequency signal (see Supplementary Figure S2). The 
process was repeated for the second and third 
frequencies.

Error metrics

We used four error metrics: average error, root-mean-
square (RMS) error, IQR pulsatility error, and PA pulsatil-
ity error, to compare measurements to ground-truth data. 
Given a collection of n images, if the ground-truth vessel 
diameter in image i is di,GT and the measured diameter in 
the same image is di,A, then the average error is defined as:
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and the RMS error is defined as:
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Table 1.  Comparison of ground-truth amplitudes and amplitudes estimated using the IQR metric. Percent error is indicated in 
parentheses.

Cutoff frequency (Hz) Ground truth amplitude IQR/ 2  (% error)

B = 0 B = 1 B = 2

3–8 1.00 0.99 (0.00) 0.97 (2.95) 1.34 (34.38)
0.03–0.5 3.00 3.00 (0.00) 2.99 (0.34) 2.95 (1.74)
1/70–1/30 2.00 2 (0.00) 1.99 (0.00) 1.99 (0.21)
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Across a collection of images, the diameter of a pulsing 
vessel fluctuates around its mean value. If the IQR of the 
ground-truth vessel diameter fluctuation is IQRGT and the 
IQR of the measured diameter fluctuation is IQRA, then 
the IQR pulsatility error is defined as:

	

IQR pulsatilityerror
IQR IQR

IQR
GT A

GT
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−

�
(5)

The PA amplitude is defined as half the difference 
between the minimum and maximum values of a PA ves-
sel diameter profile. If the PA amplitude of the ground-
truth vessel diameter is PAGT and the PA amplitude of the 
measured diameter is PA, the PA pulsatility error is 
defined as:

	

PApulsatilityerror
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The random noise included in our synthetic data caused 
error metrics to vary in repeated trials. We chose the frame 
count n large enough that variations were no >5%: n ⩾ 45 
for average and RMS errors, and typically n ≈ 106 for pul-
satility errors (Supplementary Figure S3).

Results

Quantifying pulsatility in synthetic  
and experimental data

Figure 2(a) shows a representative synthetic vessel image, 
and Figure 2(d) shows the variation of vessel diameter 
over a series of such images. The ground-truth diameter 
used to construct the synthetic images is shown along with 
the measurements made using each of the three algorithms 
(FIE, CST, and FWHM). FIE exhibits 3.7% average error, 
4.2% RMS error, and 5.3% pulsatility error using the IQR 
approach. In this example, FIE overestimates the average 
diameter because the vessel edge detected by the Canny 
method includes pixels outside the vessel, which are 
counted in the total vessel area, as illustrated in 
Supplementary Figure S4. Having a portion of the edge 
outside the vessel only affects absolute vessel measure-
ments and does not affect the pulsatility measurement or 
any relative measure of vessel diameter change. CST 
underestimates the diameter for the threshold used here 
(0.5), average, RMS, and pulsatility errors of 2.4%, 3.1%, 
and 39.4%, respectively. CST is sensitive to the threshold. 
The average error is reduced to 0.3% from 2.7% when 
using a threshold of 0.45. With a still lower threshold 
(<0.45), CST overestimates the diameter. The waveform 
generated by FWHM is closest to capturing the true 

waveform, with average, RMS, and pulsatility errors of 
0.2%, 2.1%, and 12.5%, respectively.

The performance of the three algorithms on vessels with 
axial diameter variation (Figure 2(b) and (e)) and curved 
vessels (Figure 2(c) and (f)) was similar to their perfor-
mance on straight vessels. For vessels with axial diameter 
variation (Figure 2(b)), FIE resulted in average and RMS 
errors of 3.9%, with the smallest pulsatility error (6.7%) of 
the three algorithms. CST had the highest error for all three 
types of error, with average, RMS, and pulsatility errors of 
5.6%, 5.9%, and 38.6%, respectively. FWHM demon-
strated the lowest average and RMS errors (3.4% and 3.7%) 
while the pulsatility error was 11.9%. Similarly, for syn-
thetic data with parabolic curvature (Figure 2(c)), FIE 
exhibited average and RMS errors of 4.5% and pulsatility 
error of 4.1%. CST showed slightly lower average error 
(1.8%) and RMS error (2.2%); however, the pulsatility 
error (31.4%) was the highest among the three algorithms. 
FWHM achieved the lowest error in absolute diameter 
measurement, with 0.6% average error and 1.1% RMS 
error. However, the pulsatility error was 10.9%.

Figure 2(g)–(i) show representative images recorded in 
vivo using a two-photon microscope through a cranial win-
dow, a fluorescence microscope through a thinned skull, and 
a bright light macroscope through a thinned skull, respec-
tively. Figure 2(j) shows diameter measurements from a 
series of two-photon images, which have high resolution and 
appear to have low NSR. The three algorithms perform simi-
larly, though FIE and FWHM match each other more closely 
than CST matches either. The mean diameters for the two-
photon microscopy data from FIE, CST, and FWHM were 
53.4, 55.3, and 53.0 µm, respectively. The pulsation ampli-
tudes obtained using the IQR approach from FIE, CST, and 
FWHM were 1.6, 1.2, and 1.2 µm, respectively. The similar-
ity in pulsatility measurements suggests that any of the three 
approaches would work reasonably well for measuring pul-
satility for this type of imaging. For the fluorescence micro-
scope data shown in Figure 2(h), the mean diameters from 
FIE, CST, and FWHM were 51.8, 48.7, and 56.5 µm, respec-
tively. The amplitudes obtained from FIE, CST, and FWHM 
were 0.86, 0.56, and 0.70 µm, respectively. For the macro-
scope data shown in Figure 2(i), the mean diameters from 
FIE, CST, and FWHM were 36.8, 38.6, and 37.5 µm, respec-
tively. However, the difference in pulsation amplitude 
between algorithms is larger (0.18, 0.23, and 0.29 µm from 
FIE, CST, and FWHM, respectively), but since we do not 
have ground-truth measurements, we cannot necessarily say 
which algorithm is best. For the thinned skull fluorescence 
microscopy and bright light macroscopy images (Figure 2(h) 
and (i)), we observe more significant differences from one 
algorithm to another (Figure 2(k) and (l)). The mean diame-
ter values measured using the three algorithms suggest that 
each algorithm demonstrates potential suitability to estimate 
the mean diameter of vessels accurately.
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Robustness to imaging artifacts

Next, we sought to quantify the robustness of each algo-
rithm to varying NSR, translation, and brightness by adding 
artifacts to a synthetic image of a straight vessel like the 
one shown in Figure 2(a). Figure 3(a), (d), and (g) show the 
effects of noise. The insets in Figure 3(d) and (g) show 
frames with NSR of 0 and 2.26, respectively. We used the 
IQR approach to measure the pulsatility error caused by the 
artifacts introduced in the synthetic data discussed in  
Figure 3. For NSR of 0, the RMS errors for FIE, CST, and 
FWHM are 3.8%, 2.1%, and 1.1%, respectively. The aver-
age errors are 3.7%, 0.2%, and 0.3%, respectively. For 
noiseless images, FWHM performs best and FIE performs 
worst because the algorithm erroneously includes some 
edge pixels. The pulsatility errors are 4.4%, 25.9%, and 
9.4%, respectively. The RMS and average errors increase 
with NSR for every algorithm, but the rate of increase is 
much lower for FIE, indicating that it is much less sensitive 
to noise. For NSR of 1, the RMS errors for FIE, CST, and 
FWHM are 4.2%, 9.4%, and 8.1%, respectively, and the 
average errors are 3.6%, 8.8%, and 6.4%, respectively. At 
NSR 1, the pulsatility errors are 9.4%, 27.7%, and 14.3% 
for FIE, CST, and FWHM, respectively.

For NSR ⩾1, the FWHM algorithm resulted in signifi-
cantly higher errors in absolute diameter and pulsatility 
measurements. We investigated the source of the high 
error in FWHM and found at high levels of noise, the 
background intensity was much larger than zero, so the 
algorithm often incorrectly identified the edge of the ROI 
as the vessel edge (Supplementary Figure S5(a) and (b)). 
To improve the performance of FWHM with noisy data, 
we made two modifications to the algorithm. First, the 
original FWHM algorithm places vessel edges where the 
value of the Radon-transformed intensity profile is half the 
maximum value. In the case of a noisy image (or one 
where the background intensity is non-zero, even if there 
is adequate contrast between the vessel and background), 
the maximum is not a good representation of the difference 
between the vessel and background. The vessel diameter is 
overestimated, and if the background intensity exceeds 
half the maximum value, vessel edges are located at the 
edge of the ROI, rather than the edge of the vessel.

We overcame this drawback by placing vessel edges 
where the intensity value falls halfway between the maxi-
mum value (to represent the vessel intensity) and the 10th 
percentile of the nonzero intensity values (to represent the 
background intensity, instead of the minimum intensity). 
For an NSR of 2.26, the original algorithm (FWHM) 
resulted in average, RMS, and pulsatility errors of 24.2%, 
26.4%, and 104.3%, respectively. For noisy data, it is more 
appropriate to use half of the difference between the back-
ground and vessel intensities. With the redefined baseline 
measurement, the errors dropped to 0.9%, 3.8%, and 
15.2%, respectively (“Modified with registration” in 
Supplementary Figure S6). Supplementary Figure S5(c) 

compares the results of FWHM and modified FWHM with 
the true diameter measurements for NSR of 2.26.

Second, the original FWHM algorithm applies a DFT-
based image registration. At high NSR, it applies large reg-
istration shifts where it should not. For images with no or 
little translation (such as our synthetic data) and substantial 
noise, eliminating DFT registration enhanced the perfor-
mance of the FWHM algorithm. When we eliminated DFT 
registration and used the 10th-percentile baseline (an algo-
rithm we call “Modified FWHM”), the average, RMS, and 
pulsatility errors changed from 24.2% to 1.5%, 26.4% to 
2.9%, and 104.3% to 16.6%, respectively for NSR = 2.26 
(Figure 3(a), (d), and (g) and Supplementary Figure S6). For 
low-noise images, performance was not appreciably affected 
by retaining or eliminating DFT image registration.

To explore the impact of microscope or vessel move-
ment during image acquisition, we investigated the effect 
of displacing the vessel perpendicular to its edge (Figure 
3(b), (e), and (h)). The inset in Figure 3(h) shows the direc-
tion of vessel translation. None of the algorithms are sensi-
tive to displacements smaller than 10 pixels for the 
synthetic data we tested.

We also quantified the algorithms’ performance in the 
presence of brightness gradients parallel to the vessel (0° 
angle), perpendicular to the vessel (90° angle), and at a 45° 
angle with the vessel (Figure 3(c), (f), and (i)). CST is 
highly sensitive to brightness gradients in all three direc-
tions. When brightness varies spatially, a single threshold 
value cannot accurately locate the vessel edges. FWHM is 
sensitive to a brightness gradient imposed perpendicular to 
the vessel if the resulting background intensity on one side 
of the vessel substantially exceeds the 10th percentile, as 
shown in Supplementary Figure S7. In that case, the algo-
rithm places the corresponding vessel edge erroneously far 
from the vessel center (sometimes at the edge of the ROI), 
overestimating the diameter. Our modifications to FWHM 
do not improve its robustness to brightness gradients. In 
contrast, FIE is robust to brightness gradients since it 
places vessel edges based only on local intensity variations 
rather than intensity magnitude.

“Flicker,” or spatially uniform but temporally random 
brightness variations, had little effect (Figure 3(c), (f), and (i)).

Sensitivity to user inputs

All of the algorithms require user inputs that can affect 
results. For CST, Figure 4(a) illustrates the variation of the 
average error as a function of the user-defined threshold 
fraction value. Insets show a sample image frame 
(NSR = 0.07) binarized according to two different threshold 
fractions (0.3 and 0.7). By eye, both appear reasonable, so 
a user might reasonably choose any value between 0.3 and 
0.7, but the error varies substantially over that range, reach-
ing a minimum value near 0.3% at threshold 0.45. The sen-
sitivity of CST to threshold is a major limitation. All other 
reported results were produced using a threshold of 0.5.
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Figure 4(b) shows the variation of the average error 
with centerline orientation for CST and FWHM and with 
end cap orientation for FIE. The insets show centerlines 
and end caps whose orientation differs by as much as 5° 
from being perfectly aligned (parallel to the vessel for the 
centerline and perpendicular to the vessel for the end 
caps). We varied the orientation of the centerline and end 
caps by as much as ±5° from an orientation perfectly 
parallel or perpendicular to the vessel. The change in 
average error with the orientation of the centerline or end 
caps was marginal for all three algorithms. The errors for 
CST and FWHM varied from 2.4% to 3.4% and from 
0.2% to 0.8%, respectively. The error for FIE varied from 
3.5% to 3.7%. Results depended weakly on the random 
noise in each frame.

Validating IQR metric

To test the IQR metric and its ability to quantify amplitudes 
in signals containing multiple frequency components, such 
as those containing both slow vasomotion and cardiac pul-
sations, we applied the IQR metric to synthetic signals con-
taining three frequencies (equation (2)) and Gaussian noise 
with standard deviation either 1 or 2 (on a 0–1 brightness 
scale). The signals were sampled at 30 Hz and bandpass fil-
tered with the cutoff frequencies listed in Table 1, which 
also shows the true and measured amplitudes. In cases with 
no or little noise, the IQR metric worked well, producing 
errors <3%. The IQR metric produced a larger error (34%) 
when the standard deviation of the noise is twice the ampli-
tude in the cardiac frequency band.

Comparing pulsatility metrics

We compare the amplitudes obtained using the PA and 
IQR metrics in Figure 5, which was produced with syn-
thetic data and a 2-pixel pulsation amplitude. Figure 5(a) 
shows the distribution of diameter measurements with a 
box plot, where the box illustrates the IQR. FIE and 
FWHM produce diameter measurements whose IQR 
matches ground-truth closely; CST is less accurate. Figure 
5(b) compares the ground-truth and PA waveforms. PA 
measurements from FIE and FWHM track the true values 
much more closely than do those from CST.

Figure 5(c) shows the variation of pulsatility error with 
pulsation amplitude in synthetic data with NSR of 0.07. 
The error increases substantially for amplitudes <0.4 pixel 
but changes little for amplitudes of 1 pixel or larger. 
Specifically, for an amplitude of 0.2 pixel, we find errors 
of 88.4%, 41.1%, and 28.7% for FIE, CST, and FWHM, 
respectively, when quantified using IQR, and 92.9%, 
79.5%, and 75.6%, respectively, when quantified using 
PA. For amplitudes exceeding 0.2 pixel, pulsatility errors 
are smaller with FWHM and FIE than with CST. For an 
amplitude of 0.2 pixel, none of the algorithms accurately 
capture pulsations. Trends in errors quantified with IQR 
and PA are broadly similar, suggesting that both metrics 
are useful in the presence of low to moderate noise.

Figure 5(d) compares pulsatility error obtained using 
the IQR and PA approaches for varying NSR. All three 
algorithms predict similar pulsatility errors from the IQR 
and PA approaches when the NSR is ⩽1. However, at 
higher NSR values, IQR, and PA differ more significantly 
for CST and FWHM.

Figure 4.  Variation in average error with user-selected (a) threshold fraction and (b) centerline or end cap angle with respect to a 
perfectly aligned orientation, where 0° corresponds to centerline and end caps that are parallel and perpendicular, respectively, to 
the vessel.
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Discussion

This study used synthetic and experimental images to test the 
accuracy of three vessel diameter measurement algorithms. 
We introduced a new algorithm (FIE) and found it  
to be more robust to noise and perpendicular brightness gra-
dients than two previously used algorithms (CST and 
FWHM).5,9,19,24,28 The FIE algorithm also quantifies vessel 
pulsatility most accurately. We found that FWHM most accu-
rately measured absolute vessel diameters for images with 
NSR below 0.5 and sufficient contrast between the vessel  
and its surroundings, and we introduced a modification to 
FWHM that allows it to perform well in high noise/low con-
trast situations. The modified FWHM algorithm measured 

the absolute vessel diameter most accurately, while FIE most 
accurately measured changes in vessel diameter, like pulsatil-
ity. CST is sensitive to the user-defined threshold, underesti-
mating the diameter when the threshold is 0.5 in the synthetic 
data but overestimating the diameter when the chosen thresh-
old is below 0.45 (see Figure 4(a)). The differences between 
the algorithm’s performance increase with increasing noise. 
The IQR metric is a reasonable alternative to PA for estimat-
ing pulsation amplitude, though it does not provide other 
information about the waveform. We summarize the advan-
tages and disadvantages of the algorithms in Table 2.

FIE overestimates the vessel diameter due to the discre-
tization of the vessel edge, resulting in a maximum error of 
2 pixels, one from either side of the vessel. Thus, the maxi-
mum systematic error in FIE is a function of the image 
resolution, can be calculated quite precisely, and can be 
reduced by increasing the image resolution. For the syn-
thetic data in this work, with a 40-pixel diameter, this cor-
responds to an average error of 5%, and the error we 
measure from FIE is always smaller than this limit in low 
and moderate noise cases. In many situations, the change 
in vessel diameter matters more than the absolute diame-
ter, and in that case, consistently overestimating the vessel 
width by a pixel or two would not affect the results, which 
is why FIE has relatively low pulsatility error.

Whether FIE or the modified FWHM is the best algo-
rithm to use to measure vessel diameter depends on the 
goals (is absolute or change in vessel diameter more impor-
tant) and the particular challenges of the imaging data. For 
example, there are cases where large gaps in the vessel 
edges detected by FIE cause it to fail, but FWHM does not, 
since it averages over the entire ROI. On the other hand, 
there are also cases where changes in background image 
intensity between sides of the vessel, or the presence of an 
adjacent vessel, cause FWHM to fail where FIE does not. 
Sometimes it is obvious which approach is better just from 
inspecting the diameter measurements, but in other cases, 
visualizing the measured diameters overlayed on the origi-
nal images is the best approach to determine which is best.

All three algorithms were robust to translation in the 
direction perpendicular to the vessel in the synthetic data 
with perfectly straight edges, but this should not be inter-
preted as an indication that vessel translation would never 
result in error. In cases where the vessel diameter varies 
along its axis, translations in the direction parallel to the ves-
sel would result in pulsatility error for all three algorithms.

There are a few limitations to the synthetic data used in 
this study to test the algorithms’ performance. The gener-
ated synthetic data included only a single frequency, while 
experimental recordings may consist of multiple, varying 
frequencies, such as those associated with slow vasomo-
tion, respiratory oscillations, and cardiac pulsations.  
The synthetic images had dimensions 100 × 100 pixels,  
which is smaller than what is typical in two-photon micros-
copy, though comparable to other imaging modalities. 
Two-photon microscopy typically has a narrow focal 

Figure 5.  (a) Box plots showing the distribution of diameter 
measurements and illustrating the interquartile range (IQR). 
The bottom and top edges of each box indicate the 25th and 
75th percentiles of diameter fluctuation; the IQR is the box 
height. The whiskers extend to the minimum and maximum 
diameter fluctuations, and the middle line is the median. (b) 
Ground-truth and PA vessel diameter waveform, where lines 
indicate mean values and shaded regions indicate standard 
error of the mean. Results in (a, b) are for synthetic data with 
two-pixel pulsation amplitude. (c) Pulsatility error for different 
pulsation amplitudes quantified with IQR and PA. (d) Pulsatility 
error for varying noise-to-signal ratios from the IQR and PA 
approaches. The results from the two approaches are similar 
for low to moderate levels of noise. PA: phase-averaging.



Ranjan et al.	 11

plane, so vessel motion in and out of the plane can change 
the apparent vessel diameter, but we did not investigate 
this potential source of error. The algorithms discussed 
here are unsuitable for measuring the diameter of penetrat-
ing vessels, which typically extend perpendicular to the 
imaging plane and appear as circular cross sections. 
However, FIE and FWHM have been adapted for measur-
ing the diameter of penetrating vessels.29,30

Accurate measurement of pial artery diameter is essen-
tial as changes in the vessel’s size are correlated with altera-
tions in regional cerebral blood flow, which in turn affects 
the brain function and health.31 Furthermore, accurate 
quantification of vessel dynamics, or pulsatility, is critical, 
since vessel pulsatility has been shown to impact the brain’s 
waste clearance mechanisms. Mestre et al. found that ves-
sel pulsatility is a primary driver of CSF flow through pial 
PVSs, which is critical for clearance of amyloid-β and 
other solutes.9 Accordingly, vessel pulsatility has been used 
in several recent simulations to drive CSF flow,7,32 and their 
predictions can be accurate only if the prescribed pulsatility 
comes from accurate experimental measurements.

Conclusion

We compared three techniques to measure vessel diameter 
from images and two approaches to quantify pulsatility. 
The new approaches we presented for diameter measure-
ment (FIE) and pulsatility analysis (IQR) are effective. A 
modified version of FWHM captures the absolute vessel 
diameter most accurately, whereas FIE outperforms 
FWHM when considering changes in vessel diameter, like 
pulsatility. The IQR approach quantifies vessel pulsatility 
as well as the previously used method, PA, without relying 
on information about cycle timing.
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