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Influence of damping on the vanishing of the linear electro-optic effect in chiral isotropic media
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Using first principles, it is demonstrated that radiative damping alone cannot lead to a nonvanishing linear
electro-optic effect in a chiral isotropic medium. This conclusion is in contrast with that obtained by a
calculation in which damping effects are included using the standard phenomenological model. We show that
these predictions differ because the phenomenological damping equations are valid only in regions where the
frequencies of the applied electromagnetic fields are nearly resonant with the atomic transitions. We also show
that collisional damping can lead to a nonvanishing linear electro-optic effect, but with a strength sufficiently
weak, it is unlikely to be observable under realistic laboratory conditions.
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Several recent papers@1,2# have discussed the question
properly taking into account various relaxation proces
while calculating the nonlinear response of an optical s
tem. Even the existence of certain nonlinear optical p
cesses is thought to be closely linked to the existence
damping mechanism@3–5#. In this connection, it is espe
cially important to incorporate in a consistent manner
effects of relaxation processes. Very often, the nonlinear
sponse@6# is calculated by modifying the equation for th
off-diagonal elements of the density matrix~coherences! by
introducing phenomenological relaxation terms as follow

]r i j

]t
52 iv i j r i j 1~field terms!⇒ ~1!

]r i j

]t
52 iv i j r i j 2G i j r i j 1~different field terms!. ~2!

The equations for the populations are also modified app
priately. Such modifications have been extensively used
nonlinear optics and even have led to the prediction of p
nomena such as collision-induced resonances that have
subsequently observed experimentally@7#.

The importance of relaxation processes in establishing
existence of certain nonlinear optical processes has rece
been raised in the context of the linear electo-optic eff
@1,2,5#. For reasons of symmetry, the linear electro-optic
fect must vanish in an isotropic nonchiral material. Howev
in a chiral material, symmetry arguments alone cannot r
out the possibility of the existence of a linear electro-op
effect. Thus, the question of the existence of such an ef
must be decided by means of an explicit quantu
mechanical calculation of the electro-optic response. Sev
calculations of this sort have recently been reported,
have led to conflicting results. Buckingham and Fischer@1#
and Stedmanet al. @2# have concluded that the linear electr
optic effect much vanish. However, Kauranen and Perso
@4# have recently presented a theoretical argument that
dicts the existence of a linear electro-optic effect~EOE! in
chiral isotropic media provided material damping is tak
into account. Their result follows by using Eq.~2!. However,
it is not cleara priori if Eq. ~2! can be used to describe th
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linear electro-optic effect. In order to see the origin of th
uncertainty, let us examine the expression for the nonlin
susceptibility describing the electro-optic effect in a chi
isotropic medium. The derivation given in Ref.@4# is based
on the standard phenomenological equations Eq.~2! which
take into account various damping processes in the med
The nonlinear susceptibility is shown to have contributio
of the form

X[
2igng

~vng2 igng!~vng1 igng!~vmg1v1 igmg!
. ~3!

The authors of Ref.@4# have suggested that this dampin
dependent contribution is the one which can lead to a n
vanishing electro-optic effect in a chiral isotropic medium
Let us examine this contribution further. We note first th
the usual expression for the second-order susceptibility c
sists of two energy denominators, whereas the above co
bution consists of three. Clearly, such a term arises from
combination of two contributions asX can be written as

X5
1

~vmg1v1 igmg!
F 1

vng2 igng
2

1

vng1 igng
G . ~4!

We note also that denominators such as (vng2 igng) do not
have an optical frequency contribution. Such denominat
arise from the interaction of the system with a zer
frequency field. We show below that in a correct treatmen
radiative damping, the denominator should be replaced
ones that involve frequency-dependent damping coefficie
Thus, a first-principles treatment would lead to

X[
1

@vmg1v1 igmg~v!# F 1

@vng2 igng~0!#

2
1

@vng1 igng~0!#G . ~5!

Note that the frequency dependence ofg in each denomina-
tor depends on the frequency component of the electrom
netic field responsible for such a denominator. Thus, the
nominators corresponding to the static field have dampi
©2003 The American Physical Society21-1
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evaluated at zero frequency. As discussed below, for the
of radiative damping,gng(0) vanishes identically, which im
plies thatX50. Thus, a first principles~and correct! treat-
ment of radiative damping doesnot lead to any electro-optic
effect in a chiral isotropic medium. We also show below th
X is at most very small for the case of collisional dampin
The nonvanishing of the EOE effect reported earlier is due
inappropriate use of equations that are not valid for the
culation of the EOE effect. Thus, when using the modific
tion ~2! in the calculation of the nonlinear optical respons
one has to keep in view the conditions under which Eq.~2!
has been derived. This need necessitates an examinati
the microscopic theory leading to the derivation of result~2!.
It may also be noted that, in recent times, one has discov
a number of other interesting situations that cannot be
scribed by equations such as Eq.~2!. For example, there ar
situations under which the coherences get coupled to
populations, and this situation has led to considerable w
on quantum interferences@8#. In addition, there is the subjec
of inhibited spontaneous emission, where the modificati
of Eq. ~2! due to strong external fields play an important ro
@9#.

In order to uncover the role of relaxation mechanisms
the response to external fields and to determine how re
ation depends on the frequency of the applied field, we c
sider first a very simple model. This model brings out t
salient features of the problem and enables us to esta
that the form of the damping operator depends on the var
frequency scales in the system. We consider the cas
which the medium can be described by a one-dimensio
harmonic oscillator with displacementx and with frequency
v0 . Let the medium interact with an external electroma
netic field of frequencyv described by

E5Ee2 ivt1E* eivt. ~6!

The equation of motion with a phenomenological damp
constantG is

ẍ1G ẋ1v0
2x5

eE
m

e2 ivt1c.c. ~7!

The response of the medium can then be expressed as

ex~ t !5x~v!Ee2 ivt1c.c., ~8!

x~v!5
e2

m~v0
22v22 ivG!

. ~9!

In this manner, one obtains the familiar response funct
We would like to examine whether the responsex(v), as
given by Eq.~9!, is valid for all frequencies. Thus, we woul
like to understand if the introduction of afrequency-
independentdamping constantG in Eq. ~7! is justified for all
frequencies of the applied electromagnetic field. For this p
pose, we start from first principles. Let us consider the in
action of the system oscillator with a bath. The bath will
responsible for the relaxation processes described phen
enologically by the damping parameterG in Eq. ~7!. As
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usual, we model the bath by a set of harmonic oscillato
The Hamiltonian for the system oscillator interacting with
bath is given by

H5
p2

2m
1

1

2
mv0

2x22exE~ t !2xF~ t !, ~10!

whereE~t! is the time-dependent electromagnetic field a
F(t) represents the effect of the bath terms

F~ t !5(
j

~gjaje
2 iv j t1H.c.!. ~11!

Here,v j (.0) are the frequencies of the bath oscillatorsaj
and gj are the coupling constants of the system oscilla
with the bath oscillators. The Heisenberg equations can
easily derived from Eq.~10!:

ẋ5p/m, ṗ52mv0
2x1eE~ t !1F~ t !,

ȧ j5 ig j* eiv j tx~ t !. ~12!

We integrate formally the equation foraj and substitute it
into the equation forp to obtain

ṗ52mv0
2x1eE~ t !1F0~ t !1E

0

t

K~ t2t!x~t!dt, ~13!

where

F0~ t !5(
j

gjaj~0!e2 iv j t1H.c., ~14!

K~ t2t!5S i(
j

ugj u2e2 iv j (t2t)1c.c.D . ~15!

Note that Eq.~13! is derived without any approximation. Th
further simplification will depend on the values o
ugj u, v j , v, etc. Let us examine the average response for
case in whichE(t)5Ee2 ivt1c.c. Note that the mean valu
of the operatoraj (0) is zero and hence,̂F0(t)&50. It
should be borne in mind thatv is positive. Using Eqs.~13!
and~14!, taking quantum-mechanical expectation values a
the long-time limitt→`, we obtain

^x&5
eEe2 ivt

m~v0
22v2!2K~v!

1c.c., ~16!

where

K~v!5 lim
e→0

(
j

ugj u2i H 1

e1 i ~v j2v!
2

1

e2 i ~v j1v!J
5K8~v!1 iK 9~v!, ~17!

K9~v!5(
j

ugj u2pd~v j2v!. ~18!
1-2
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The exact result~16! has the same structure as Eq.~9!, ex-
cept for the important difference thatvG is replaced by a
function K9(v) that is dependent on the frequencyv of the
applied electromagnetic field. In addition, there is a disp
sive contribution ReK(v). Note further that very often one
replaces Eq.~18! by

K9~v!'(
j

ugj u2pd~v j2v0!. ~19!

Clearly, this can be done if the frequencyv0 of the system
oscillator is very close to the applied frequency, i.e., ess
tially in the resonance region. If the frequencyv happens to
be far away from a resonance frequency, then the phen
enological equation~7! should not be used. This is the re
reason why usage of equations such as Eqs.~2! and ~7! can
give rise to incorrect nonlinear optical response for appl
frequencies far away from the transition frequencies. We a
find from Eq.~18! that for static response

lim
v→0

K9~v!→pugj u2uv j 50→0 ~20!

for the usual radiative coupling. Thus, the static respo
functions would be independent of the damping term. M
generally, no damping term can appear in the static respo
as long as the bath does not have a characteristic static
quency.

The features discussed above are valid rather gener
To see this, we consider the dynamical equations for a t
level system undergoing, say, radiative damping. The cas
a two-level system is more involved because of the intrin
nonlinearity of the two level system. However, the salie
features can be uncovered by using the wave-function
proach. Let us write the interaction Hamiltonian of a tw
level system interacting with the field and undergoing rad
tive damping, as

H5\v0ue&^eu2\@G~ t !ue&^gu1H.c.#

2\(
k

~gkake
2 ivktue&^gu1H.c.!, ~21!

where we sum over all field modes, labeled by the indek
and where,

G~ t !5dW •EW ~ t !/\

5G0e2 ivt1c.c. ~22!

The last term in Eq.~21! is responsible for the radiativ
decay of the atom. The coupling to the modek with fre-
quencyvk of the electromagnetic field is represented bygk
andak is the photon annihilation operator. The wave functi
of the whole system can be expressed as

uc&5ceue,$0%&1cgug,$0%&1(
k

ckug,$k%&, ~23!

where$0%($k%) represents the vacuum~one photon in mode
k) state of the field. The Schro¨dinger equation leads to
04382
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ċg5 iG* ~ t !ce ,

ċe52 iv0ce1 iG~ t !cg1 i(
k

gke
2 ivktck ,

ċk5 igk* cee
ivkt. ~24!

The initial conditions arece5ck50, andcg51. The in-
duced polarization is to be obtained from the off-diagon
elementreg5cecg* . Note that to first order in the applie
electromagnetic field,reg is

reg
(1)~ t !5ce

(1)~ t !cg*
(0)~ t !1ce

(0)~ t !cg*
(1)~ t !

5ce
(1)~ t ! ~25!

t→`
——→

c (1)e2 ivt1c (2)eivt. ~26!

To obtain the steady state response, we combine last
equations in Eq.~24!

ċe52 iv0ce1 iG~ t !cg2(
k

ugku2E
0

t

e2 ivk(t2t)ce~t!dt,

~27!

and thus, to first order in the external electromagnetic fie
we obtain

ċe
(1)52 iv0ce

(1)1 iG~ t !2(
k

ugku2E
0

t

e2 ivk(t2t)ce
(1)~t!dt.

~28!

In terms of Laplace transforms, we have the result

ĉe
(1)~z!5H z1 iv01(

k
ugku2~z1 ivk!

21J 21

i $G0~z1 iv!21

1G0* ~z2 iv!21%, ~29!

where we have used the explicit form~22!. From Eq.~29!,
we get the response in the long-time limit

c (1)5F i ~v02v!1(
k

ugku2~ ivk2 iv!21G21

G0 ,

c (2)5F i ~v01v!1(
k

ugku2~ ivk1 iv!21G21

G0* .

~30!

The induced polarization can now be calculated

pW ~ t !5~regdW eg* 1c.c.!

[pW 0e2 ivt1c.c., ~31!

wherepW 0 is calculated, using Eq.~30!, as

pW 05c (1)dW eg* 1ce
(2)* dW eg . ~32!
1-3
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This is the most general result for the linear response.
assumption has been made regarding the nature of the
It should be borne in mind that all frequencies in Eq.~30! are
positive. The radiative corrections enter the response fu
tion through the quantity

K~z!5(
k

ugku2~z1 ivk!
21. ~33!

It should be noted that the actual radiative correction te
depend on the frequencies of the applied fields rather t
the atomic frequencies. It is only when the applied freque
is close to the atomic frequency that we can use the appr
mate replacementv→v0 in c (1) ~this cannot be done in
c (2)). We thus find that the counterrotating contributio
c (2)* in Eq. ~32! doesnot depend on the radiative dampin
@10#. The rotating-wave contribution depends on the rad
tive damping; however, the radiative damping is to be eva
ated at the applied frequency. If such an applied frequenc
very far from the atomic transition, as, for example, for
fields, thenno radiative damping term appears in the r
sponse. Thus, the full quantum-mechanical calculation a
leads to the same conclusion as we derived for the sim
oscillator model. Further, the above analysis can be ea
extended to the multilevel systems and to the calculation
second-order and higher-order responses. We find sim
conclusions regarding the various denominators which
pear in response functions. The argument given in the c
text of Eqs.~4! and ~5! is correct and we rule out the poss
bility of the occurence of electro-optics effect due
radiative damping.

A pertinent question could be: can other damping mec
nisms, such as phase changing collisions, possibly lead to
nonvanishing of the EOE in isotropic chiral medium? Th
question has to be examined by considering a detailed
croscopic model for the collisional process. However,
simple model calculation, outlined below, suggests that e
if the effect is nonvanishing, it must be extremely sma
particularly, it must exponentially small in a large quantity

Consider the equation for the optical coherences[reg .
Let f (t) be a stochestic source that represents the effec
phase changing collisions. We modelf (t) to be a Gaussian
stochastic process with correlations given by

^ f ~ t !&50, ^ f ~ t ! f ~t!&5e2Gut2tu f 0
2 . ~34!

HereG21 is the magnitude of the collision time. The equ
tion for the optical coherence can be written in the form

ṡ52 iDs2 i f ~ t !s1 iG, ~35!

whereG represents the external field. IfG21 is the smallest
time scale in the problem, then one can show using the s
dard methods@11# that
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^s&5S f 0
2

G
1 iD D 21

~ iG !. ~36!

Thus, one recovers the result of the phenomenolog
theory. However, for the response to a static field,D is of the
order of the optical frequency whereas typical collision
process take place over a scale that is of the order of p
second, or larger. Thus,G21 is no longer the smallest time in
the problem. The smallest time scale will instead beD21. In
such a case, one can show that in the long-time limit

^s&5 iGE
0

`

dte2 iDtexpH 2
f 0

2

G S t2
~12e2Gt)

G D J
' iGE

0

`

dte2 iDte2(1/2)f 0
2t2

. ~37!

Note that the square bracket in Eq.~4! is just the real part of
*0

`dte2 ivngt2gngt, and thus, if we had treated the dampin
properly, it has to be replaced by

@ #→ReE
0

`

dte2 ivngt2(1/2)f ng
2 t2

5Ap2 f ng
2 expS 2

vng
2

2 f ng
2 D . ~38!

Thus, collisional damping can make the EOE in chiral is
tropic medium nonzero. However, it would be extreme
small unless the strength of collisions is comparable tovng ,
i.e., vng; f ng .

In conclusion, we have shown that radiative damping c
not lead to a nonvanishing EOE in a chiral isotropic mater
For the case of collisional damping, a nonvanishing EOE
predicted, but the magnitude of this effect is expected to
so small that it is unlikely that this effect could be observ
experimentally. These results are in contrast with recent s
gestions that relaxation effects can lead to an EOE in ch
isotropic materials, with potentially important practical im
plications. More generally, we have shown that in genera
is not adequate to use a frequency-independent damping
rameter in treating relaxation processes within the contex
density-matrix calculations.
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