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Influence of damping on the vanishing of the linear electro-optic effect in chiral isotropic media
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Using first principles, it is demonstrated that radiative damping alone cannot lead to a nonvanishing linear
electro-optic effect in a chiral isotropic medium. This conclusion is in contrast with that obtained by a
calculation in which damping effects are included using the standard phenomenological model. We show that
these predictions differ because the phenomenological damping equations are valid only in regions where the
frequencies of the applied electromagnetic fields are nearly resonant with the atomic transitions. We also show
that collisional damping can lead to a nonvanishing linear electro-optic effect, but with a strength sufficiently
weak, it is unlikely to be observable under realistic laboratory conditions.
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Several recent papef$,2] have discussed the question of linear electro-optic effect. In order to see the origin of this
properly taking into account various relaxation processesincertainty, let us examine the expression for the nonlinear
while calculating the nonlinear response of an optical syssusceptibility describing the electro-optic effect in a chiral
tem. Even the existence of certain nonlinear optical proisotropic medium. The derivation given in R¢#] is based
cesses is thought to be closely linked to the existence of an the standard phenomenological equations (Egwhich
damping mechanismi3—5]. In this connection, it is espe- take into account various damping processes in the medium.
cially important to incorporate in a consistent manner theThe nonlinear susceptibility is shown to have contributions
effects of relaxation processes. Very often, the nonlinear reef the form
sponse]6] is calculated by modifying the equation for the

off-diagonal elements of the density matfizoherencesby . 2i Yng
introducing phenomenological relaxation terms as follows: X= (0ng=1¥ng) (@ngT1¥ng)(@mgt @+iymg ©)
Ipij . : The authors of Ref[4] have suggested that this damping-
St - leip T (fieldterm9= @ dependent contribution is the o%ge which can lead to g n%n-
vanishing electro-optic effect in a chiral isotropic medium.
Ipij . . ) Let us examine this contribution further. We note first that
ot - @ijpij —T'ijpij + (different field terms.  (2)  the usual expression for the second-order susceptibility con-

sists of two energy denominators, whereas the above contri-

The equations for the populations are also modified approdution consists of three. Clearly, such a term arises from the
priately. Such modifications have been extensively used igombination of two contributions a&s can be written as
nonlinear optics and even have led to the prediction of phe-
nomena such as collision-induced resonances that have been  _ 1 11 @
subseq_uently observed expgriment@}c _ o (Omgt @+iYmg) | Ong=1¥ng  @ngTiV¥ng]

The importance of relaxation processes in establishing the
existence of certain nonlinear optical processes has recentlye note also that denominators such ag{—ivy,g) do not
been raised in the context of the linear electo-optic effechave an optical frequency contribution. Such denominators
[1,2,5. For reasons of symmetry, the linear electro-optic ef-arise from the interaction of the system with a zero-
fect must vanish in an isotropic nonchiral material. Howeverfrequency field. We show below that in a correct treatment of
in a chiral material, symmetry arguments alone cannot rulgadiative damping, the denominator should be replaced by
out the possibility of the existence of a linear electro-opticones that involve frequency-dependent damping coefficients.
effect. Thus, the question of the existence of such an effecthus, a first-principles treatment would lead to
must be decided by means of an explicit quantum-

mechanical calculation of the electro-optic response. Several . 1 1

calculations of this sort have recently been reported, and Xz[wmg+w+iymg(w)] [@ng=17Yng(0)]

have led to conflicting results. Buckingham and FisdHgr

and Stedmaet al.[2] have concluded that the linear electro- B 1 )
optic effect much vanish. However, Kauranen and Persoons [@ngtiYng(0)]]

[4] have recently presented a theoretical argument that pre-

dicts the existence of a linear electro-optic eff@€OE) in Note that the frequency dependenceyoh each denomina-
chiral isotropic media provided material damping is takentor depends on the frequency component of the electromag-
into account. Their result follows by using EQ). However, netic field responsible for such a denominator. Thus, the de-
it is not cleara priori if Eq. (2) can be used to describe the nominators corresponding to the static field have dampings
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evaluated at zero frequency. As discussed below, for the casssual, we model the bath by a set of harmonic oscillators.
of radiative dampingy,4(0) vanishes identically, which im- The Hamiltonian for the system oscillator interacting with a
plies thatX=0. Thus, a first principlesand correcttreat- bath is given by
ment of radiative damping doemt lead to any electro-optic >
effect in a chiral isotropic medium. We also show below that p 2

X is at most very small for the case of collisional damping. H= omt Emwoxz—exﬁ(t)—xF(t), (10
The nonvanishing of the EOE effect reported earlier is due to

inappropriate use of equations that are not valid for the calwhere £(t) is the time-dependent electromagnetic field and
culation of the EOE effect. Thus, when using the modifica-F(t) represents the effect of the bath terms
tion (2) in the calculation of the nonlinear optical response,

one has to keep in view the conditions under which &4. .

has been derived. This need necessitates an examination of F(t)=; (gjae™ i+H.c).
the microscopic theory leading to the derivation of reg2jit

It may also be noted that, in recent times, one has discoveredere, »;(>0) are the frequencies of the bath oscillateys

a number of other IntereStlng situations that cannot be deand gJ are the Coup"ng constants of the System oscillator
scribed by equations such as EB). For example, there are jith the bath oscillators. The Heisenberg equations can be
situations under which the coherences get coupled to thgasily derived from Eq(10):

populations, and this situation has led to considerable work

on quantum interferenc¢8]. In addition, there is the subject x=p/m, p=-mwx+e(t)+F(1),

of inhibited spontaneous emission, where the modifications
of EqQ. (2) due to strong external fields play an important role
[9].

In order to uncover the role of relaxation mechanisms o . : . .
the response to external fields and to determine how relalr)}{\/e Integrate formally the equation fa; and substitute it
ation depends on the frequency of the applied field, we con'—mO the equation fop to obtain
sider first a very simple model. This model brings out the ¢
salient features of the problem and enables us to establish  p=—mw3x+ eE(t)+F0(t)+f K(t—7m)x(n)dr, (13
that the form of the damping operator depends on the various 0
frequency scales in the system. We consider the case in
which the medium can be described by a one-dimensiona¥here
harmonic oscillator with displacemertand with frequency
wo. Let the medium interact with an external electromag- Fo(t) =, gjaj(O)e‘i“’J‘Jr H.c., (14
netic field of frequencyw described by i

11

aj=igre'ix(t). (12)

E=E&e 't g elet, 6 .
©) K(t—r)=(i2 lgj|2e i D +c.c.. (15)
J

The equation of motion with a phenomenological damping

constant” is Note that Eq(13) is derived without any approximation. The

' e further simplification will depend on the values of
x+I'x+wix=—e""“+c.c. 7) lgj|, »;, w, etc. Let us examine the average response for the
m case in whichg(t)=¢&e '“'+c.c. Note that the mean value
of the operatora;(0) is zero and henceFq(t))=0. It
should be borne in mind tha is positive. Using Eqs(13)
®) and(14), taking quantum-mechanical expectation values and
the long-time limitt—occ, we obtain

The response of the medium can then be expressed as
ex(t)=x(w)e “+c.c.,

e’ B
ege Tt
© ()= —

m(wo—wz)—K(w)

)= il

+c.c., (16)

In this manner, one obtains the familiar response function,

We would like to examine whether the respongav), as where

given by Eq.(9), is valid for all frequencies. Thus, we would 1

like to understand if the introduction of dequency- K(w)=lim>, |gi|? , -
independentlamping constarif in Eq. (7) is justified for all €0 ] eTiloj~w) e~llwjTo

frequencies of the applied electromagnetic field. For this pur-
pose, we start from first principles. Let us consider the inter-
action of the system oscillator with a bath. The bath will be
responsible for the relaxation processes described phenom- K”(w)=2 9|27 8(w;— w). (18)
enologically by the damping parametér in Eq. (7). As T '

=K'(w)+iK"(w), (17
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The exact resul{16) has the same structure as E§), ex- ¢ =iG*(t)y

cept for the important difference thatl’ is replaced by a 9 e’

function K”(w) that is dependent on the frequeneyof the _ ‘
applied electromagnetic field. In addition, there is a disper- o= —iwo¢e+iG(t)¢g+i2 gee "y,
sive contribution R&(w). Note further that very often one k
replaces Eq(18) by . _
P=ig5 Pee' . (24)

K"(‘*’)”Z |9j|?7m(w;— wp). (19 The initial conditions arefe=y4=0, andyy3=1. The in-
. duced polarization is to be obtained from the off-diagonal
Clearly, this can be done if the frequenay of the system elementp = e/ . Note that to first order in the applied
oscillator is very close to the applied frequency, i.e., essenelectromagnetic fieldp, is
tially in the resonance region. If the frequeneyhappens to

be far away from a resonance frequency, then the phenom- pSY (=) gy Oty + y Q) s Pt
enological equatiori7) should not be used. This is the real — (1) 25
reason why usage of equations such as Ez)sand(7) can = Ve

give rise to incorrect nonlinear optical response for applied toe  p(Demiotp gt (26

frequencies far away from the transition frequencies. We also
find from Eq.(18) that for static response

E—

To obtain the steady state response, we combine last two

; " 2 N
lim K (@) = 5[0, 00 (20 equations in Eq(24)

w—0

for the usual radiative coupling. Thus, the static response ;, _ _ . +i _ 2]‘ —iw(t=7)
functions would be independent of the damping term. More Ve lwofe tIG(1) g ; |94 oe Velr)d,

generally, no damping term can appear in the static response (27
as long as the bath does not have a characteristic static fre-
quency. and thus, to first order in the external electromagnetic field,

The features discussed above are valid rather generallye obtain
To see this, we consider the dynamical equations for a two-

level system undergoing, say, radiative damping. The case OIp(l): —iwo¢(1)+iG(t)—E |gk|2fte_iwk(t_7) w(l)(T)dT_
a two-level system is more involved because of the intrinsic ™ © © K 0 €
nonlinearity of the two level system. However, the salient (28

features can be uncovered by using the wave-function ap-
proach. Let us write the interaction Hamiltonian of a two IN terms of Laplace transforms, we have the result
level system interacting with the field and undergoing radia-

tive damping, as {/,gl)(z)z

1
i{Go(z+iw) L

Z+iwgt+ D |gk|2(z+iwk)l]
X

H="7%wole)(e|—A[G(t)|e){g|+H.c.] . -
+Gg(z—iw)™ 7}, (29
_ —iwt
ﬁ; (gkae"[e)(g| +H.c), (22) where we have used the explicit for(@2). From Eq.(29),
we get the response in the long-time limit
where we sum over all field modes, labeled by the inlex

-1
and where,

P = Go,

i(wo—w>+§ l9W 2(iwg—iw)
G(t)=d-E(t)/%
=Goe '“'+c.c. (22) ) =

1
i(wo+ w)+2k |gk|2(iwk+iw)1} G; .

The last term in Eq(21) is responsible for the radiative (30
decay of the atom. The coupling to the moklevith fre- _ o

quencyw, of the electromagnetic field is representedggy ~ 1he induced polarization can now be calculated

anda, is the photon annihilation operator. The wave function - -

of the whole system can be expressed as P(t)=(pegdsgtc.C)

=poe “'+c.c., (31)
[4)=vele.{0}) + ula. (01 + 2wl {k)), (23 ) i
wherepg is calculated, using Eq30), as

where{0}({k}) represents the vacuufone photon in mode . () (—)x 3
k) state of the field. The Schdinger equation leads to Po= " dgt e 7 deg. (32)

043821-3



G. S. AGARWAL AND R. W. BOYD PHYSICAL REVIEW A67, 043821 (2003

2

f0 . o
F+IA

(iG). (36)

This is the most general result for the linear response. No

assumption has been made regarding the nature of the bath. (o)y=
It should be borne in mind that all frequencies in E2) are
positive. The radiative corrections enter the response fun
tion through the quantity

Thus, one recovers the result of the phenomenological

theory. However, for the response to a static fidlds of the

order of the optical frequency whereas typical collisional

K(z)=2 lgl?(z+iw) L. (33 process take place over a scale that is of the order of pico-
K second, or larger. Thu¥, ! is no longer the smallest time in

It should be noted that the actual radiative correction terméhe problem. The smallest time S(_:ale will mstt'eadéb_el.' In
depend on the frequencies of the applied fields rather thaﬁUCh a case, one can show that in the long-time limit

the atomic frequencies. It is only when the applied frequency £2 R

) ! - I 0 (1—-e

is close to the atomic frequency that we can use the approxi- ()= ,Gf dre 'ATexp{ _ _( 7._—”

mate replacemenb— wq in Y (this cannot be done in 0 r r

7). We thus find that the counterrotating contribution B

#(7* in Eq. (32) doesnot depend on the radiative damping %ief dre 187 (1257 (37)
[10]. The rotating-wave contribution depends on the radia- 0

tive damping; however, the radiative damping is to be evalu-

ated at the applied frequency. If such an applied frequency iblote that the square bracket in Ed) is just the real part of
very far from the atomic transition, as, for example, for dc/odre™'“ne™ "ng”, and thus, if we had treated the damping
fields, thenno radiative damping term appears in the re-properly, it has to be replaced by

sponse. Thus, the full quantum-mechanical calculation also
leads to the same conclusion as we derived for the simple
oscillator model. Further, the above analysis can be easily
extended to the multilevel systems and to the calculation of
second-order and higher-order responses. We find similar wﬁg
conclusions regarding the various denominators which ap- = [m2faexg — = |- (38)
pear in response functions. The argument given in the con- 2fhg

text of Egs.(4) and(5) is correct and we rule out the possi-

[]—Re dTe—iwngf—(llz)fﬁgfz
0

bility of the occurence of electro-optics effect due to Tths, CO"'S.'OnaI damping can make_ the EOE in chiral iso-
tropic medium nonzero. However, it would be extremely

radiative damping. I unl the st th of collisi . bl
A pertinent question could be: can other damping mecha>Ma! UNiess the strength of coflisions 1S compara elp,

nisms, such as phase changing collisions, possibly lead to tHL?'I' “’ngwflnG.' h h h diative d .
nonvanishing of the EOE in isotropic chiral medium? This h conclusion, we have shown that radiative damping can-

question has to be examined by considering a detailed m not lead to a nonvanishing EOE in a chiral isotropic material.

croscopic model for the collisional process. However, a or t.he case of coIIisiongI damping, a nonyanishing EOE is
Rredicted, but the magnitude of this effect is expected to be

if the effect is nonvanishing, it must be extremely small- SO small that it is unlikely that this effect could be observed

particularly, it must exponentially small in a large quantity. expgrlmentally. Thes.e results are in contrast with recent sug-
Consider the equation for the optical coherencep gestions that relaxation effects can lead to an EOE in chiral
eg-

Let f(t) be a stochestic source that represents the effect d'?ptro_pic materials, with potentially important practical im-'
phase changing collisions. We modét) to be a Gaussian plications. More generally, we have shown that in general, it

stochastic process with correlations given by is not adequate to use a frequency-independent damping pa-
rameter in treating relaxation processes within the context of

(f())=0, (f(H)f(r))y=e TIt="f2, (34)  density-matrix calculations.
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