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The predictions of 2 quantum-mechanical theory of forward four-wave mixing in a homogeneous-
ly broadened system of two-level atoms are presented. In the limit of a very short interaction re-
gion, the predictions of this theory reproduce those of well-known theories for the spontaneous-
emission spectrum of an atom in the presence of an intense laser field. More generally, the theory
predicts how the emission spectrum is modified due to propagation effects for a medium of arbitrary
length. For long propagation path lengths, the emitted radiation can be quite intense and has a
spectrum that is strongly peaked at the Rabi sidebands of the incident laser frequency. The theory
shows that Rabi sideband generation in the forward direction can be understood as parametric
amplification of weak radiation emitted spontaneously at the Rabi sidebands. The quantum noise
that initiates the four-wave-mixing process has contributions both from fluctuations in the incident
vacuum radiation field and from fluctuations in the polarization of the atomic dipoles. Both contri-
butions are important for the case of a radiatively broadened medium, although the material fluc-
tuations make the dominant contribution for the case of a medium in which the broadening is large-
ly collisional. Under certain conditions large amounts of squeezing in the radiated field are
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predicted.

I. INTRODUCTION

When an intense, near-resonant laser beam propagates
through an atomic vapor, several different quantum-
optical processes can occur. These processes include
spontaneous emission from the strongly driven atoms and
four-wave-mixing effects, which can lead to a dramatic
modification of the character of the emitted radiation.
For sufficiently large laser intensities, spontaneous emis-
sion occurs in the form of a three-peaked resonance
fluorescence spectrum, consisting of a central component
and of two sidebands symmetrically detuned from the
central component by the generalized Rabi frequency.'?
Resonance fluorescence is emitted in the form of a dipole
radiation pattern, and hence is emitted in nearly all direc-
tions. For the case of large path lengths through the
atomic vapor, propagation effects become important.
These propagation effects can lead to a modification of
the spectrum and directionality of the emitted radiation,
due both to the possibility of reabsorption of the emitted
radiation and to the possibility of amplification of the em-
itted radiation, which in the presence of strong saturation
can occur even for an uninverted atomic system.> These
propagation effects are most dramatic in the near-
forward direction, where phase-matched four-wave-
mixing processes can occur,” leading to the coupling of
the spontaneous emission at the two sidebands.

There have been several experimental studies of the
emission processes that occur in the near-forward direc-
tion when an intense near-resonant laser beam propagates
through an atomic vapor.’~!® The emitted light is often
observed to consist of both an upshifted and a downshift-
ed component, with the lower-frequency component
often being emitted in the form of a ring surrounding the
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transmitted laser beam. It has been speculated that this
emission results from a four-wave-mixing process that
amplifies the radiation spontaneously emitted by the
atoms.” A semiclassical calculation shows that four-
wave-mixing processes lead to significant gain at the two
Rabi sidebands, which is also where two of the peaks of
the resonance fluorescence spectrum occurs.* This radia-
tion is emitted most efficiently in those directions for
which the phase-matching condition is achieved.!'® While
this semiclassical description presents an appealing ex-
planation of the nature of the conical emission process, it
cannot accurately predict the spectrum of the emitted ra-
diation nor can it describe how the four-wave-mixing
process is initiated quantum mechanically.

The present paper presents a theoretical treatment of
the emission processes of an atomic system when both
spontaneous emission and four-wave-mixing processes
can occur. While the quantum-mechanical theory of
single-atom spontaneous emission and the semiclassical
theory of four-wave mixing are well understood, only
very recently has four-wave mixing been discussed from a
quantum-electrodynamic point of view.!'~" Our calcu-
lation is based on the application of a recently published
quantum theory of nonlinear mixing processes involving
multimode fields.!® The results reduce to those of single-
atom spontaneous emission in the limit of short propaga-
tion pathlengths, but go beyond these results by showing
how the spontaneous-emission spectrum is modified by
propagation effects. Our calculation shows how the spec-
trum of the emitted radiation evolves continuously from
that of single-atom resonance fluorescence as the path
length through the atomic vapor is increased. Our calcu-
lation also shows that, for certain values of the propaga-
tion path length and of the laser intensity and detuning
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from resonance, the emitted radiation, obtained by super-
posing the fields at the two Rabi sideband frequencies,
has strong squeezing characteristics. Related calcula-
tions have recently been presented by Sargent and co-
workers!!~13 and by Reid and Walls.!*!®> These calcula-
tion are based on different theoretical formalisms, and
one of our motivations is to compare the results of our
formalism with theirs. As we show explicitly below,
these different formalisms give consistent results. How-
ever, our formalism allows us to distinguish between the
effects of quantum noise in the incident vacuum field and
quantum noise in the response of the material system.

II. THEORY

The theory of nearly degenerate, forward four-wave
mixing used in our calculation is a special case of a re-
cently developed general quantum-mechanical theory of
multiwave mixing.!® We describe the interaction between
the atoms and the fields in the electric dipole approxima-
tion through the interaction Hamiltonian

H,=— [P(r)-E,(r,nd’ — [ P(r)-E(r,d’r , (1
where we treat the pump field ‘
Ep(r,t)=epei""‘i“”+c.c. 2)

as a classical quantity but describe the probe field in
terms of the quantum-mechanical operator E(r,z). We
assume that the probe field consists of a signal component
of frequency w, and a conjugate component of frequency
o, =20—w,, so that the probe field operator can be
represented as

ik, r—iw,t

‘“)+H.c.,
(3)

ik r—iogt

Elr,t)=(B;€;ae +B.€.be ¢

where @ and b denote the annihilation operators for the
signal and conjugate fields and where we have introduced
B.=—iQ2w#iw,/V)'/?, for a=s,c, V denoting the quanti-
zation volume. The polarization operator is expressed in

I
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terms of the dipole moment operator d? of an atom lo-
cated at position R"’ as

P(r)=3 8(r—R")d"? . @

We next assume that the applied and generated field fre-
quencies are sufficiently close to the atomic resonance
that the rotating-wave approximation can be used. In
this case the Hamiltonian (1) simplifies to

Hy=— [d*%P~(r)[E}(r,0+E*(r,n] Hec., (5)
where the superscripts + and — designate the posmve-
(e.g., e~'") and negative- (e.g., ¢’) frequency parts of
the ﬁelds, respectively.

The density operator p for the coupled atom-field sys-
tem obeys the equation

%‘?‘=—é[H04+HOF+HI’p]+LAp’ (6)

where Hy, and Hgyp represent the unperturbed Hamil-
tonians of the atoms and field, respectively. The effects of
spontaneous emission and of collisions are contained in
the relaxation Liouville operator L, of the atoms. Our
primary interest is in determining the dynamical behavior
of the optical field. For this purpose, we need the field
density operator pr, which is related to the complete den-
sity operator by tracing over the atomic variables:

pF-—_—-TrAP . . (7)

The dynamical equation for pr can be obtained using
projection-operator techniques. We assume that the,
probe field is sufficiently weak that we need to retain only
the lowest-order nonvanishing terms in the probe opera-
tor. The derivation of the field equation of motion in-
volves extensive algebraic manipulations, which are de-
scribed in Ref. 16. This procedure leads to the master
equation

3 BiBIN : PO
%F___ 2%2 Q++(—~I'V [at, [bT’pF]]+e;+(_ch)[aT’ {bT’pF}]‘I'QZv“F(_lVJ)[bf’ !:aT’pF]]
+E 5+ (—iv b, {at, ppiDe TFOOT T
BN oy 2 (iwiat
- Zﬁz (Q (l'V_\-)[a 7[a’p1‘]]+ 58§ (I‘VS)[[Z ’ {a:pF}])
IB |2 4 — 6+ +
Py (0 & livo )[BT, [b, pr]]+ (ivo)[b', {b, pr}D+H.c. ®)
. [
Here N denotes the number density of atoms, [,] denotes V=0—0,, Vi=0—0, . ’ (10)

the commutator, and {,} denotes the anticommutator.
The caret denotes the Laplace transform; for example,

CiFa=["dre=Cii(n . ©)

For convenience, we have introduced the signal and con-
jugate detunings v, and v,,

The quantities C and Q are linear combinations of
the atomic correlatlon functlons Baﬁ R

(1-) (7')+B t—-m,
otf Bii(r)—B (—7),

(11a)
(11b)
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where

Bfﬁi('r):tlim [ (PL(z+T)PE(2))

—(PE 4+ (PEN], (12a)

with

Pt =P*.€, P, =(P})* for a=s,c . (12b)

a’

In Eq. (12), the polarization operator can be evaluated at
any point in the medium, as long as the same point is
used for P, and Pg. The polarization correlations are to
be evaluated in the presence of the classical pump field
and the Liouville relaxation operator It is shown in Ref.
16 that the correlation functions C 5 correspond to the

nonlinear susceptibilities that appear in semiclassical -

theories. The functional form of these susceptibilities is
well known for many physical systems; see, for example,
Ref. 4 for their form for the case of a two-level system in
the presence of saturation effects. The correlation func-
tions Q have no counterpart in semiclassical theories;
they represent the quantum fluctuations of the atomic
system. The correlation function Q ¥~ (more precisely,
the combination Q@+~ —C¥7) can be used to calculate
the spectrum of the radiation emitted by a coherently
driven system. The correlation function Q*+ has been
referred to as the anomalous correlation function and has
been computed for a number of cases;'® it is useful for
calculating the spectrum of the squeezmg produced in
processes such as resonance fluorescence.'® Our formula-
tion of the forward four-wave-mixing problem can.be
shown?® to be consistent with that of Sargent et al.!! and
of Reid and Walls.?°

For the case of nonlinear mixing by means of the non-
linear response of a two-level atom, the atomic correla-
tion functions can readily be determined. We write the
optical Bloch equations for an atom located at position R
as

log
ot

where ® represents the Bloch vector whose components
are given by

q)1= (st )eik-R—ia_;t’
where I represents the vector with components

I,=I,=0, I,=0/2T,, (15)

=M®+I, (13)
®,=dF, D;=(57), (14)

and where M is the matrix
,I
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L 0 210
Tz
M=| o —L_ia —2a]. (16)
TZ
1
'.Q, . _'Q* — s
i i T,

In these equations, S and S7 respectively, represent the
polarization and inversion operator for a two-level atom;
T\ and T, respectively, are the population and dipole re-
laxation times, 9 is the equilibrium population inversion
in the absence of the pump field, A=wy—w, and
Q=d-e/#. The polarization field can be determined in
terms of the solution to Eq. (13) through

P(r)=dS*8(r—R)+H.c. (17)

One finds by explicit calculation that the atomic correla-
tion function is given in terms of the steady-state solution
of Eq. (13),

O=—M"'I, (18)
and of the elements of the matrix U defined by
U(z)=(z—M)~"! (19)
through the equations
O +(z)=(e*-d)*(e,-d)

X2 Uyl2)
I

X(1—-2®,®,, —20,0,, —20,®;), ,
CEt ) =(e,-d)*(e,d)* S Uy (2)(29,0, — D), ,
I

A 20
0%-(2)= | ed|? 0

XE Uz[(Z)
I

X(—2®,®,1-20,D,, —20,D;), ,
Ci (2= & d|* 3 Uy(2)(0, —2®3,¢)), .
1

We next convert the operator equation (8) to a c-
number equation by introducing the Wigner distribution
function ¢(z,,z,) associated with the density matrix pg.
The Wigner distribution function is defined by

¢(zazb)=-;T17Tr [prdzafdzﬁexpf—[a(z;"——ai')——a*(z,,—a)+B(z§‘-—bT)—ﬁ(zb—b)]} , Q1)

where f d?a represents integration over the whole complex c plane. Through use of the Wigner distribution function,

the expectation values of symmetrically ordered combinations of operators can be calculated; for example, the expecta-
tion value of the number of photons in the signal mode is given by

(M) J‘dz fdzzb 12, 1%0(z2,02,) .

22)
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By using the standard rules of mapping associated with Weyl ordering, the master equation can be mapped into the c-

number equation

3 BBIN

++
ot 242 [Q (=

—iv, )+ 0

68,,

)
iy )= *
C Lt lv,)azb(ZZaqS)‘e

|Bs|°N . 3% IBC ZN
+l 272 O (W’)az,,az,; 0%
Iﬁ’cl2 . J
7 ————Ct(iv )a—%(Zz,,qS) +ec.c.

Equation (23) has the form of a linearized Fokker-Planck
equatlon and can be solved using well- known tech-
niques.'® Note that the correlation functions CEF of » Which
correspond to semiclassical susceptibilities, appear only
in the drift terms, whereas the correlation functions QaB ,
which have no semiclassical counterparts, appear only in
the diffusion terms. Hence the deviation of the Wigner
function’s dynamics from motion on a classical trajectory
are due only to the Qiﬂi terms which represent the quan-
tum fluctuations of the medium. In fact, it is for this
reason that we chose to use the Wigner distribution func-
tion for the present calculation. The time evolution of
the expectation value of any combination of field opera-
tors can be determined in terms of the solution of Eq.
(23). For example, we introduce the vector

—itQo—o,—o,)

8% Iﬁsl2 o4 3
2z
8 3y Py w v a¢( 2 ®)
23)
[
. (aTa)—}—% {ab)
WD=1 oty (bly4l @3)

The equations of motion for these quantities are then
given as

é’—(w)—_—A(m, (26)
t

%(ww*>=A<ww*>+<ww“>A*+2D , @7

where A is the matrix that depends only on Cﬁg,
1B, |2CE—(iv,)  BrBrCET(—iv,)

_ N
4==% [BSB (E 5 (=

(a) —iv)s | Be |P[Coclive)]* |
a
and 2D is the diffusive matrix which depends only on
and the matrix Qaﬁ .
I
. N |B 110 £ ivy)+e.c.] —BBHI Ot H(—iv )+ 0 5 H (—iv)] )
- —BB IO £ (—iv )+ 0 EH(—iv)]* |B. 10 ;;-(iv;)+c.c.]
[
Equations (26) and (27) can be solved to give through quantum fluctuations of the material medium.
t ' Note that if we had simply quantized the semiclassical
(1)) =e4{W(0)) , (30) coupled amplitude equations describing forward four-
(WO (1)) = e 4(w(0)w1(0)) (e 1)t wave mixing, only the first term of Eq. (31) would be
o ' present. Note further that our formallsm gives us not
+2fod're'“D(e O LI (31)  only the quantities {a'a ) and (b'b), that is, the mean

For the case of present interest in which initially only the
pump is acting on the atom, the fields represented by
modes a@ and b are in the vacuum state, and the initial
conditions are (¥(0))=0 and (‘I’(O)\I’T(O))—%. Equa-
tions (30) and (31) constitute the complete quantum-
mechanical solution to the problem of forward four-wave
mixing. The first term on the right-hand side of Eq. (31)
shows how the quantum fluctuations of the vacuum field
are amplified by the four-wave-mixing process, whereas
the second term shows how fields can be generated

number of photons in the SIgnal and Stokes modes, but
also the quantities (ab ) and (a'6"), which describe the
correlation between the signal and conjugate fields.
These quantities can be used to calculate the amount of
squeezing present in the output probe field.

For the purpose of calculatmg expectation values such
as (a), {(ab), and {a'a), it is not necessary to introduce
a quasiprobability distribution such as the Wigner func-
tion. However, such functions are useful in the calcula-
tions of the higher-order statistical properties of the
fields. For example, the calculation of intensity correla-
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tions is greatly simplified through use of the properties of
the linearized Fokker-Planck equation. For instance, we
make use of the property that the Wigner function
remains Gaussian at all subsequent times if it is Gaussian
initially in the derivation of Eq. (45) below. This proper-
ty is also useful in calculations of the higher-order
squeezing exhibited by such systems. Elsewhere?! it has
also been shown how photon number distributions can be
computed using Gaussian-distributed Wigner functions.
Moreover, the Wigner function is quite attractive for the
analysis of phase-sensitive noise since the Wigner func-
tion yields directly symmetrized expectation values. Of
course, in principle any quasiprobability function can be
used in performing the calculations and the end result
must be the same. However, different distributions may
look quite different and may diffuse quite differently.
This property can be seen s1mp1y for the case of the para-
metric Hamiltonian ga Tpt +g*ab. Only the Wigner
function has the attractive property that for such a Ham-
iltonian the system evolves on the classical trajectory.

In order to evaluate expressions (30) and (31) for the
fields leaving the interaction volume, we set ¢ equal to
nL /c, where L is the length of the interaction region and
c/n is the phase velocity of propagation. For the
present, we assume that the laser, signal, and conjugate
fields propagate with the same phase velocity; wave-
vector mismatch effects will be introduced below. It is
convenient at this point to rewrite Eq. (31) in terms of di-
mensionless matrices A and 9 defined in terms of 4 and
D through

24 2D

=" D= ’

- me=-(32)
agc agc '
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where ag=4mnw|d |*T,/#ic is the unsaturated, line-
center absorption coefficient, so that Eq. (31) becomes

(W()W'(0)) = Lexp(laoLA)I[exp(tagLA)]T
+1apL fol dx exp(LayLAx)2D)
X {exp[(+aoLAx)}T . (33)

This expression can be readily evaluated by introducing
the matrix S which diagonalizes A,

Ay O

g1
A=8 0 . S

(34)

In particular, the first term on the right-hand side of Eq.
(33) can be evaluated using the laws of matrix multiplica-
tion and the expressions

[exp(faoLlA)];= (8 ~1);1(S)jexp(LagLh,)

+(8(8)yexplLagld,) ,  (352)
{[exp(LaoL AT} ; =[exp(Laol A
= (S~ HH(S)fexp(L oL AY)
+(S_1)]2(S)2,exp( La,LAY) .
(35b)

In addition, by performing the integration indicated in
the second term of Eq. (32) one finds that the i,j matrix
element of the second term is given by

expl (Lol XA +A1)]—1

%(%aoz:)(zp)k, (S8 (STHHS

OL(}hl‘i’}\'k
B e ons exp[(ia(}L)(kz—i—?&T)]— o exp[ (Lo LY A +A3)]—1
+(S l)iZ(S)Zk(S l)jl(S)ll ;aoL()'2+)\"1‘() —I- :)._l)fl(S)lk(S_l ;‘Z(S);I zaOL(Kll-i_K;,)
1 ,
. expl (1oL )(Ay+A%)]—1
+(S 718 (8 ~H5(S)5 -
2 21 TaoL (A A%) (36)

Phase-mismatch effects are included in the theory
through the exponential phase factor exp[—it(2w
—w,—,)] that appears in Eq. (23). For the case in
which the refractive indices (n, n,, and n;) of the three
waves are not equal, this term when transformed to spa-
tial dependence becomes

—n,0,/¢)]=exp(—iz Ak) ,

where Ak =2k —k,—k,. Equation (23) can be solved
even in the presence of the phase-mismatch term. The
solution is still given by Eqs. (32)~(35) but with A re-
placed by ‘

exp[—iz(2nw/c —n 0, /c

2i Ak
oy

A —

0 0 -
0 —1]- (37)

IITI. NUMERICAL RESULTS

" In this section, the formulas derived in Sec. II are eval-
vated numerically and are displayed graphically for
several cases of interest. In Fig. I, we consider the case
of a radiatively broadened medium (i.e., T, /T; =2) excit-
ed by a pump laser that is tuned to line center (A==0) and
has a field strength such that the normalized Rabi fre-
quency QT, is equal to 16. We assume perfect phase
matching, that is, Ak =0. The mean number of photons
(n)={a'a) generated at the signal frequency o, is plot-
ted in this figure as a function of the signal frequency o,
for several different values of the absorption path length
oL through the atomic medium. For the case of a short

medium (ayl =0.01), the emission line shape is identical
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FIG. 1. Mean number of photons per mode {n }={a'a) ra-
diated at frequency w, plotted as a function of detuning from
the laser frequency o for several different values of the un-
saturated, line-center, intensity absorption path length a,L.
The calculation assumes the case of a radiatively broadened
transition (T, /T, =2), that the laser is tuned to the center of
the absorption line (A =0), that the normalized Rabi frequency
associated with the laser field strength is QT, =16, and the case
of perfect phase matching (Ak =0).

"to the well-known resonance fluorescence line shape.
However, as the path length through the medium is in-
creased the predicted line shape becomes significantly
modified. In particular, the number of photons per mode
increases rapidly with propagation distance, especially
for signal modes near the Rabi sideband frequencies. In
addition, the Rabi sidebands become more prominent as
the path length is increased, whereas the central com-
ponent is strongest for the case of short path lengths.
Moreover, the Rabi sidebands are seen to display gain
narrowing, that is, the width of the sideband decreases
with increasing propagation distance.

It is instructive to see how the formalism developed
here predicts a spectrum that reduces to the Mollow
spectrum in the limit of short propagation lengths. Re-
taining only terms to lowest order in ¢, Eq. (31) becomes

¥ N
a
which on using (28) and (29) becomes
(a*a > 2 +—
R 1B | 2105 iy~ CE v, )] +ouc
(39)

If we now introduce the definitions (11), (12), and (17),
Eq. (39) reduces to
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(a a) ———«Re lim f dre' s
t t——-»co
X[ {sH(t +1)s7 (1))
—(s*(t +o)(s~(0))] . (40)

40) is in fact the standard
part of the Mollow spectrum
written in terms of the atomic correlation functions.
Note further that the right-hand side of (39) is just
(A,+ AY) in the notation of Holm and Sargent.!®

The dependence of the width and height of the Rabi
_sidebands on the propagation path length for the case of
radiative broadenmg and central tuning of the pump laser

iy summarized in Fig. 2 for several different values of the

Rabi frequency associated with the laser field strength.
For each case shown in Fig. 2(a), the mean number of
photons per mode at the peak of the Rabi sideband is
seen to increase linearly with propagation distance for
short media and to increase much more rapidly for longer
“media. The linear increase occurs when the emission
occurs predominantly by spontaneous emission, whereas
the more rapid growth occurs once the stimulated pro-
cesses which lead to exponential gain due to four-wave-
mixing effects become important. In Fig. 2(b), the
linewidth (full width at half maximum) of either of the
sidebands is shown plotted as a function of the propaga-
tion path length. Significant gain narrowing of the side-
bands is predicted. '

The nature of the solution is qualitatively somewhat
different for the case of a pump laser that is detuned from
the atomic resonance. The case of a detuned pump laser
(AT, = —38) and perfect phase matching is shown in Fig.
3 for a radiatively broadened medium (7, /T, =2) and in
Fig. 4 for a medium in which the broadening is dominat-
ed by collisions (T,/T;=0.02). For a short medium
(apl =0.01) the spectra are again those of conventional
resonance fluorescence, with two sidebands separated
from the central component by the generalized Rabi fre-
quency

Q' =(0*4+AH12 1)

For the radiatively broadened medium the two sidebands

1012 T T T T T T T T LR 1

QT;= 10 £
9 | 2= ] k]
10 0 3
A 1061 E £
g 1000 g
g w03+ 4 ]
<
1t 4 E
(a) g

10'3 T S S S S | TN B _ 0 L ¢ ¢ PR N S DU 1

0.01 1 100 104 106 0.01 1 100 104 106

QoL oL

FIG. 2. Mean number of photons per mode at the peak of ei-
ther of the Rabi sidebands (a) and the width of the Rabi side-
band normalized by its width in the limit of small a,L (b) plot-
ted as functions of the absorption path length through the in-
teraction region for several different values of the laser Rabi fre-
quency. The calculation assumes the case of a radiatively
broadened transition, that the laser frequency is tuned to line
center, and that Ak =0.
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FIG. 3. Mean number of photons per mode radiated at fre-
quency o, plotted as a function of the detuning from the laser
frequency o for several different values of the absorption path
length. The calculation assumes the case of a radiatively
broadened medium, that the laser frequency is detuned from
line center such that AT,=—8, that Q'T,=25, and that
Ak =0.

are of equal height, whereas for the. collisionally
broadened medium collisional redistribution effects?? lead
to an enhancement of the sideband closer to the atomic
resonance frequency. For longer values of the propaga-
tion path length, four-wave-mixing processes become im-
portant. These processes lead to exponential growth of
the signal and conjugate fields. For both the radiatively
and collisionally broadened media, the Rabi sideband

that is further from the atomic resonance frequency has

the higher intensity. The reason why this sideband is
higher is that it experiences gain due to both the stimu-

lated three-photon effect’® and the parametric mixing -

process. Conversely, the other sideband (the one closer
to the atomic resonance frequency) experiences loss due
to the atomic absorption but gain due to the parametric
mixing process. The dip in the spectra within the side-
bands exactly at the Rabi sideband frequency occurs be-
cause in the presence of perfect phase matching the cou-
pling between the two sidebands is so strong that the loss

0.0035 T T T T T T 650 T T T T TTT
i
1 g ﬂ°L=2500‘ \l.
N A ‘
A A i
o ° i
v - v H
0 o oo O DR e T S T i S R N L
250F r r r 1 TN - 7000 [
F a,L=1000 L
A g A
o o
b ]
v i k v
OF I S T v i T o

-40 40
(@-0)T,

(-0 )T,
FIG. 4. Same as Fig. 3, but for the case of a medium for

which the broadening is such that

T,/T;=0.02.

largely collisional
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at one sideband quenches the gain at the other, leading to
decreased gain for the coupled solution. These features
of the solution are analogous to those that appear in the
semiclassical treatment.*

We have investigated the role of phase-matchmg effects
by considering how (n)=(a’a) at each of the Rabi
sideband frequencies depends upon Ak for one of the
shown in Fig. 4, in particular, the case
T,/T,=0.02, AT,=-8, Q'T,=25, and o,L =2500.
Figure 5(a) shows that the output at Sw=(w—w,)T,
=—25 is minimized for the case of perfect phase match-
ing. The reason is that this sideband experiences gain
due to the stimulated three-photon effect, and hence its
height is increased by decoupling it from the other (lossy)
sideband through a large phase mismatch. Figure 5(b)
shows how the output at 8w=+25 depends upon the
wave-vector mismatch. In this case the output is maxim-
ized by coupling the sideband strongly but not too
strongly to the other sideband, that is, through the use of
a small not nonzero value of Ak.

We have also investigated the relative importance of
the two contributions to the output signal represented by
the first and second terms on the right-hand side of Eq.
(31). For the case of a collisionally broadened medium
with T, /T =0.02, the contribution of the second term is:
at least 100 times greater than that of the first term for all
of the cases we have examined. Hence in this limit in
which the dephasing is dominated by collisions, the four-
wave-mixing process is initiated primarily by fluctuations
of the atomic dipoles and not by quantum fluctuations of
the incident vacuum field. The case of a radiatively
broadened medium is more complicated. Figure 6 shows
the contributions from the two terms in Eq. (31) and their
sum for two representative cases. For the example shown
in Fig. 6(a) the two contributions are roughly equal in
magnitude, whereas for the example shown in Fig. 6(b)
the contribution due to fluctuations in the material
response exceeds the contribution due to fluctuations in
the radiation field by approximately a factor of 10. We
have found no examples with T, /T, =2 for which the
first term makes the dominant contribution nor have we
found examples where the first term is negligibly small.
Hence it appears that for a radiatively broadened medi-

um both field and material fluctuations are important in

initiating the four-wave-mixing process.

We have also examined the statistical properties of the
transmitted fields to determine the extent to which the
output constitutes a squeezed state of the field. We define
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FIG. 5. Mean number of photons per mode radiated at each
of the Rabi sidebands plotted as a function of the normalized
wave-vector mismatch Ak for the case T, /T, =0.02, AT, =—38,
and a,L =2500. .



4026

4 T T T T T T T

| (a2 4

M T T T 7T 1T T T ¥ T 1J

k(b 1

T
wn

<ata>
.

M

logyg <ata>

R | I M \R |
I TR SRR S TR S N __',1,, [y _ T ]
40 40 25 25
{®-0)T2 {0)- )T,

FIG. 6. Mean number of photons per mode radiated at fre-
quency w, plotted as a function of the detuning from the laser
frequency w. In each plot, the curve marked R gives the contri-
bution of the first term in Eq. (31) whose origin is fluctuations in
the incident vacuum radiation field, and the curve marked M
gives the contribution of the second term in Eq. (31) whose ori-
gin is fluctuations in the atomic dipoles that constitute the ma-
terial system. Plot (a) corresponds to the case T,/T,=2,
AT, =—8, Q'T, =25, ayL =20, and Ak =0, and plot (b) corre-
sponds to the case T,/T,=2, AT,=0, Q'T,=16, a,L =400,
and Ak =0.

the squeezing parameter as'™>

=1[(a%a)+(b'b)+2Re({ab)e®)], “42)

where 6 denotes the phase angle of the linear combina-
tion of the signal and conjugate modes. The squeezing
parameter is defined in such a manner that S is equal to O
for a coherent state and is equal to — 1 for a state possess-
ing perfect squeezing; any state with a negative value of S
is said to be a squeezed state. It is convenient to intro-
duce the maximum-squeezing parameter

Smx=1((a’a) +(b%)—2] (ab) ) “3)

as the maximum value that S attains as @ is varied. Fig-
ure 7 shows the spectrum of the maximum-squeezing pa-
rameter for several different propagation path lengths for

the case T,/T; =2, AT,=—8, and Q'T,=25, that is,

the same case for which the emission spectrum was
displayed in Fig. 3. In all four cases broad regions of
squeezing centered about the Rabi sideband frequency
are predicted. For the shortest interaction path length
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FIG. 7. Maximum-squeezing parameter plotted as a function
of the detuning w—w, for the case T,/T,=2, AT,=—38,
0'T, =25, Ak =0, and for several different values of the absorp-
tion pathlength a,L.
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shown, the amount of squeezing is probably too small to
be measurable. However, in the other cases appreciable
levels of squeezing are predicted. It should be noted that
several authors have produced squeezed light by using
four-wave mixing?*% in situations where the pump was
far detuned from the atomic resonance and the pump in-

~"fensity was much less than the saturation intensity. In

the present paper we are discussing a very different re-
gime. We have also studied the case of a centrally tuned
laser for T, /T;=2, QT,=16, and Ak =0, and find that
no squeezing is predicted for any value of apl. In addi-
tion, we have investigated collisional media with
T,/T;=0.02, and have found no case in which squeez-
ing is predicted.

Finally, the higher-order correlation characteristics of
the generated fields can also be studied by using the
Gaussian property of the Wigner distribution function.
In particular, we can show that the fields at the two
sidemodes are strongly correlated with each other. To
see this we calculate the correlation function

Cpo={atab’p ) —(a'a)(bp), (44)

which on using the Gaussian property of the Wigner
function reduces to

Cab=|<ab>lz .

This function is plotted in Fig. 8 for the same choice of
parameters for which squeezing was predicted in Fig. 7.
In each case shown, a strong correlation is predicted for
the radiation at the two Rabi sidebands. Strong correla-
tion is predicted even in the case of a short interaction re-
gion (gl =0.01), for which case the mean number of
photons per mode ( a'a) is quite small (see Fig. 3). Since
the photons are produced in pairs, once a photon is
detected in mode a the probability of detecting a second
photon in mode b is quite large. The correlation could be
measured experimentally either by separating the two
sidebands spectrally before measuring their intensities or
by performing the experiment in a relatively dense atomic
vapor in which case the two sidebands would be emitted
in different directions due to phase-matching effects.

(45)
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FIG. 8. The degree of correlation C,, between the radiation
at frequencies w, and w,=2w—2w, plotted as a function of
®—w, for the same cases shown in Fig. 7.



IV. CONCLUSIONS

We have presented an analysis of Rabi sideband gen-
eration by forward four-wave mixing in a homogeneously
broadened atomic medium in the two-level approxima-
tion. This treatment is fully quantum mechanical and
shows how the four-wave-mixing process is initiated by
quantum noise. As the propagation path length through
the medium is increased, the spectrum of the radiation
emitted in the forward direction evolves continuocusly
from that of spontaneous emission from a strongly driven
atom (resonance fluorescence) to that characteristic of a
four-wave-mixing process. The treatment is based on the
use of the Wigner distribution function, and is thus cap-
able of separating the process into a part initiated by
quantum fluctuations of the incident vacuum radiation
field and a part initiated by fluctuations of the atomic di-
poles. Both of these conttibutions are important for a ra-
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diatively broadened medium, whereas only the material
fluctuations are important for a inedium in which the
broadening is predominantly collisional. Our treatment
predicts thadt certain superpositions of the radiation gen-
erated within the medium constitute a squeezed state of
the optical field for the case of a radiatively broadened
medium for certain values of the laser detuning and in-
tensity, and that under these same conditions strong
correlation between the radiation at the two sidebands
occurs.
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