PHYSICAL REVIEW A

VOLUME 32, NUMBER 6

Transient sum-frequency generation in resonant three-level media
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Resonantly enhanced sum-frequency generation of pulsed laser radiation is treated theoretically
for the case of a three-level system. The density-matrix equations of motion are solved using
second-order, time-dependent perturbation theory with the inclusion of transient effects. The energy
and spectrum of the generated radiation are calculated as functions of laser detunings, laser pulse
lengths, and temporal overlap of the laser pulses. The tuning characteristics and output pulse
characteristics are found to differ qualitatively depending on whether or not the excitation pulses

DECEMBER 1985

satisfy the adiabatic following criteria generalized for the case of a three-level atom.

INTRODUCTION

Nonlinear optical interactions are typlcally described in
terms of the nonlinear optical susceptibility,! which is ob-
tained by calculating the steady-state response of the ma-
terial system to applied optical fields. However, experi-
ments are often conducted using pulsed lasers, and when

the pulse length is comparable to or smaller than the re-~

laxation times of the medium, the steady-state treatment
of the nonlinear response must be modified to include

transient effects.>® Transient effects in nonlinear optics

have been discussed by Grischkowsky* and by Courtens
and Szoke,® primarily for the case of a two-level system,
and by Tai® for the case of third-harmonic generation. In
this paper we present an analysis of resonantly enhanced
sum-frequency generation (SFG) involving pulsed lasers,
as illustrated in Fig. 1(a). Our analysis is applicable to
resonantly enhanced SFG in media such as noncentrosym-
metric crystals doped with impurity ions,” or atomic va-
pors in the presence of a symmetry-breaking static electric
field.® We determine the induced polarization near the
sum frequency w;=w;+w, by calculating the Fourier
components of the density-matrix element p,, oscillating
at frequencies near w;. We assume that the laser pulses
are sufficiently weak that saturation effects®!® are unim-
portant, and hence that it is sufficient to calculate p., us-

ing second-order perturbation theory. For certain specific

forms for the laser pulse shapes, we derive the form of the

output pulse shape, and we present specific predictions for -

the energy conversion efficiency and output spectrum in
terms of the laser frequencies and time delay between the
laser pulses.

The theoretical predictions of this paper are found to

differ qualitatively, depending on whether or not the exci-
tation obeys the adiabatic following criterion. Accordmg
to the criterion established by Courtens and Szoke® for a__
two-level system, a laser pulse is nonadiabatic only if its
spectrum appreciably overlaps the atomic transition fre-
quency. In this case, population can remain in the upper
level at the end of the excitation pulse, leading to an oscﬂ-
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lating dipole moment that persists after the excitation has
ended. In this paper we generalize the concept of adiabat-
ic following to apply to the excitation scheme shown in
Fig. 1. We consider the excitation to be adiabatic [Fig.
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FIG. 1. (a) Sum-frequency generation in a three-level atomic
system. (b) If the w, pulse is nonadiabatic, the dipole moment
connecting levels @ and b can have a component at frequency

. pq, leading to the generation of coherent output at frequency

w3y=wp, +o,. (c) and (d) If the excitation of level ¢ is nonadia-
batic, coherent output is produced at frequency w3=ws.
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1(a)] if the one-photon excitation has no frequency com-
ponents that appreciably overlap the b—sa transition fre-
quency, and if the two-photon excitation has no frequency
components that appreciably overlap the ¢—a transition
frequency. As illustrated in Figs. 1(b)—1(d), under nona-
diabatic excitation up to three new carrier frequencies can
be generated; these new frequencies are o, and g, +o,
in addition to the sum frequency w;+w,. Furthermore, it
is found that if the first pulse is nonadiabatic, the total en-
ergy of the generated radiation can be maximized by in-
troducing a time delay between the input pulses; this time
delay can under extreme conditions be comparable to the
length of the pulses. The tuning characteristics of the
nonlinear mixing process and time evolution of the output
are also found to differ qualitatively, depending on wheth-
er or not the excitation is adiabatic.

THEORETICAL DEVELOPMENT
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tween levels / and j, py; is the ij matrix element of the di-
pole moment operator, and T'j; is the relaxation rate asso-
ciated with the element p;. We obtain a perturbative
solution to Eq. (1) by expressing p;; as

Pu=P§}”+P5})+P§12)+ )
and inserting the nth order solution in the term contain-
ing E(1), then solving for the (n +1)th order solution.
The applied electric field is expressed as

E(t)=E()+E,(1)

—ioy

=1e (e 1 le (e ™ Lo, , 3)

where ; is nearly resonant with w,, and w, is nearly
resonant with w.;. The field amplitudes ¢; are taken to be

_ functions of ¢ since the optical fields are assumed to be

pulsed. We now introduced the rotating wave approxima-
tion, that is, we retain only those driving terms on the
right side of Eq. (1) that oscillate approximately at fre-

For the three-level system illustrated in Fig. 1, the  9Uuency @y. The first- and second-order solutions are
density-matrix equations of motion take form'"!* found to be
(—iwpat —T gpt)
dp; . ) (D(4) — €xp ba ab
50 =—103Py =Ty +(A) ™ S pi gt~y E ) P 2ifi
v
. t
(0 X [ ppe€i(r)exp(—iAyr+Tgpr)dr (4a)
for i,j equal to a, b, and ¢. Here E(t) is the instantane- g
ous value of the electric field, fiw;; is the energy difference and
|
expl —iwggt —Tget) pt
o2t = L 22; = f_ ec,uc,,ez(f)exp[—i(Az—col,,, e+ rlpi(r)dr (4b)

where we have introduced the detuning factors A|=w|—wy,, Ay=w;—w, and Ay=w;+w,—o,,. Perturbative solu-
- tions for the remaining matrix elements can be calculated analogously, but are not presented here since they do not con-
tribute to the SFG process.

It has been found by Allen et al.!® that many pulsed lasers emit pulses that can be described by the functional form
t™e~*, The parameter m determines the pulse shape, while k determines the pulse length. This pulse shape is particu-
larly convenient in that it allows us to find closed-form expressions for the integrals appearing in Eqgs. (4a) and (4b). To
allow the possibility of partially non-overlapping pulses, we let ¢y be the time interval by which the onset of the first
pulse preceeds that of the second. We thus express the pulse envelopes as

—k,(t+1t5)
PR fort> —tg (5a)

er=egole/m )" [ki(t +20)]"'e
ey =6xle/my) "2 kyt) "2 T for >0, (5b)

and €, ,=0 otherwise. The normalization constants ensure that €;5 and €,y denote the maximum field of each pulse.
By substituting Eq. (5a) into Eq. (4a), we obtain the only nonzero first-order matrix element:

G (iwyto) mZ(t +10)]
pie) = l“baflfl"fl"‘“ expl( g0 T30 (¢ +19)] —expl(— iy —y )t +19)] 3, 2P0l ,T” ; ©
Z 1=0

) 1
where ‘'we have adopted the notation Z;=A|+i(Tg—k ), Zy=Ay+i(Tye—Top—ky), and Z;=Z,+Z,=A;
+i(Iy. —k1—k,) and have defined

m;

L i=1,2. @)

m,-!

2%

—iekl
Gi=_

m;

For comparison, we note that the steady-state solution to Eq. (4a) is given by

—iwgt
1 Hpa€1 e
Pt = — - ®)

% A+il,
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There are two terms in the transient result, one oscillating at the transition frequency wj, and another oscillating at the
input frequency w;. We shall see below that the component oscillating at w,, can give rise to frequency components in

the sum frequency polarization at w;~+ @y, and w,.

Equations (5b) and (6) are now substituted into Eq. {4b), whlch is then solved to give the second-order response (for

non-negative time delay ) as

—kitg

m(t)_G 1G 2t paltes €10€20 [

m,+m,+1
21231 2

—exp[ —ilw,+w)t — (k) +ky)t] > H,
I=0

exp(iAto—Tapto)

zitizt
where
" [ L Zuto | (mytma z | .
= A s K mlm—j | Zy |’

This result is to be compared with the steady-state solu-
tion to Eq. (4b): —

(2) -
= €€ — - e {11)
Peass =Hballeb €162 a A LiT 3 N (Ag+iT )

There are two terms in Eq. (9). The first term decays —

with time delay t, with the same decay constant k; with

which the first laser pulse decays with time. It is similar _
to steady-state SFG in that it is inversely proportional to _.

powers of the complex detuning factors containing A; and
A;=A;+A,, but with the linewidths changed from I to
roughly |4;—Tg |, and from T, to roughly
| k1+ky—T4 |. This term includes two carrier frequem
cy components, one oscillating at o, and another at the

steady-state sum frequency ,+®,. The second term im _

Eq. (9) decays with time delay #o with the medium relaxa-
tion constant T',,, and has a different dependence on de-

tunings. It is inversely proportional to powers of the com-

plex detuning factors containing A; and A,. Again this
term is comprised of two carrier frequency components,
one at wy+wy, and another at wg,.
ponent persists no longer than €,(¢) and is damped at the
medium relaxation rate I'.

exp(—za)mt—f‘act —expl —i(wy+wpg )t —(ky+Tgp) ]E

—ilo)+toyt . i
e 17@2

= 0.3 nsec™

The w;+w,, com- —
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RESULTS

B

In this section we display graphically our formal results
given by Eq. (9) for several cases of experimental interest.

—We assume two identical laser pulses described by Egs. (5)

with m;=m,=4 and k;=k,=10 nsec™!, as illustrated

in Fig. 2(a). The field envelope of each pulse has a full
width at half maximum (FWHM) of 0.5 nsec. The medi-
um relaxation rates I',, and I'., are chosen to be 1.0 and
1, respectively. The detunings A, and A, and the
time delay 7, between the pulses are allowed to vary.

" By varying A; and A,, we can choose whether or not

" the pulses fall within the adiabatic following limit. As

mentioned in the Introduction, adiabatic following occurs
if the spectral width of the excitation does not overlap the
transition frequency. For pulses of the form t™e ™, the
spectral width (FWHM) in angular frequency umts is
Tgiven approximately by 2k[In2/(m +1)]'/2. Hence the

~ conditions for adiabatic following are A;/27>>1 GHz

and (A;+4A;)/27 >>1 GHz for the values used in our nu-
merical calculations.

Figures 2(b) and 2(c) show the time evolution of the

amplitude of the induced dipole moment for conditions

under which the pulses are (#5=0) and are not (fy=1
nsec) temporally coincident. Since the expectation value
of the dipole moment is given by

(u2(0)) =p(Optae +c.c. (12)

It can be seen from Eq. (9) that SFG at o+, Occufs” 7he amplitude of the induced dipole moment is propor-

only when the pulses overlap. For non-overlapping
puls&s, the generation is at nearby, partially resonant fre- .
quencies. This conclusion is demonstrated numerlcally in
the next section. -
Schematically, the processes that lead to Eq. (9) are
shown in Fig. 1. The first pulse at w; produces a dipole
moment oscillating at w,,, from transient excitation, as-
well as the usual steady-state dipole moment at ;. The
second pulse at @, interacts with the dipole moments
these frequencies to produce dipole moments at ., and
@+, from transient excitation, as well as the usual
steady-state dipole moment at @, + ;.

" tional to |p{2N1)|.

The results shown in Fig. 2 are nor-
- malized by |plZ)|, the density-matrix element under
steady-state conditions with applied fields of strength €,

“and €. The first pulse is detuned by A,/2m=2GHz, and

hence is intermediate between the adiabatic and nonadia-
batic limits. As the detuning of the second pulse is varied
from 0.2 to 20 GHz, the excitation of the b—»c¢ one-
photon transition changes from the nonadiabatic to the
adiabatic limit.

For both temporal overlap and non-overlap, the polari-
zation is seen to decay to zero at the end of the second

~pulse if the second pulse is adiabatic. If the second pulse
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is nonadiabatic, the polarization rises quickly and decays
slowly with the relaxation rate T, persisting long after
the second pulse has ended.
Figure 3 shows how the output energy W depends on
- the time delay ¢, between the pulses. The output energy
is calculated as

w= [P, (13)

where P(t) is the instantaneous power generated by an in-
teraction volume of length L and effective area 4.5 con-
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FIG. 2. (a) Time evolution of the two exciting laser pulses
shown with a time delay #, of 0.5 nsec. (b) and (¢) Time evolu-
tion of the induced dipole moment producing sum-frequency
generation, for a detuning of A,/27=2.0 GHz and the case of
(b) temporally coincident pulses and (c) noncoincident pulses.

BENDA, GAUTHIER, AND BOYD 32
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FIG. 3. Output energy vs time delay between the exciting

* pulses for the case A;=0. The results are normalized by the

output pulse energy assuming steady-state response. The case
A/2m=2.0 GHz is shown reduced by a factor of 100.

taining N atoms per unit volume. Assuming perfect
phase matching, the instantaneous power is given by

21rco§

" P()= NZLZ“"ac lzipca(t)lecff . (14)

nc

The ordinate in Fig. 3 has been normalized by the energy

s predicted by Egs. (13) and (14) under the assumption
that p,,(t) is accurately predicted by its steady-state value
given by Eq. (11) with €; and €, given by Egs. (5) with
to -"-=0. )
| Figure 3 illustrates the case in which the second laser
pulse is tuned to the second resonance (A,=0). For the
case in which the first pulse is adiabatic (A,/27
=20.0 GHz), the output energy decreased monotonically
with time delay and reaches zero when the pulse overlap
vanishes. This result is to be expected because p,, must

_equal zero at the end of the first pulse if this pulse is adia-

batic (i.e., no population is left in level b), and under these

~ conditions the second pulse cannot excite p,,. For the op-

posite case in which the first pulse is nonadiabatic
(A;/2m=0.2 GHz), the output energy initially increases
with time delay. This result is to be expected because
under these conditions a time interval of order I'z;! is re-
quired before p;, attains its maximum value. For longer
time delays the energy decreases with zo with rate I';.

A plot of the output energy versus the detuning A,
from the two-photon resonance is shown in Fig. 4. Here
A,/27 is fixed at 2.0 GHz and the time delay is varied.
For time delays less than the pulse length, Eq. (9) predicts
that there are two contributions to the excitation spec-
trum, one centered at the two-photon resonance (A;=0)

_and another at the second one-photon resonance A,=0

(implying A3;/2mw=A;/27=2.0 GHz). These two contri-
butions can add either constructively or destructively to
give a peak (as in the case of #,=0) or a dip (as in the case
to=0.25 nsec) at intermediate frequencies. When there is
no overlap {#y=1.0 nsec), only the one-photon-resonance
contribution remains, since py, oscillates at w,, (and not
o;) after the end of the first pulse. Under steady-state
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FIG. 4. Output energy vs the detuning A; from the two-
photon resonance, for A,/2m=2.0 GHz. The predictions under
steady-state conditions are shown for comparison, reduced by a
factor of 10. The results are normalized by the maximum value _
of W, (at A;=0). -

conditions, Eq. (14) predicts a detuning curve with a sin-

gle, narrow peak at the two-photon resonance, as shown

(not to scale) in Fig. 5.
The spectral composition of the output W(w) is pro-

portional to the square modulus of the Fourier transform

of P, and hence to
.l

exp( —ktp) H»{1

(GHz)

V"ch

FIG. 5. Spectrum of the generated radiation for several dif-
-ferent values of the pulse delay t,, for A;/27=2.0 GHz,
A,/27=3.0 GHz, and A;/27=5.0 GHz. Each curve has been
normalized such that its maximum value is unity. The inset

~ shows the spectrum of the input pulses.

2
‘ (15)

+ o0 .
W(w)xcN? | g |2 l f_w plelotds

_By substitution from Eq. (9), we arrive at the following
-expression for W(w):

m1+m2

Hm1+m2—1(iz3 )I

W)« |GG aptpattcb€10€20 mydmy+1
123

exp(iAjto—Tapto)

Hw—weg)—T g

1=0 [i(w—wl—mz)»—(kl—}—kz)]“'l

1

m. 41 _m,+1
z,' z,*

my

i(w—wca)"' Fac

(iZ )"
-l (16)

The spectral density of a typical output pulse is illus-

trated in Fig. 5 for three values of the time delay. All
curves have been normalized so that their maxima have

the same value. Consistent with Eq. (16), there are three

contributions to W (w), one centered at the two-photon
transition frequency w,,, one centered at the sum frequen-
¢y w;-+w,, and one centered at w;+wp,. For small time
delays, all three are important. The latter two contribu-
tions can add constructively or destructively to give either
a peak or a dip between w;+wy, and o+ w,. As overlap

between the pulses disappears (fo=1.0 nsec), the sum-
frequency peak disappears and the two-photon transition
pzak increases in importance. Under steady-state condi- __

tions, the output spectrum would be simply a delta func-
tion at @ +w,.

o [i(0—wy—wpg ) — (kg +Tgp )T+

It should be noted that the results presented in this arti-
cle obey a simple scaling law. If all detunings and relaxa-

tion rates are increased by some multiplicative factor and -

all time variables (pulse width and time delay) are reduced
by the same factor, the predictions remain unchanged.
Thus, even though the effects of inhomogeneous broaden-
ing have not explicitly been included in this calculation, it
is expected that the results presented here would remain
qualitatively unchanged for the case of laser pulses suffi-
ciently short that their spectral widths exceed the inhomo-
geneous linewidth.

Also, it should be noted that many of the calculations
presented here have been repeated for different values of
the pulse-shape parameter, m, and m,, and for Gaussian
pulse shapes. No qualitative changes were observed in the
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theoretical predictions, and thus we believe that our con-
clusions are of a rather general nature and are not sensi-
tive to the particulars of the laser pulse shape.

SUMMARY

In summary, we have presented a perturbative, density-
matrix calculation of the nonlinear polarization giving
rise to transient sum-frequency generation in a resonant,
three-level medium. For the case in which the excitation
pulses satisfy the adiabatic following criteria, we find that
the process is resonantly enhanced only at w;=w, and
01+ o, =0, that the output spectrum is peaked at
1+ ;, that the output pulse length is of the order of the
length of the temporal overlap of the two exciting pulses,
and that the output energy is maximized by making the
pulses temporally coincident. These conclusions are qual-
itatively similar to those predicted under steady-state con-
ditions as would apply with the use of cw lasers. Howev-
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er, we find that for the opposite case in which the excita-
tion is nonadiabatic, qualitatively different behavior is
predicted. In particular, the excitation shows resonances
for w1 =wy,, ©1+0y=0, and for v;=wy,, ¥r=ary; the
output spectrum shows peaks at w;-+w,, at @y, +@;, and
at w.,; the output pulse length is of the order of 1/I,;
and the output energy is maximized by introducing a
nonzero time delay (of order 1/T,;, w/A,, or the pulse
length of the first laser, whichever is shorter) between the
exciting pulses.
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