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Stabilization of the propagation of spatial solitons

Matthew S. Bigelow, Q-Han Park,* and Robert W. Boyd†
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~Received 12 March 2002; revised manuscript received 26 August 2002; published 30 October 2002!

We investigate a class of vector ring spatial solitons that carry no net angular momentum. Specifically, we
show analytically and numerically that the dominant low-frequency perturbations that typically disrupt ring
solitons are suppressed for these solitons. By comparing our analytical and numerical results, we show that our
simple analysis gives good qualitative predictions on the regions of stability for these beams.
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Optical spatial solitons~self-trapped light filaments! @1#
hold great promise for many applications in modern opti
technology @2#. However, it is well established that sel
trapped beams~that is, (211)-dimensional waves! are un-
stable in a homogeneous Kerr medium@3#. Several tech-
niques have been proposed and implemented for increa
the stability of spatial solitons, including the use of satura
nonlinear materials@4#, geometries with restricted dimen
sionality @5#, nonparaxial beams@6#, and multicomponent
~vector! solitons @7,8#. The components of a vector solito
can be orthogonal polarizations@9,10#, fundamental and sec
ond harmonic components@11#, or any two mutually inco-
herent beams@12#. The stability of spatial vector solitons ha
been the subject of active investigation over the past sev
years @13,14#. The stability of ring-shaped vector soliton
was shown in the second harmonic generation process@15#
while ring-shaped scalar solitons can be made stable in q
tic nonlinear media@16–18#. But in general, the existenc
and stability of ring-shaped vector solitons remains an o
question.

There has also been considerable interest in the forma
of higher-order spatial solitons@19#, that is, solitons possess
ing complex transverse structure leading to radial and/or
muthal nodes of the field distribution. These highly stru
tured, higher-order solitons possess considerable promis
applications because of their increased information con
and power handling capabilities. The simplest nontrivial c
of a higher-order soliton is the fundamental spinni
soliton—the~scalar! ring-shaped beam described by Kruglo
et al. @20# and Firth and Skryabin@21#. These authors poin
out that the dominant source of instability of such beam
the growth of azimuthal perturbations, and relate the ori
of this instability to the~orbital! angular momentum@22# that
is necessarily carried by such beams.

In this paper, we consider a class of vector ring solito
that possesses greatly improved stability. In contrast to a
lar ring soliton that carries a definite nonzero-angular m
mentum, each componant of a vector ring soliton can
made to possess equal and opposite angular momentu
produce a beam with no net angular momentum. We sh
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that vector ring solitons that carry zero total angular mom
tum are more stable than the scalar ring soliton by perfo
ing both analytical and numerical studies of these vector r
solitons. Using a simplified analysis, we show that the
zero-angular-momentum vector ring solitons are more re
ient against the dominant, low-spatial frequency, azimut
perturbations. In addition, we find that these beams pos
an additional region of instability for a certain finite range
pertrubation frequencies~see Fig. 2 below!. However, these
instabilities can be suppressed by using beams that c
high power. These analytic predictions are in good agr
ment with numerical results that are also presented in
paper.

We assume that the vector soliton is comprised of t
components of the formE1(r ,f,z,t)5c1(r ,f,z)ei (kz2vt)

1c.c. andE2(r ,f,z,t)5c2(r ,f,z)ei (kz2vt)1c.c. We take
the equation that describes the propagation of this field a

2 i
]c1,2

]z
5

1

2k
¹'

2 c1,21F~ uc1u21uc2u2!c1,2, ~1!

where¹'
2 is the transverse Laplacian, andF(uc1u21uc2u2)

is a function of the total optical intensity. For a Kerr nonlin
earity, this equation reduces to the Manakov equation
taking

F~ uc1u21uc2u2!5g~ uc1u21uc2u2!, ~2!

where the parameterg is related to the third-order nonlinea
susceptibility byg5(6pv/n0c)x (3). For a saturable nonlin-
ear optical medium, we model the nonlinear response as

F~ uc1u21uc2u2!5
g~ uc1u21uc2u2!

11h~ uc1u21uc2u2!
, ~3!

whereh is inversely proportional to the saturation intensi
In this paper, we consider a class of solutions to Eq.~1!

having the form

c1~r ,f,z!5
1

A2
R~r !eikzeimf, ~4a!

c2~r ,f,z!5
1

A2
R~r !eikze6 imf. ~4b!

,

f
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Herec1 andc2 represent the two components of the vec
soliton, R(r ) represents their common radial dependencek
is their common rate of nonlinear phase acquisition, and6m
two possible orbital angular momenta for the second com
nent @23#. Note that k increases monotonically with th
power carried by the soliton. We will denote the cases
equal and opposite angular momenta by (m,m) and (m,
2m). Scalar solitons, for which~in our notation! eitherc1
or c2 vanishes, carry nonzero-angular momentum and
essentially equivalent to the (m,m) case after the symmetr
rotation: (c11c2)/A2→c1 , (c12c2)/A2→c2 under
which Eq.~1! is invariant. In contrast, the total field carrie
zero-angular momentum in the (m,2m) case. By introduc-
ing the trial solution~4! into the wave equation~1!, we find
that Eq.~4! is in fact a solution only if the radial function
R(r ) obeys the equation

R91
1

r
R85S m2

r 2
1b2D R22kF~R2!R, ~5!

where b5A2kk and, whereR8 and R9 are the first and
second derivatives ofR with respect to the radial coordinat
r. When we apply the boundary condition for bright solito
that R→0 asr→`, we find that, for each value ofm, there
is an infinite number of solutionsR(r ). We label these solu
tions asRnm(r ), where n represents the number of radi
nodes in the solution. In Fig. 1 we show a representation
the intensity and phase of these solutions for different val
of the mode numbersn andm.

We next address the stability of these solutions and d
onstrate their enhanced robustness in the (m,2m) case. We
consider explicitly the casen50, m>1, although the
method generalizes readily to higher-n solutions. This analy-
sis is similar to one performed by Soto-Crespoet al. and
others @24#. To perform the stability analysis, we consid
perturbations of the form

dc15
1

A2
a1~r ,f,z!R~r !eikzeimf, ~6a!

FIG. 1. The transverse intensityuc1,2u2 and phase (p1 and p2)
distributions for each component of the vector ring soliton, for va
ous values of the mode numbersm andn. For the (m,2m) case, the
phase ofc1,2 is shown asp1,2. For the (m,m) case, the phase o
both fields is given byp1. The phase plots run from2p ~dark! to
p ~bright!.
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dc25
1

A2
a2~r ,f,z!R~r !eikze6 imf. ~6b!

We introduce this form into the linearization of Eq.~1! to
obtain

2 i
]a1

]z
5

1

2k S ]2a1

]r 2 1
1

r

]a1

]r
1

1

r 2

]2a1

]f2 1
2R8

R

]a1

]r

1
2im

r 2

]a1

]f D1
1

2
R2F8~R2!~a11a1* 1a21a2* !,

~7a!

2 i
]a2

]z
5

1

2k S ]2a2

]r 2 1
1

r

]a2

]r
1

1

r 2

]2a2

]f2 1
2R8

R

]a2

]r

6
2im

r 2

]a2

]f D1
1

2
R2F8~R2!~a11a1* 1a21a2* !,

~7b!

whereF8 denotes the derivative ofF with respect to its ar-
gument.

Now we make the change of variablesa15«11 iD1 and
a25«21 iD2, and introduce the definitions«65«16«2 ,
D65D16D2 to obtain

2
]«6

]z
5

1

2kS ]2D6

]r 2
1

1

r

]D6

]r
1

1

r 2

]2D6

]f2
1

2R8

R

]D6

]r

1
2m

r 2

]E6

]f D , ~8a!

]D6

]z
5

1

2k S ]2«6

]r 2
1

1

r

]«6

]r
1

1

r 2

]2«6

]f2
1

2R8

R

]«6

]r

2
2m

r 2

]D6

]f D 12R2F8~R2!M 6 , ~8b!

whereM 15«1 , M 250. We haveE65«6 , D65D6 for
the (m,m) case andE65«7 , D65D7 for the (m,2m)
case. In order to check stability under perturbations, we s
a solution with definite angular dependence of the form,

«6~z,r ,f!5«6~r !cos~Lz1Vf!, ~9a!

D6~z,r ,f!5D6~r !sin~Lz1Vf!, ~9b!

so that the linearized equation reduces to the eigenv
problem with eigenvalueL,

L«65
1

2k S d2D6

dr2
1

1

r

dD6

dr
2

V2

r 2 D61
2R8

R

dD6

dr

2
2mV

r 2 E6D , ~10a!

-
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LD65
1

2k S d2«6

dr2
1

1

r

d«6

dr
2

V2

r 2 «61
2R8

R

d«6

dr

2
2mV

r 2 D6D 12R2F8~R2!M 6, ~10b!

whereE6, D6, andM 6 are same as before except that t
cosine and the sine factors are absent. In principle, this
genvalue problem can be solved numerically to determ
the eigenvalueL; if L possesses an imaginary part, the s
lution is unstable. However, in order to develop an analy
understanding of the eigenvalue problem, we make an
proximation by assuming that the stability is governed do
nantly by field fluctuations around the peak of the ring vec
soliton, i.e., atr 5r 0 whereR8(r 0)50. We construct Taylor
expansions aroundr 5r 0 for the quantitiesD6(r ).D0

6(r 0)
1(r 2r 0)D1

6(r 0), e6(r ).e0
6(r 0)1(r 2r 0)e1

6(r 0), and 1/r
.1/r 02(r 2r 0)/r 0

2 where e1
6(r 0)[de6(r )/drur 0

and

D1
6(r 0)[dD6(r )/drur 0

. With this expansion, we approxi
mate the eigenvalue equations~10! by keeping terms up to
en
th
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first order indr 5r 2r 0. To begin with, we will look at the
zeroth-order part of our approximation. These assumpti
are strictly valid for the case of a very thin ring, but even f
a broad ring case they provide a good qualitative descrip
of stability and agree quite well with numerical results w
present later in this paper. With these assumptions, the ei
value equation reduces to

L«0
652

V2

2kr0
2D0

62
mV

kr0
2 E0

6 , ~11a!

LD0
652

V2

2kr0
2«0

62
mV

kr0
2 D0

612R0
2F8~R0

2!M0
6 , ~11b!

where the subscript0 signifies evaluation of quantities atr
5r 0. Now we consider the (m,m) and (m,2m) cases sepa
rately. The eigenvalue equation for the (m,m) case can be
compactly written in a matrix form as

LC50, ~12!

where the 434 matrix L and the vectorC are given by
CT5~«0
1 ,D0

1 ,«0
2 ,D0

2! ~13a!

L5S L12jmV jV2 0 0

22R0
2F8~R0

2!1jV2 L12jmV 0 0

0 0 L12jmV jV2

0 0 jV2 L12jmV

D , ~13b!
l.

r

wherej51/2kr0
2. The characteristic equation,

detL5$~L12jmV!22jV2@jV222R0
2F8~R0

2!#%

3@~L12jmV!22~jV2!2#

50, ~14!

immediately shows that complexL arises only if

jV2,2R0
2F8~R0

2!. ~15!

Thus, the (m,m)-ring vector soliton becomes unstable wh
the angular frequency of azimuthal perturbation is below
critical valueV,Vc52r 0R0AkF8(R0

2).
In the (m,2m) case, the matrixL becomes

L5S L jV2 2jmV 0

22R0
2F8~R0

2!1jV2 L 0 2jmV

2jmV 0 L jV2

0 2jmV jV2 L

D .

~16!

The characteristic equation now has the form
e

detL52L41AL22B50,

A58m2V2j212V4j222R0
2F8~R0

2!V2j,

B5j3V4~V224m2!„V2j24jm222R0
2F8~R0

2!….
~17!

In order for L to be real,L2 has to be non-negative rea
This condition can be met whenA, B and the discriminant
A224B are all non-negative. Thus, the (m,2m)-ring vector
soliton becomes stable when the frequencyV lies in the
domain satisfying the following three restrictions;

~ i! V2>2kr0
2R0

2F8~R0
2!24m2, ~18a!

~ ii ! V2<4m2 or V2>4m214kr0
2R0

2F8~R0
2!,

~18b!

~ iii ! V2>2kr0
2R0

2F8~R0
2!2

@kr0
2R0

2F8~R0
2!#2

4m2
.

~18c!

In Fig. 2 we summarize the expressions from Eqs.~15!
and~18! and show the regions of stability and instability fo
1-3
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different azimuthal frequencies as a function ofk ~dashed
line!. For the sake of argument, we have assumed the m
rial to be a saturable nonlinear medium, but analogous
grams can be drawn for a Kerr nonlinearity. To improve t
approximations made earlier, we repeated the above ana
including terms up to first order in the Taylor expansio
When we do this L becomes a 838 matrix, and the corre-
sponding regions of stability are slightly modified~solid line
in Fig. 2!.

We can make several observations about Fig. 2. First,
note that the thin ring approximation breaks down whenk is
small in the (m,2m) case. This is not surprising since th
ring broadens out considerably at these lower values. A
the large regions where the beams are nearly stable for l
values ofk are comparable to the results of Mihalacheet al.
who report similar behavior@25,26#. However, they consid-
ered only spinning solitons, that is, the (m,m) case in our
notation. Finally, the most significant result between
(m,m) case and the (m,2m) case is that the (m,2m) beam
has a smaller region of instability at lower frequencies.
creating a beam that has a zero net angular momentum
can suppress the growth of lower angular frequency per

FIG. 2. The regions of stability and instability of azimuthal pe
turbations to exponential growth for theR03 mode. The dashed line
corresponds to the zeroth-order terms in the Taylor expansion
the solid line is the first-order correction.~a! The regions of stability
for the (m,m) case.~b! The regions of stability for the (m,2m)
case. Beams with azimuthal perturbation frequencies indicated
points on the graphs are shown before and after propaga
through a saturable nonlinear medium in Figs. 3 and 4.
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bations that tend to dominate. In addition we observe in
numerical work described that perturbations in both
lower and middle instability regions do not grow as fast
the (m,2m) case as they do in the lower region of th
(m,m) case.

To show this, we performed numerical integrations of t
propagation equation~1! using the split-step method@27# to

FIG. 3. The input and output beams with four different a
muthal frequency perturbations for the (m,m) case vector soliton
(m53).

FIG. 4. The input and output beams with the same azimu
frequency perturbations for the (m,2m) case vector soliton (m
53).
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explore the stability of the vector ring solitons in the diffe
ent regions. We show in Figs. 3 and 4 the output of a vec
soliton beam with small~less than 10% amplitude! complex
azimuthal perturbations propagating in a saturable nonlin
medium for two different values ofk. In performing these
calculations we assume the parametersz550 cm, g
51.9531026 cm2/erg, h52.4931026 cm3/erg, and k
51.283105 cm21.

For the (m,m) case~Fig. 3! we can clearly see the bea
breaking up and the individual filaments diverging from o
another when the perturbation spatial frequency isV53 and
5 for k50.3 cm21. Beam rotation as a result of a net angu
momentum can also be seen. Fork50.65 cm21, the beam
has improved stability at these frequencies as both Fig.~a!
and Ref. @25# suggests. In contrast, for the value ofk
50.3 cm21, Fig. 4 shows that the perturbations to the (m,
2m) beam grow at frequenciesV53 andV58 on either
side of a region of stability atV55. This region of stability
is predicted by our analytical theory shown in Fig. 2~b!.
When we increase the value ofk to 0.65 cm21, we see that
the beam becomes essentially stable over all of these
quencies.

In conclusion, we have analyzed a class of vector r
solitons that possesses enhanced stability characteris
These solitons have zero net angular momentum, and co
o-

.
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quently they possess a greater degree of stability than
standard ring solitons. To show this we have conducte
simple analytical analysis of the system’s eigenvalues to
the frequency regions where the rings are unstable, and h
shown through numerical simulations that these regions
ist. Therefore, the simplifying assumption that the rings
thin which we made while performing the analytical analy
is a good way to predict qualitatively the regions of stabil
for vector ring solitons. In particular, we have found th
low-frequency azimuthal perturbations of the soliton amp
tude are suppressed. These results suggest that vector
solitons with zero net angular momentum may have imp
tant applications in high-power laser systems. We also
lieve these vector solitons can be experimentally observe
a variety of material systems.
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