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Stabilization of the propagation of spatial solitons
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We investigate a class of vector ring spatial solitons that carry no net angular momentum. Specifically, we
show analytically and numerically that the dominant low-frequency perturbations that typically disrupt ring
solitons are suppressed for these solitons. By comparing our analytical and numerical results, we show that our
simple analysis gives good qualitative predictions on the regions of stability for these beams.
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Optical spatial solitongself-trapped light filamenjs[1]  that vector ring solitons that carry zero total angular momen-
hold great promise for many applications in modern opticatum are more stable than the scalar ring soliton by perform-
technology[2]. However, it is well established that self- ing both analytical and numerical studies of these vector ring
trapped beaméthat is, (2+1)-dimensional wavésare un-  solitons. Using a simplified analysis, we show that these
stable in a homogeneous Kerr mediys]. Several tech- zero-angular-momentum vector ring solitons are more resil-
niques have been proposed and implemented for increasirgnt against the dominant, low-spatial frequency, azimuthal
the stability of spatial solitons, including the use of saturableperturbations. In addition, we find that these beams possess
nonlinear material§4], geometries with restricted dimen- an additional region of instability for a certain finite range of
sionality [5], nonparaxial beam§6], and multicomponent pertrubation frequenciesee Fig. 2 beloyw However, these
(vectop solitons[7,8]. The components of a vector soliton instabilities can be suppressed by using beams that carry
can be orthogonal polarizatiof8,10], fundamental and sec- high power. These analytic predictions are in good agree-
ond harmonic componen{d1], or any two mutually inco- ment with numerical results that are also presented in this
herent beamgl2]. The stability of spatial vector solitons has Paper.
been the subject of active investigation over the past several We assume that the vector soliton is comprised of two
years[13,14. The stability of ring-shaped vector solitons components of the fornE;(r,¢,zt)=y(r,¢,z)e' > )
was shown in the second harmonic generation profEsls  +C.C. andEy(r,¢,z,t) = ¢(r,¢,2)€** Y+ c.c. We take
while ring-shaped scalar solitons can be made stable in quirthe equation that describes the propagation of this field as
tic nonlinear medigd16—18. But in general, the existence 5 .

Zﬂgs?itg:.mty of ring-shaped vector solitons remains an open i ;ﬂzl,zz ﬂvf Yot E(] wl|2+|¢2|2)¢/1‘2’ 1)

There has also been considerable interest in the formation
of higher-order spatial solitorjd9], that is, solitons possess- whereV? is the transverse Laplacian, afd|y|?+||?)
ing complex transverse structure leading to radial and/or azis a function of the total optical intensity. For a Kerr nonlin-

muthal nodes of the field distribution. These highly struc-earity, this equation reduces to the Manakov equation by
tured, higher-order solitons possess considerable promise fegking

applications because of their increased information content

and power handling capabilities. The simplest nontrivial case F(| 1|2+ 2|2 = y(| 1]+ | 2]?), 2

of a higher-order soliton is the fundamental spinning

soliton—the(scalaj ring-shaped beam described by Kruglov where the parametey is related to the third-order nonlinear
et al.[20] and Firth and Skryabifi21]. These authors point susceptibility byy=(67w/nyc) x(*). For a saturable nonlin-
out that the dominant source of instability of such beams igar optical medium, we model the nonlinear response as
the growth of azimuthal perturbations, and relate the origin

of this instability to the(orbital) angular momenturf22] that Y(| 1) 2+ 22
is necessarily carried by such beams. F(lyal®+y?) = > N ()
In this paper, we consider a class of vector ring solitons L (|| *+2]*)

that possesses greatly improved stability. In contrast to a sca-

lar ring soliton that carries a definite nonzero-angular mo\VNere 7 is inversely proportional to the saturation intensity.
In this paper, we consider a class of solutions to @g.

mentum, each componant of a vector ring soliton can b ing the f
made to possess equal and opposite angular momentum $8vIng the form
produce a beam with no net angular momentum. We show

1 o
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FIG. 1. The transverse intensity; J® and phasef; andp,)
distributions for each component of the vector ring soliton, for vari- (79
ous values of the mode numbensaandn. For the fn,—m) case, the
phase ofiy, , is shown ag; ,. For the fn,m) case, the phase of da, 1 &zaz loa, 1 &Zaz 2R’ &az

both fields is given byp;. The phase plots run from = (dark) to — Ez 2k ar2 + T o + 2 ?’52 - R ar
7 (bright).
2im ﬁaz 1, )
Here ¢, and ¢, represent the two components of the vector 77 G4 + 5 RF(RY)(ayt+a) +a,+a3),

soliton, R(r) represents their common radial dependence,
is their common rate of nonlinear phase acquisition, zmad
two possible orbital angular momenta for the second comp
nent [23]. Note thatx increases monotonically with the
power carried by the soliton. We will denote the cases o
equal and opposite angular momenta b, ) and (m,
—m). Scalar solitons, for whickiin our notation either s,

or ¢, vanishes, carry nonzero-angular momentum and are ~
essentially equivalent to them;m) case after the symmetry
rotation:  (ry+ )/N2— iy, (h1—h)IN2— 1, under -
which Eq. (1) is invariant. In contrast, the total field carries
zero-angular momentum in then(—m) case. By introduc-

ing the trial solution(4) into the wave equatiofil), we find T 2_m ‘3E_i
that Eq.(4) is in fact a solution only if the radial function r’ a¢
R(r) obeys the equation

(70)

QihereF’ denotes the derivative dF with respect to its ar-
ument.
Now we make the change of variablag=¢,+iA; and
a,=e,+iA,, and introduce the definitions.=e;*+¢,,
+=A;*A, to obtain

078i_
9z 2k

PA. 1A, 1 AL 2R’ 9A.
+ = + = +—
grz T oar o r? 542 R oar

(8a)

IA . 1((928t 1de. 1 d%. 2R de.

1 2 =— sttt
R'+-R'=| =+ 52 |R-2kF(RR, (5) 0z 2K roor o rtgg?  Roar
2D ) | rer "(RH)M (8b)
where 8= \2kx and, whereR’ and R” are the first and ) =

second derivatives dR with respect to the radial coordinate

r. When we apply the boundary condition for bright solitonswhereM . =g, , M_=0. We haveE.=¢., D.=A. for
thatR—0 asr—o, we find that, for each value of, there the (m,m) case andE.=e:, D.=A: for the (m,—m)

is an infinite number of solution®(r). We label these solu- case. In order to check stability under perturbations, we seek
tions asan(r), wheren represents the number of radial 2 solution with definite angular dependence of the form,
nodes in the solution. In Fig. 1 we show a representation of

the intensity and phase of these solutions for different values e+(z,1,¢)=e7(r)cogAz+Q¢), (9a)
of the mode numbers andm. L
We next address the stability of these solutions and dem- Ai(zr,¢)=A7(r)siN(Az+Qd¢), (9b)

onstrate their enhanced robustness in tine-{m) case. We
consider explicity the casen=0, m=1, although the
method generalizes readily to higheisolutions. This analy-
sis is similar to one performed by Soto-Crespal. and - . ) ) N
others[24]. To perform the stability analysis, we consider A8+:i(d A 1dA Q7 . 2R"dA
perturbations of the form 2k

so that the linearized equation reduces to the eigenvalue
problem with eigenvalué\,

a2 rdr 2% TR ar

+

1 oo
5¢1=ﬁa1(r,¢,z>R<r>e'“Ze'm¢’, (62 re

2m{) )
: (1039
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1/d2* 1de= 02 IR’ de* first order indr=r—r,. To begin with, we will look at the
AAizﬂ —— = ar —&* +? ar zeroth-order part of our approximation. These assumptions
dr roar r r are strictly valid for the case of a very thin ring, but even for
a broad ring case they provide a good qualitative description
— 2 D* | +2R%F/(RH)M*®, (10b) of stability and agree quite yvell with numeric_al results we
r present later in this paper. With these assumptions, the eigen-

L . value equation reduces to
whereE~, D=, andM~ are same as before except that the

cosine and the sine factors are absent. In principle, this ei- .02 . mo

genvalue problem can be solved numerically to determine Aeg=— on B k_r(Z)EO ' (113
the eigenvalue\; if A possesses an imaginary part, the so-

lution is unstable. However, in order to develop an analytic . (VL . .
understanding of the eigenvalue problem, we make an ap-  AAg=— K250 ~ WD6+2R§F'(R§)M6, (11b
proximation by assuming that the stability is governed domi- 0 0

nantly by field fluctuations around the peak of the ring vectofyhere the subscripg signifies evaluation of quantities at
SO|it0n, i.e., av:ro WhereR,(ro):o. We ConStruct+Tay|0r :ro_ Now we consider ther(]’m) and (m’_m) cases Sepa_
expansions arountd=r, for the quantitiesA = (r)=Aq (ro)  rately. The eigenvalue equation for the,m) case can be
+(r—ro)A1(ro), € (r)=e€y(ro)+(r—ro)ex(ro), and ¥ compactly written in a matrix form as

:1/r0—(r—ro)/r§ where ef(ro)zdet(r)/drho and
Af(ro)EdAi(r)/drhO. With this expansion, we approxi-
mate the eigenvalue equatiofi)) by keeping terms up to where the 44 matrixL and the vecto’ are given by

LV =0, (12

VT=(gd,Ad &0 ,A0) (133
A+2EmQ £0° 0 0
L —2R2F'(R3)+£0%2 A+2£mQ 0 0 130
a 0 0 A+2£mQ {02 |
0 0 £0? A+2EmQ
[
where&=1/2kr2. The characteristic equation, detL=—A*+AA%2-B=0,
detl ={(A+2¢mQ)2 - £02[£02-2R3F' (R)) 1} A=8m2Q2¢2+ 204 ¢2— 2R3F' (RY) Q2

X[(A_’_zng)Z_(gQZ)Z] B=§3Q4(QZ—4m2)(92§—4§m2—ZRSF’(RS)).

=0, (14) (17)
immediately shows that complex arises only if In order for A to be real,A? has to be non-negative real.
This condition can be met whef, B and the discriminant

£Q2<2R2F'(R3). (15)  A?—4B are all non-negative. Thus, then(—m)-ring vector

soliton becomes stable when the frequerieylies in the
Thus, the th,m)-ring vector soliton becomes unstable whendomain satisfying the following three restrictions;
the angular frequency of azimuthal perturbation is below the _ ) oo, )
critical value Q< Q= 2r,RyVkF’(R3). (i) Q°=2krgRoF'(Rp) —4m*, (183
In the (M, —m) case, the matrix. becomes
(i) Q%<4m? or O2=4m?+4kr3R3F'(R3),

A £0% 2émQ 0 (18b)
_ 21 (p2 2
| TR Ry QT A 0 2imQ (i) 2= 2kr2R2E(RD) [kraR2F'(R3)1?
2 |- iii =2kr ! = —
2&mQ 0 A £Q oo 0 am?
0 2émQ £0°2 A (189
(16)

In Fig. 2 we summarize the expressions from Ed$)
The characteristic equation now has the form and(18) and show the regions of stability and instability for
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FIG. 2. The regions of stability and instability of azimuthal per-
turbations to exponential growth for tfi&; mode. The dashed line

corresponds to the zeroth-order terms in the Taylor expansion an

the solid line is the first-order correctiof@ The regions of stability
for the (m,m) case.(b) The regions of stability for thenj, —m)

case. Beams with azimuthal perturbation frequencies indicated by
points on the graphs are shown before and after propagating
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10

k=03 cm’ k=0.65cm”

FIG. 3. The input and output beams with four different azi-
muthal frequency perturbations for thenfm) case vector soliton
(m=3).

bations that tend to dominate. In addition we observe in the
numerical work described that perturbations in both the
lower and middle instability regions do not grow as fast in
the (m,—m) case as they do in the lower region of the
,m) case.
To show this, we performed numerical integrations of the
propagation equatiofil) using the split-step methd®7] to

through a saturable nonlinear medium in Figs. 3 and 4.

different azimuthal frequencies as a function rof(dashed
line). For the sake of argument, we have assumed the mate
rial to be a saturable nonlinear medium, but analogous dia-

grams can be drawn for a Kerr nonlinearity. To improve the
approximations made earlier, we repeated the above analys|
including terms up to first order in the Taylor expansion.
When we do this L becomes ax8 matrix, and the corre-
sponding regions of stability are slightly modifiésblid line

in Fig. 2).

We can make several observations about Fig. 2. First, we
note that the thin ring approximation breaks down wireis
small in the fn,—m) case. This is not surprising since the

ring broadens out considerably at these lower values. Also
the large regions where the beams are nearly stable for larg
values ofx are comparable to the results of Mihalaeal.
who report similar behaviof25,26. However, they consid-
ered only spinning solitons, that is, then(m) case in our

notation. Finally, the most significant result between the
(m,m) case and thenf, —m) case is that thenj, —m) beam

Q Input Beam Output Beam Input Beam Output Beam
3
5
8
10
k=03 cm™ «=0.65 cm™

has a smaller region of instability at lower frequencies. By FIG. 4. The input and output beams with the same azimuthal
creating a beam that has a zero net angular momentum, weequency perturbations for them(—m) case vector solitonng

can suppress the growth of lower angular frequency pertu

r=3).
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explore the stability of the vector ring solitons in the differ- quently they possess a greater degree of stability than do
ent regions. We show in Figs. 3 and 4 the output of a vectostandard ring solitons. To show this we have conducted a
soliton beam with smallless than 10% amplitudeomplex  simple analytical analysis of the system’s eigenvalues to find
azimuthal perturbations propagating in a saturable nonlineahe frequency regions where the rings are unstable, and have
medium for two different values ok. In performing these shown through numerical simulations that these regions ex-
calculations we assume the parameters50cm, y  st. Therefore, the simplifying assumption that the rings are
=1.95¢10 ° cnr/erg, 7=2.49<10"° cm’/erg, and Kk thin which we made while performing the analytical analysis
=1.28<10° cm *. is a good way to predict qualitatively the regions of stability
For the (n,m) case(Fig. 3 we can clearly see the beam for vector ring solitons. In particular, we have found that
breaking up and the individual filaments diverging from onejq\y.frequency azimuthal perturbations of the soliton ampli-
another when t[‘f perturbation spatial frequencis3 and  ¢,qe are suppressed. These results suggest that vector ring
5for x=0.3 cm~. Beam rotation as a result of a net angular ¢ jjisons with zero net angular momentum may have impor-

=1
momentum can also be seen. For0.65 cm 7, the beam ¢ applications in high-power laser systems. We also be-
has improved stability at these frequencies as both Ra). 2 |; ; : ;
p y q < lieve these vector solitons can be experimentally observed in
and Ref.[25] suggests. In contrast, for the value &f a variety of material systems.

=0.3 cm !, Fig. 4 shows that the perturbations to thm, (
—m) beam grow at frequencie€®@ =3 and{()=8 on either We thank J. Heebner for helpful discussions. This work
side of a region of stability a =5. This region of stability was supported by AFOSR Grant No. F49620-00-1-0061,
is predicted by our analytical theory shown in Figbg ONR Grant No. NO00014-99-1-0539, ARO Grant No.
When we increase the value gfto 0.65 cm' %, we see that DAAD19-01-1-0623, the U.S. Department of Energy Office
the beam becomes essentially stable over all of these fref Inertial Confinement Fusion under Cooperative Agree-
guencies. ment No. DE-FC03-92SF19460, and the University of Roch-

In conclusion, we have analyzed a class of vector ringester. The support of DOE does not constitute an endorse-
solitons that possesses enhanced stability characteristiovent by DOE of the views expressed in this article. Q.P. is
These solitons have zero net angular momentum, and consgdpported by Grant No. KRF-2001-015-DS0016.
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