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Abstract. The interaction of an atomic system with an externally applied
electromagnetic field can be treated in the electric dipole approximation
by means of either the minimal coupling (p-A) or direct coupling (d-E)
Hamiltonian. It is shown that both methods lead to identical and unambiguous
predictions for observable quantities as long as the atomic wavefunctions are
transformed when used in the minimal-coupling formulation. The physical
meaning of kinetic momentum is used to show that the atomic states must be
described by wavefunctions calculated in the absence of an electromagnetic field
when using the d - E (but not the p-A) form of the interaction Hamiltonian.
When, however, observables are calculated using the common approximations
of resonance atomic physics — the two-level approximation and the rotating-
wave approximation — the two formulations can lead to measurably different
results. This point is illustrated by calculating the induced polarization (and
hence the refractive index) of an atomic system for the two exactly soluble cases
of the harmonic oscillator and the hydrogen atom.

1. Introduction

There are two competing ways of describing the interaction of a quantum
mechanical system with an electromagnetic radiation field, the characteristic
wavelengths of which are assumed much greater than the dimensions of the
system. One method involves replacing p with p —(e¢/c)A in the field-free
Hamiltonian, and is referred to as the ‘minimal coupling’ procedure or as the
p - A form of the interaction. The other method, which is conceptually somewhat
simpler, involves introducing an interaction Hamiltonian of the form d - E, and is
referred to as the ‘direct coupling’ of atomic dipole transition moment d to the
applied electric field strength E. Many authors refer to these formulations as the
velocity gauge and the length gauge, respectively. The question of whether the two
descriptions always lead to the same predictions for observable quantities has been
addressed by many authors [1-10], but there has been considerable disagreement
regarding the answer to this question. In particular, references [2, 3, 6, 7] state

*Reviewing of this paper was handled by a Member of the Editorial Board.
**Author for correspondence; e-mail: boyd@optics.rochester.edu

Journal of Modern Optics ISSN 0950-0340 print/ISSN 1362-3044 online © 2004 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/09500340310001631635



1138 K. Rzqzewski and R. W. Boyd

that there are no measurable differences between the predictions of the two
descriptions, whereas references [1, 5, 8, 10, 11] state that such differences can
exist.

We note that Aharanov and Au [11] have presented an eloquent argument that
an additional phase factor has to be added to the atomic wavefunction when used to
calculate the interaction in the p-A but not the d-E form of the interaction
Hamiltonian. This line of reasoning suggests that the d - E form is the simpler to
use in that correction factors need not be included when using this form. We also
note that conclusions similar to those reached in the present paper have been
presented by Leubner and Zoller [12] for the specific case of multiphoton
ionization probabilities. It has also been pointed out [13] that direct numerical
integration of the Schrédinger equation for strong-field ionization if performed
with the p-A form yields consistent results only if the distinction between
canonical and kinetic momentum is properly treated. In treating large-scale atomic
structure calculations, Deb et al. [14] point out that results obtained using the two
forms of the interaction Hamiltonian are numerically very similar, which is
taken to be a self-consistency check of their results. Cormier and Lampropoulis
[15] state that the p- A form is more convenient for calculations in strong-field
ionization. However, Xie et al. [16] claim that the d - E form gives results that
more closely agree with experiment than does the p - A form. Also, Kuan et al. [17]
suggest that different forms of the interaction Hamiltonian lead to different
predictions.

In this paper, we restrict our attention to the case in which the electromagnetic
field is treated as an external, prescribed, nondynamic, ¢c-number function. We
believe that in this simple case there is no ambiguity, and that either description,
if used in accordance with the principle of gauge invariance, leads to the same
results. In section 2 of this paper, we demonstrate the general equivalence of these
two descriptions, and point out the necessity of transforming the initial states of
the system when describing the dynamics through the use of a gauge in which the
vector potential A is nonzero. In section 3, we illustrate these general results by
applying them to a calculation of the refractive index of a collection of atoms. We
show that while the exact results of either description lead to the same prediction
for the refractive index, the commonly used approximations of resonance atomic
physics, i.e., the two-level approximation and the rotating-wave approximation
(RWA), lead to measurably large discrepancies between the predictions of the two
descriptions. We suspect that some of the past confusion regarding the possible
observable consequences of the choice of the interaction Hamiltonian has resulted
from a failure to make a distinction between exact and approximate results. Since it
is often necessary to make the two-level and/or rotating-wave approximations in
practical problems in quantum optics, section 3 also presents a numerical compar-
ison of the predictions based on these approximations with the exact results for two
cases — the harmonic oscillator and the hydrogen atom — where exact results can be
obtained.

2. General equivalence of the two formulations
Before turning to our main problem, let us consider the following
simple example which illustrates the influence of the choice of gauge for a
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problem in classical Hamiltonian mechanics. The Hamiltonian describing
the dynamics of a particle of charge e = —|e| in a constant, uniform magnetic
field is given by

H:i[p—g A(r)]z, 2.1)

2m

where, however, there is no unique choice for the vector potential A(r). T'wo (out
of infinitely many) of the most commonly used forms are given by

A(r) = %(—By, Bx, 0), (2.2)
and
Ay(r) = (—By,0,0), (2.3)

for a magnetic field given by B = (0, 0, B). One can easily verify that L, = (r x p),
commutes with the Hamiltonian (2.1) if (2.2) is substituted as the vector potential,
but that it does not if (2.3) is used. The question then arises: is the z-component of
the angular momentum a conserved quantity for a charged particle moving in a
constant z-directed magnetic field? The paradox is easily resolved by deriving a
formula for the kinetic momentum 17 from (2.1):

ﬁEml"ZmﬁZ[p—f A(r)]. (2.4)
ap c

Since velocity has a well-defined operational meaning and the vector potential can
be chosen in different ways, we conclude that the canonical momentum p is not
a unique dynamical variable, and in fact depends upon the choice of gauge.
Therefore, together with the two different vector potentials Aj(r) and A,(r) we
also have two different canonical momenta p; and p, and consequently two
different canonical angular momentum Li. and L;.. Incidentally, neither of
these coincides with the kinetic angular momentum r x 7. The distinction
between different canonical momenta is well understood in classical mechanics,
but is often forgotten in quantum mechanics because we are used to representing
canonical variables in the coordinate-space Schrodinger representation, where
canonical momentum is always represented by differentiation:

R ., 0
p— —ih 3 (2.5)

The primary intent of our paper is to consider the interaction of an atomic
system with an external electromagnetic field. In the electric-dipole approximation
and using the minimal-coupling formulation of the interaction, the evolution of the
atomic system is governed by the Schrédinger equation

Ip(r, 1)

) 1 e 2
ih Fram {% [p 2 A(t)] +V(r)}¢>(r, t), (2.6)

where I/(r) is the scalar potential and where the vector potential is restricted only
by the requirement

E(1) = —% %, 2.7)

i.e., that its time derivative must reproduce the applied electric field.
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Now, making the substitution

B, t) = N TY(x 1), (2.8)
which was known already to Pauli [18] in the early 1940s, we obtain
oY(r, t 1
ih yix. 9 =|— @+ V(r) —er-E@) |Y(r, 1), (2.9)
ot 2m

which constitutes another equally legitimate formulation of the same dynamical
problem, and is governed by the Hamiltonian:

TCz
H =2 —er - E() + V(®). (2.10)

This formulation is conceptually simpler than that of equation (2.6), because by
(2.4) its canonical momentum coincides with the kinetic momentum of the charged
particle. For this reason we chose 7 to denote the standard differential operator
appearing in (2.9) and (2.10). Note, however, that going beyond the dipole
approximation is simpler in the p-A formulation. To do so, one needs only
include the position dependence of the vector potential. On the other hand, the
analogous extension of the d-E formulation requires the use of, in principle,
infinitely many multipole terms.

With the substitution (2.8) in mind, it is obvious that all physical quantities can
be computed in either formulation in such a way that the results coincide. In the
Heisenberg picture, for instance, the evolution of the expectation value of any
gauge-independent operator O can be computed using either formulation, since

(O(1) = (¢(x, 0)|Uy 4 (1, 0)0O Uy a(t, 0) (. 0))

= (Y(r, 0)| Uz k(1,000 Uq4g(t, 0)[¥(x, 0)), (2.11)

where we have used obvious notation for evolution operators in the two
formulations and have assumed that ¢(r, 0) and ¥ (r, 0) are related by (2.8).

Within the context of the Heisenberg picture, the state of the system need be
specified only at the initial time ¢ = 0. The question then arises: supposing that at
the initial time ¢ = 0 the state of the system is known to be the ground state of the
hydrogen atom, should we take the function ¥(r,t) of the d-E formulation or
the function ¢(r, t) of p - A formulation to have the standard form

1 —r/a,

First of all, this question does not arise in some physically interesting situations,
namely those for which A(0) = 0, as in this case the distinction between ¢(r, 0) and
¥(r, 0) obviously disappears. Thus, for the case of a scattering problem, i.e., one in
which no field E is present at the initial time, the situation is very simple. It is also
worth stressing that since the state of the system need be specified only at
the initial instant of time, one can always choose a gauge in which A(0) =0,
even if the field E is nonzero at ¢t = 0, and thereby eliminate the problem.

This dilemma cannot always be eliminated in the Schrodinger picture,
however. It is present, for instance, in the case in which transition amplitudes
are to be computed between the two instants of time 0 and ¢, if E(0) # 0 and
E(?) # 0, since in general we cannot choose A(?) to be zero at both of these times.
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The question of whether ¢(r, 0) or ¥(r, 0) should be represented by ¥(r) can be
resolved by recalling the above-mentioned distinction between kinetic and canon-
ical momentum, which exists whenever A(¢) # 0. Whereas ¥(r, t) and ¢(r, t) have
identical probability distributions for the position, they have entirely different
Fourier transforms and thus entirely different probability distributions for the
canonical momenta. The correct choice of the initial wavefunction is the one which
gives rise to the correct probability distribution for the kinetic momentum 7 which
in the p - A formulation is equal to p — (¢/¢) A; and thus the correct choice of initial
wavefunction depends on the choice of the vector potential A. In order that the
probability distribution for not depend on the arbitrary choice of the gauge of the
vector potential, the standard wavefunction V¥ (r) of (2.12) must be used in
conjunction with the d-E formulation, in which A(t) is always zero, and this
standard wavefunction transformed by (2.8) must be used in the p - A formulation.
By way of illustration, if the standard wavefunction (r) were to be used in
conjunction with the p-A formulation, the expectation value of the kinetic
momentum for the ground state of the hydrogen atom, which is known to be
zero, would be given by

(m) = (Ys(0) |7 s(r))

@[ =5 Ay

— %A@, (2.13)
c

which is explicitly nonzero and is obviously gauge dependent. It is necessary in
the p- A formulation to transform the standard wavefunction ¥(r) by (2.8), for
which case the expectation value is given by

(m) = (l/fg(l')ei(e/ﬁc)A(t)'rhﬂws(r) e/ MW T
—i(e/he . e i(e/he ).
= (Yr|e /N )A(t)r[p < A(t)]e( /ROADT |y ()

= (Y()Ip[¥s(r)) = 0. (2.14)

Once the result is established, it is obvious that consistently performed perturba-
tive calculations will also yield the same results in both approaches. We shall
illustrate this result by calculating the polarization of an atom subject to an external
monochromatic field. The first-order perturbative formula for the time-evolution
operator is

t
UL, 0) ~ e Hot[1 — ZJ (e”f Hot =il HOf)dr}. (2.15)
0

Since the electron charge e = —|e| constitutes the expansion coefficient, there are,
for our situation, two different splittings of the Hamiltonian into free and
interacting parts, which are given by

2
=2 1ve  H=-%p A0, (2.16)
2m c

(we have neglected the A® term in the lowest order) and

2
H =2 4+ V@),  H =—er EQ). (2.17)

2m
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In the p - A formulation, the coupling constant e also appears in the description of
the state, however, and to first order the transformation (2.8) reduces to

o(r, 1) = [1 +i% A(d) - r]w(r, f). (2.18)

Let us now compute the evolution of the expectation value of the position operator
r if at time ¢t = 0 the atomic system is in its ground state with wavefunction V.
Using the d - E formulation we obtain

—1
(YolUgg r Uarlo)
- t
_ _ %<¢0 U drt emle;/fr.E(r) e—iﬁ1H;/T7eiﬁ1H:tre—iﬁ1H:ti|
0

If instead we use the p - A formulation we obtain

(b0l Uy axUp.aléds)

¢0>. (2.19)

t
N P PRI .
[J dt elﬁ H“TP‘A(T)e_lh HO‘L" elh H“tr e—lﬁ H“ti|
0

)

N %(wo‘[r A, SN H e—m-lH;,z] l/f0>- (2.20)

The last term in this expression comes from the transformation of the states. We
shall now show that (2.20) is equal to (2.19). The standard identity

p=imh '[r,H). (2.21)

is substituted into (2.20) and the expression is then transformed using

! eiﬁle(/)t[r’ Hg]efmle;t :%(emm;tr efih’lH,/)t)' (2.22)
If the resulting expression is integrated by parts with respect to t, the boundary
terms are found to cancel the last term in (2.20), and thus this final form of (2.20)
coincides with (2.19).

If the atomic states had not been transformed using Eq. (2.8), the second term
on the right-hand side of (2.20) would appear as a discrepancy between the
predictions of the p-A and d-E formulations. This term does not generally
vanish and for the case of a harmonic oscillator of resonance frequency wy can be
evaluated as

ih .

— A(0) sin wyt. (2.23)

me
Unlike the extremely small differences between the predictions of the two
formulations for the case of a quantized dynamical field, [5, 19, 20], this artificial
discrepancy can be made arbitrarily large simply by adding a huge constant to the
vector potential. It should be noted, however, that this discrepancy has Fourier
components only at the transition frequencies of the atomic system and not at the
frequency of the applied field. This discrepancy thus appears only in the transient
response of the atomic system; the steady state response can be calculated correctly
even if the atomic states are not properly transformed.
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3. Refractive index of an atomic vapor
The refractive index of an atomic vapor, sufficiently dilute that local-field
effects can be neglected, is given by [21]

n(w) =1+ 21N a(w), (3.1)

where N is the number density of atoms and a(w) is the atomic polarizability,
which is defined in terms of the Fourier component of the induced atomic dipole
moment at the frequency of the applied field as

d(®) = e{r(w)) = a(w)eky, (3.2)
where it has been assumed that the applied optical field is of the form
E(t) = éEge™™' + EEje. (3.3)

An expression for (r(w)), using the d - E formulation, can be obtained from (2.17)
by inserting a complete set of states Y, |¥,)(¥,| between the two expressions that
appear in the commutator, giving the result

(3.4)

eEy ((Vfolrlwn)(l/fnlé Yol (Yolé - rllﬂn)(lﬂnlrlllfo))

(r(@)) = h Wy — @ Wy +

(This expression can also be derived by the more conventional Schrédinger-
picture method, as is done in reference [22].) The polarizability as derived using
the d - E formulation is thus given by

a(w) = e&" - (r(w))/Eo,

or

2 2k 2 Sk 2
adlE(w):%chwe E Y lé - xlvo) | (bolé -r|wﬂ><1/fn|e-r|wo>>' G3.5)

Wy — W Wy + 0

If this calculation is now repeated using the p-A formulation, either from
equation (2.20) or by using the same technique as in reference [22], we obtain

0y A () = %Z[% ((tlfolé* xY) (Yal€ - xlo)  (Wolé - x| i) (Yale” - 1‘|1ﬂo>>].

Wy — @ Wy + 0
(3.6)

The equality of expressions (3.5) and (3.6), which must follow from the general
principles outlined in the last section, can be explicitly verified by noting the
difference between them is of the form

2
;—wZ(Wolé* x|y (Wl - o) — (Yole - x) (Yal€” - xliho). (3.7

Since the unperturbed eigenstates [1/,,) must form a complete set, we can replace
the operator )_, |¥,)(¥,| by unity, and expression (3.7) is seen to be identically
zero. The procedure we have used to deduce this result is similar to that described
by Dirac [23].
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Equation (3.1) together with equation (3.5) or (3.6) determines the refractive
index of the gas so long as the field frequency w is not too close to any resonance
frequency w,o. For an isotropic medium the resulting expression for n(w) can be
simplified by expressing the dipole transition moments in terms of the oscillator
strength f,0 defined by

_ 2m(Yolx [Y) - (Ynlx [Y0)@wno

an 35

(3.8)

and becomes

2
n(w):1+2”27€zf"°< SR ) (3.9)

~ 2w,0 \@Wn0 — ®  @po + ®

We now follow historical precedent and re-express this result in terms of the
dimensionless Kramers-Heisenberg matrix element [23] M(w) as
2nNe?

n(w) =1+ >
mw

M(w), (3.10)

where M(w) can be expressed in any of the three algebraically equivalent forms

2
Ml(w):Z@‘”—( o, 1 ) (3.11)

2 Wy \Wyo — W () + o
fn() 1 1
M = — — , 3.12
() ; 2 Now—0 opto (3-12)
an 1 1
M =—1 = Wy . 3.13
@ +;2w0 wn()—w+wn()+w ( )

While these three expressions are exactly equal, commonly employed approximate
forms [24] of these expressions are not equal. The rotating-wave approximation
(RWA) entails ignoring the perturbation caused by the negative-frequency part of
the electromagnetic field in calculating the positive-frequency part of the atomic
response. If (r(w)) is calculated in the RWA using the d - E form of the interaction
Hamiltonian, one is led to an expression for the refractive index involving M;(w)
with the antiresonant term [i.e., the term containing 1/(w,o + ®)] absent. However,
if (r(w)) is calculated in the RWA using the p-A form of the interaction
Hamiltonian, one obtains an expression involving M;(w), with the antiresonant
term again missing. Finally the refractive index can be obtained by treating the
interaction as a scattering problem [25]. If this calculation is performed in the
RWA using the p-A form of the interaction Hamiltonian, one obtains an
expression for the refractive index involving M3(w) with the antiresonant term
and the term —1 absent. (In this case the term —1 results from the A - A inter-
action). We thus conclude that there is not a unique RWA but rather (at least)
three such approximations. Another common approximation involves assuming
that if the applied frequency is sufficiently close to one of the resonant frequencies,
it is permissible to replace the infinite sums in equations (3.11) by the single term
involving that frequency; this is called the two-level approximation.

We now investigate numerically the size of the errors introduced by making the
rotating-wave and/or the two-level approximations. We consider first the case of a
three-dimensional harmonic oscillation of resonance frequency wg, which is known
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/oy

Figure 1. Relative difference between several forms of the Kramers-Heisenberg matrix
element M;(w) in the rotating wave approximation and the exact form of M(w) for a
harmonic oscillator of resonance frequency wy. Note that all of the forms agree at the
resonance frequency, but that significant differences can occur far from resonance.

01[ ]
g My
E L 4
=
Eq) 0 | 4
é_
two level
-0.1 .
0.72 0.75 0.78

ho/R,,

Figure 2. Relative difference between several approximate forms of the Kramers-
Heisenberg matrix element M(w) and the exact result for frequencies near the Lyman
« line of hydrogen.

to be in its ground state. For this system the electric-dipole selection rules require
that the principal quantum number change by unity, implying that for this case the
two-level approximation is exact. The three forms of M(w) in the RWA are
compared with the exact result in figure 1. For the range 0 <w<2.5 wy, M3(w) in
the RWA consistently gives the worst results. The relative errors vanish at the
exact resonance. Below resonance, the approximate form of M(w) gives the better
agreement whereas above resonance the approximate form of M,(w) gives the
better agreement. In all three cases, the discrepancies are comparable with the
magnitude of the nonresonant background itself.

The other case for which an exact analytic expression for M(w) is available
is the hydrogen atom. Gavrila [26] has shown that M(w) can be expressed
analytically in terms of the Gauss hypergeometric function ,F;. We have numeri-
cally evaluated this exact expression for M(w) and have compared these results
with those of equations (3.11) in the two-level approximation and in the RWA.
This comparison is shown in figure 2 for the Lyman o (n = 1 — n = 2) transition
of hydrogen. The oscillator strength of this transition is 0.4162. Thus, the
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two-level approximation can be expected to be valid only close to resonance, and
we have therefore compared the various approximations with theory only close to
resonance. For this case, the two forms of the p - A interaction in the RWA give the
best agreement, the d - E form in the RWA gives the worst agreement, and the full
two-level approximation lies intermediately between. The actual values of the
discrepancies change only slowly with w near the resonance frequency. At exact
resonance these discrepancies are given as follows [27]:

M (two-level) — M (exact) = —0.500,

M, (two-level, RWA) — M (exact) = —0.604,
M, (two-level, RWA) — M (exact) = —0.396,
M; (two-level, RWA) — M (exact) = —0.188.

Again, the discrepancy between the various approximate values is comparable with
the magnitude of the nonresonant contribution to M.

We wish to point out that the differences in these predictions, which are a
consequence of the approximations involved and not of the choice of the inter-
action Hamiltonian, are in fact measurable. Consider the measurement of the

refractive index of an atomic vapor of number density N = 10! cm™3
1

at a
frequency 1cm™' away from a strong optical transition of oscillator strength
unity. Assuming that the resonance frequency corresponds to 20,000 cm™!, the
Kramers-Heisenberg matrix element will be of order 10*, and the difference of the
refractive index from unity will be of order 0.01. The various approximate forms
of the Kramers-Heisenberg matrix element will thus lead to variations in the
refractive index of order 107° which are easily measured using the techniques

of classical interferometry.

4. Conclusion

In summary, we have shown that the two commonly used forms of the
interaction Hamiltonian in the electric dipole approximation yield identical results
so long as the atomic wavefunction is properly transformed when using the
minimal coupling formulation. Nonetheless, when these formulations are used
within the context of the common approximations of resonance quantum optics,
the rotating wave approximation and the two-level approximation, they lead to
different predictions for measurable quantities. We have also seen that for the case
of the calculation of the refractive index of a collection of atoms, these differences
are large enough to be measured by standard laboratory techniques.
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