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We report on our research program aimed at clarifying the physical processes leading
to the nonlinear optical response of silica optical fibers and at studying the implica-
tions of optical nonlinearities on optical pulse propagation and optical switching de-
vices. The dominant physical processes leading to the nonlinear optical response of an
optical fiber are nonresonant electronic polarization, with essentially instantaneous re-
sponse, the Raman interaction, with sub-picosecond response, and electrostriction, with
nanosecond response. We present experimental results that show the consequence of
each of these processes on the propagation of a light pulse through an optical fiber. We
have also performed one of the first direct measurements of the electrostrictive contribu-
tion to the nonlinear refractive index of optical fibers. We measure values ranging from
1.5 %1019 t0 5.8 x 10~ 16cm? /W, depending on fiber type. These values are comparable
to that of the fast, Kerr nonlinearity (i.e., sum of electronic and Raman contributions) of
2.5 x 10~1%cm? /W. The measured electrostrictive nonlinearities are significantly larger
than those predicted by simple models, and the possible explanations of this difference
are discussed.

1. Introduction

There is great interest in the nonlinear optical properties of optical fibers. In this
article we present a brief description of the dominant physical interactions that can
lead to a nonlinear response in optical fibers, and we then describe some recent
research results regarding the influence of optical nonlinearities on the propagation
of light through an optical fiber.

Let us first recall some of the basic properties of optical fiber that are crucial
in determining their nonlinear optical response; additional details are available for
example in the books of Snyder and Love! and of Agrawal.? A typical single-mode
communication fiber possesses a central core of germania-doped fused silica of di-
ameter of 2a = 10 ym surrounded by a much wider cladding region of nearly pure
fused silica. The presence of the germania doping raises the refractive index by
approximately 3 x 10~2 with respect to the cladding region. Under such conditions,
the fiber can support the propagation of a single mode field of approximately gaus-
sian cross section and an effective area of ~ 80 um?. Modern optical fibers can be
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fabricated with extremely low loss, as low as 0.2 dB/km at 1.55 pm, the wavelength
of minimum loss for silica fiber. The combination of small mode area and long ef-
fective propagation distances allows optical fibers to display large nonlinear effects;
for example, a power as low as 100 mW can produce a nonlinear phase shift of 7
radians, calculated by assuming Leg = 20 km and ng = 3 x 107%cm?/W through
use of the relation

) 2n 2r P -
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2. Origin of the Nonlinear Response of Optical Fibers

Some of the physical mechanisms that can give rise to optical nonlinearities in
optical fibers are summarized in Table 1. The largest contribution is typically that
of electronic polarization, which results from the displacement of bound electrons.
The Raman response results from the motion of atomic nuclei, and electrostriction
is the tendency of materials to become compressed in the presense of an intense laser
field. The tensor nature of the nonlinear optical response is quantified in terms of
the A and B coefficients of Maker and Terhune,® which are defined by the relation

PN = A(E-E*)E + %B(E -E)E* 2)

where . .
PNU(t) = PNle ™t 4 cc.  E(t) =Ee ™ 4cc (3)
and which can alternatively be expressed by
A=6x1122 =6x1212 B =6x1221 (4)

with the convention x = x(w; w, w, —w). Electrostriction had earlier been thought
to make a contribution of 20% of that of the electronic response under typical
circumstances, but recent measurements* suggest that the electrostrictive response
can be comparable to the electronic response.

“Table 1. Physical mechanisms leading to a nonlinear optical response of optical fibers.

"Mechanism Hesponse time "lensor nature na

Electronic polarization ) B/A=1 ~2x 1071 ecm?2/W
Raman response material dependent ~ 0.2n2(electronic)

B/A = 0.3 for silica glass

Electrostriction ~1 ns B=0  ~ 0.2 — 1.0 nz(electronic)

Hellwarth and coworkers® have shown how to describe the electronic and elec-
trostrictive response in a consistent manner. They show that within the context
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of the Born-Oppenheimer approximation for an isotropic material, the material
polarization at time £ can be expressed as

B(t) = 2o B2 (0)E() + E() / dsa(t — 5)57(s)

0
+ / dsE(s)b(t — 8)E(t)E(s) 5)

Here o = % x1111(electronic) describes the “instantaneous” electronic response. The
two integral expressions describe the “sluggish” nuclear or Raman response, and
show how the applied field at earlier times s can affect the material response. a(t—s)
is known as the “isotropic” nuclear response function and b(t—s) is the “anisotropic”
nuclear response function. These functions are causal in that they vanish for s > ¢;
it is for this reason that we have set the upper limits of integration equal to zero in
writing Eq. (5).

It is useful to transform Eq. (5) into the frequency domain. We introduce the
_transforms

a(Q) = / (e dr  b(Q) = / B(r)edr (6)

The usual frequency domain susceptibilities can be expressed in terms of these new
functions. For example, one finds that (with the convention x = x(w;w,w, —w))

‘X122 = X1212 = 0 + 2a(0) + b(0)
X1221 = 0 + 2b(0) (7
X1111 = 30 + 4a(0) + 4b(0) .

7Expressions for the susceptibility at other frequencies are described for instance by
Owyoung® and by Buckland.*

As mentioned above in the context of Table 1, the Raman contribution has a
75 fs response time. For pulses much larger than 75 fs, and fixed polarization, it is
useful to combine the electronic and Raman responses into a “fast” response

" na(fast) = ny(electronic) + ny(Raman). (8)

‘Since the electronic and electrostrictive responses have different tensor properties,
this relation must be used with caution when polarization effects are important.
Let us next see how to specify how polarization effects influence Eq. (8).

‘3. Polarization Dependence of the Nonlinear Refractive Index
for Optical Fibers

In this section, we see how to take explicit account of the polarization properties of
light in determining the effective value of the nonlinear refractive for an optical fiber.
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This analysis is complicated by the fact that the various contributions have different
tensor properties and because the predictions are different depending on whether
or not the optical fiber is polarization preserving. For simplicity, we include only
the two “fast” contributions (i.e., electronic and Raman) to the nonlinear refractive
index.

The primary value of the nonlinear refractive index (e.g., the one that is quoted
most commonly in the liturature) refers to the case of a single-frequency beam of
linearly polarized light in a polarization preserving fiber, that is

127r2x(3) W W, W, —w
ng(fast) = 1111(2 ). (9)
nyc

Under other circumstances, we write
na(eff) = fsnﬂ(fa«st) (10)

where k is a correction factor that accounts for the tensor and frequency dependence
of the nonlinear optical interaction. We note that, as a formality, xll = 1. For ex-
ample, we may be interested in determining how the propagation of the z-polarized
component of a beam of light is influenced by the y-polarized component of a beam
of the same frequency. To treat this case, we first calculate the total z component
of the nonlinear polarization. Since in general

Piw) = 3Tjux{jh (wiw,w, —w)E; () B (w) B} (@) (11)
we find that (with the frequency dependence implicit)
P, = 30| B P Be + 31x s + X{30a]| By Be + 3x(3h, E2ES . (12)

Here the first term describes ng (fast), as described in Eq. (9), the second term
describes n3 (eff), and the third term can usually be ignored, because it describes a
four-wave mixing interaction, that will usually not be phase matched in an optical
fiber. By comparing the magnitude of the first and second terms, we find that

L _ Xitrp + Xigta _ 20 +4a(0) +2b(0)
X1111 30 + 4a(0) + 45(0)
_2(1+pp)
T3 (14w (13)

where u = X(lgl)u(Raman)/xﬁ)u(electronic) and p = (3/2)(1 + b(0)/2a(0))/(1 +
5(0)/a(0)). Note that in the absence of the Raman contribution, s = 2/3, which
is a well known result.

We now consider the example of propagation through a non-polarization pre-
serving fiber, in which case the polarization evolves randomly with distance in the
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fiber. We first note that at any point in the fiber we can express the change in
refractive index for ¢ and y polarized light as

Ay = nlast) ol £ + kL (1 - f) ()
Any = nz(fast)Io[m_f + w1+ f)] (15)

‘where f is the fraction of the intensity in polarization z. In a fiber with random
birefringence, we cannot predict f as a function of distance, but we can describe f
in terms of a probability density function p(f). In this case the measured change
in refractive index is predicted to be

(an) = [1Bna + 8y 1~ D7) (16)

0

Numerical simulations suggest® that non-polarization preserving fibers are described
by the function p(f) = 1, that is, all fractional distributions of intensity between the
two orthogonal components are equally likely. In this case, the integral in Eq. (15)
is readily performed to obtain

2 1 2 )
x(random polarization evolution) = §n” + §n 1= 3 + g% (17)
One additional special case is that of an unpolarized incident light beam. In the
formalism of Eq. (15), this situation corresponds to p(f) = d(f — 3), because for an
unpolarized beam of light, half of the intensity will reside in each polarization any
choice of polarization bases set. If we evaluate Eq. (15) for this choice of p(f), we

obtain

1
(unpolarized) = 25l + lﬁu = 2 (18)

Values of « for other circumstances and for all three contributions to the nonlinear
refractive index have been tabulated by Buckland.”

4. Measurement of the Electrostrictive Contribution to the Nonlinear
Optical Response of Optical Fibers

In this section we briefly review the theoretical understanding of the electrostrictive
contribution of the nonlinear optical response of optical fibers and we summarize
recent experimental measurements of this effect.

Electrostriction is the tendency of materials to become compressed in the pres-
ence of a high intensity laser field. Simple models of this effect predict that the
nonlinear refractive index will be given by?®

na(str) = e (19)
2 " 4cponv?
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where c is the speed of light in vacuum, pp is mean density of the material, n is the
refractive index, v is the speed of sound, and 7. is the electrostrictive coefficient
defined as 3
€

Ye = POa_p . (20)
The value of v, can be derived theoretically by assuming the validity of the Lorentz—
Lorenz law with a constant (i.e., density independent) value of the molecular po-
larizability. This argument leads to the prediction 4. = 1.5 for silica glass. Alter-
natively, the value of 7, can be deduced from measured!? values of the stress-optic
coefficients, also leading to the value v = 1.5. In either case the predicted value of
na(str) is 0.6 x 10~6cm2/W, approximately 20% of ns(electronic) for silica glass.

In 1995, Kato et al.!! performed a measurement of ny of dispersion-shifted fibers
using a novel modulation technique and measured a value of 3.3 x 10~ *¢cm?/W,
which is higher than the accepted value!? of 2.52 x 10716, Buckland and Boyd!3
proposed that this discrepancy was due to an electrostrictive contribution to ng,
which contributed under the experimental conditions of Kato et al. using cw laser
beams and relatively slow (MHz) modulation, but not under more conventional
experimental conditions using short (e.g., picosecond) pulse excitation. Buckland
and Boyd also developed a model which showed that when proper account was taken
of the unpolarized light used in the experiment of Kato et al., the discrepancy could
be resolved by assuming that ng(str) is 0.17 times as large as na(electronic).

In order to test this theoretical model, we have recently performed a series
of experiments® to determine the frequency response of ny as measured by the
modulation technique. Our experimental setup is shown in Fig. 1. The pump beam
is derived from a semiconductor diode laser whose drive current is modulated at a
frequency ranging from 10 MHz to 1 GHz. The laser output is then amplified by
an erbium doped fiber amplifier before being combined with the depolarized output
of a separate semiconductor diode laser that acts as the probe beam. The two
beams co-propagate through the fiber under test. The transmitted probe beam is
then separated from the pump beam and is allowed to fall onto a fast photodetector
whose output is sent to an rf spectrum analyzer. The depth of modulation impressed
upon the probe beam provides a measure of the effective nonlinear coefficient of the
optical fiber.

Typical experimental results are shown in Fig. 2, where the effective values of
ny measured by the modulation technique are plotted against the pump modulation
frequency. The top graph corresponds to a standard single-mode fiber. The solid
curve is a theoretical fit to the data, based on the model of reference!® with the
relative strengths of the electrostrictive and fast nonlinearities given by na(str)/2
Kesinz(fast) = 1.58. Since ke = 2/3 for our experimental conditions using a de-
polarized probe beam, one finds that ny (str)/nz(fast) = 2.1. Thus, for a fiber
of this construction, the electrostrictive nonlinearity is more than two-times larger
than the fast component, that is, is approximately ten times larger than the value
expected on the basis of the accepted value of the electrostrictive coefficient.
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self-delayed

homodyne RF spectrum
optical mixer

Fig. 1. Experimental apparatus used to measure nz through frequency-modulated cross-phase
modulation. SLM, single-longitudinal-mode laser; EDFA, erbium doped fiber amplifier; WDM,
wavelength division multiplexer.
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Fig. 2. Measured nonlinear coefficient naeq(f)/Aesf versus pump modulation frequency for a
standard single-mode fiber (top) and a dispersion-shifted fiber (bottom). The solid curve in the
top plot is a theoretical fit to the data.

The bottom graph in Fig. 2 corresponds to a dispersion-shifted fiber. Here the
scatter of the data, due presumably to the influence of acoustic reflections, prevents
us from obtaining a good theoretical fit to the data. However, the ratio of ny(eff)
at low and high frequencies provides an estimate of the quantity 1 + na(str)/2
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Kkein2(fast). From this reasoning we find that na(str)/2kegn2z(fast) = 0.41 or that
na(str)/no(fast) = 0.55, which is some four-times smaller than that deduced above
for the standard single-mode fiber. Values of na(str)/nz(fast) for other fiber designs
have been measured and summarized by Buckland.”

In summary, our measurements indicate that the electrstrictive contribution to
the nonlinear refractive index is much larger than previously believed, and varies
considerable with fiber design. We do not fully understand the origin of this en-
hanced electrostrictive response. We surmise that maybe the origin of these results
lies in a modification of the elastic properties glass that has beem formed into optical
fibers, for instance as the result of stresses that are produced during the fabrication
of the optical fiber.
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