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Statistical-noise properties of an optical amplifier utilizing two-beam coupling
in atomic-potassium vapor
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We have measured the gain and statistical-noise properties of a weak probe beam amplified through two-
beam coupling in atomic-potassium vapor for both the Rabi and stimulated Rayleigh gain features. The
probe-beam gain was observed to be as large as 125 for the Rabi feature, whereas the gain was typically less
than 2 for the Rayleigh feature. The rms noise at the Rabi gain feature was approximately three times greater
than the ideal amplifier quantum-noise limit. For the Rayleigh gain feature, the rms noise was 12 to 15 times
greater than the ideal amplifier quantum-noise limit. We present a fully quantum-mechanical theory of two-
beam coupling in a system of two-level atoms which includes the effects of atomic motion and pump-beam
absorption. The predictions of this theory are in good agreement with the experimental data.

PACS numbd(s): 42.50.Lc

I. INTRODUCTION experimental measurements of the noise properties of a
probe beam amplified through two-beam coupling in atomic
While the semiclassical theory of the interaction of mattervapors, however, cannot be adequately explained by this
with an electromagnetic field is often sufficient, a fully theory without modifying it to include the effects of atomic
quantum-mechanical treatment is usually required when thgotion.
statistical properties of the field are of inter§st2]. Unlike In this paper, a fully quantum-mechanical theory of two-
semiclassical theory, which can readily explain effects suc€am coupling, including the effects of atomic motion, is
as photon bunchingg], a fully quantum-mechanical theory presented 11]. This theory is used to calculate thg noise
is able to explain a whole other class of nonclassical effectf2ctors needed to determine the quantum-mechanical noise
such as photon antibunchifid], sub-Poissonian photon sta- properties of the transmitted probe beam. '_I'he predictions of
tistics [5], and the quantum-noise properties of optical am_the theory are compared with the experimental measure-

plifiers and attenuatorf6]. A detailed understanding of the ments of the gain and noise of the transmitted probe beam.
guantum noise of the field after it interacts with matter is
important, since the resulting statistical properties of the field Il. EXPERIMENTAL RESULTS

will limit the accuracy of optical mea§urements. i The experimental setup used to measure the statistical-
It has been shown that even an idephase-preserving  hgise properties of the transmitted probe beam is shown in
optical amplifier degrades the signal-to-noise ratio of the OUtFig. 1. An argon-ion laser was used to pump two Coherent
put field by at least a factor of2 relative to that of the input  699-21 continuous-wave frequency-stabilized ring-dye la-
[6,7]. In addition, it has been shown in the literature thatsers, both linearly polarizeut of the pageand operating
nonclassical featureike squeezingof a field are lost when at a wavelength of approximately 767 @ S, ,,—42P5,
the intensity of the field is amplifiedwith a phase- atomic transition of potassiumThe pump beam was fo-
insensitive amplifier by more than a factor of £8]. Since  cused into a 5-mm-long potassium vapor cell with a 500-mm
the two-beam coupling gain can be as large as 100, thkens. The weak-probe beam was focused into the vapor cell
statistical-noise properties of the transmitted probe beam angith a 400-mm lens and was made to overlap the pump beam
expected to be classical. This conclusion is consistent witlin the cell. The angle between the wave vectors of the pump
the predictions of the fully quantum-mechanical theory ofand probe beams was approximately 2.5°. The transmitted
two-beam coupling in a homogeneously broadened system @robe beam was collected and directed onto detector 3,
two-level atomg9,10]. For the case of gain through the Rabi where the signal was amplified and analyzed with an rf-
feature, the theory predicts that the amplifier can operate aipectrum analyzer. The reflection off of the window of de-
the ideal amplifier guantum-noise limit when the atomic systector 3 was used to measure the gain of the transmitted
tem is radiatively broadened. The minimum noise figure forprobe beam with detector 1. The gain and noise properties of
the Rayleigh gain feature is equal to 4, and occurs when ththe transmitted probe beam were measured as a function of
atomic system is predominantly collisionally broadened. Therobe detuning from the atomic resonance frequency.
Figure 2 shows a typical plot of the gain and normalized
rms noise of the transmitted prolfr a spectrum analyzer
*Permanent address: School of Applied Physics, Cornell Univerfrequency of 10 MHas a function of probe detuning for the
sity, Ithaca, New York 14853. case in which no buffer gas was present in the potassium
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FIG. 3. Experimental measurement and the corresponding theo-
retical predictions of the gain and rms noise of the transmitted
probe beam as a function of probe detuning for the case in which
approximately 5 Torr of helium buffer gas was present in the po-
tassium cell. The rms noise is normalized to the ideal amplifier
guantum-noise limifshown by a dashed lingn the wings.

normalized to the ideal amplifier quantum-noise limit when
the frequency of the probe laser is tuned far off resonance
(i.e., the gaing|=1). The rms noise of the Rabi feature is

FIG. 1. Experimental setup used to measure the gain antlypically 2.5-3.5 times greater than the ideal amplifier
quantum-noise properties of the transmitted probe beam.

quantum-noise limit.
Figure 3 shows a typical plot of the gain and normalized

vapor cell. Gains as large as a factor of 125 were observetins noise of the transmitted proljfr a spectrum analyzer
under somewhat different conditions. The power of the pumgrequency of 10 MHxas a function of probe detuning for the
beam was 140 mW and the atomic number density of thease in which approximately 5 Torr of helium buffer gas was

potassium in the vapor cell was approximately 0'3

present in the potassium vapor cell. The power of the pump

atoms/cni. The predictions for an ideal optical amplifier beam was 130 mW, and the atomic number density of the
(see Sec. lll Care also shown on the graph. The rms noise ipotassium in the vapor cell was approximately 50'3

atoms/cn?. The rms noise of the Rayleigh feature is typi-
cally 12—-15 times greater than the ideal amplifier quantum-

Experiment Theory noise limit.
T T T 1 T T T 11 The ratio of the rms noise to the ideal amplifier quantum-
40 - -1 — noise limit at the peak of the Rabi gain feature is plotted as a
a 30 -1 — function of potassium number density in Fig. 4. The ratio
2 20 [ -1 -1 increases slightly as the number density increases. This ob-
g 10 | - - servation is consistent with the noise predictions of Gaeta,
0 —F — Boyd, and Agarwal9] for two-beam coupling in a homoge-
: : : : : : : : : : : % neously broadened system of two-level atoms.
'% 120 (~ —F —
é 90 . - . QUANTUM THEORY OF TWO-BEAM COUPLING
3O i Ar ] The quantum theory of two-beam coupling in a two-level
'g 30 = 3 BB ] atomic system is presented in this section. From this theory,
S 0 [ “ L] A T L_ the Langevin operator for the interaction can be determined.
3 2 10 1 2 3 2 10 1 2 In addition, this theory can be used to predict the quantum-
pump-probe demning (GHz)  pump-probe detuning (GHz) noise properties of a beam of light amplifiéal attenuated

through two-beam coupling in an atomic vapor. The predic-
tions of this theory are compared with the experimental re-

FIG. 2. Experimental measurement and corresponding theoretigts.
cal predictions of the gain and rms noise of the transmitted probe
beam as a function of probe detuning for the case in which no
buffer gas was present in the potassium cell. The rms noise is nor-
malized to the ideal amplifier quantum-noise linighown by a
dashed lingin the wings.

A. Derivation of the Langevin equation

In the quantum theory of two-beam couplif@, the in-
teraction between the two-level atorfwsith an energy level



53 STATISTICAL-NOISE PROPERTIES OF AN OPTICA. .. 3627

sity operatopg is determined from the total density operator
by tracingp over the atomic variables, that ipg=Trap.

4 _ The details of this calculation are given in R€f8] and[10]
} and are summarized in the Appendix. Now that the equations
0 3 b _ for the expectation value of the annihilation operator, its ad-
2 $ 1 s joint, and the photon number operator have been determined,
2 — + the Langevin equation for the annihilation operator can be
E2 ] determined from the Einstein relation. The resulting Lange-
8 vin equation is
%1 —
(]
da__ o (—2—a° )c+—('5)”+%(t) @
0 - —_—=—— id)a .
F | ] 1 | | dt Wpa 2|M| T2
1 2 3 4 5

pumber density (10'3 cm™) The properties of the Langevin operafdt) are

FIG. 4. Ratio of the rms noise to the ideal amplifier limit at the A i
peak of the Rabi gain plotted as a function of potassium number (f())=(f'(1))=0, (53)
density. The line shows the predictions of the theory.

1ty f(ty))=2D, _8(t;—
separationw,,) and the fields are treated in the electric- (Ftf(t2) +-o(ti—t), (5b)
dipole approximation. All fields are assumed to propagate in
the positivex direction and are linearly polarized in tie and
direction. The interaction Hamiltoniavi is given by . .

~ L (f(t)F(tp))=2D_, 8(t1—tp), (50)
\7=—f F?(F)-Eo(r*,t)d%—f P(r)-Eq(r,tH)d’r, (1a)

where

where the pump fieldﬁo at a frequencywy= wp,+ A given

by 2D, = “—%) REQ*(i)-C* (i9)], (50

.. . . wpa\ 2| u|*T,
Eo(r,t)=ZEqe'kox 1oty ¢ c, (1b)
< _ W do T .
is treated classically, and the probe fiélgl given by 2D7+—w_ba 2[u7T, REQ™ (i6)+C™(id)], (5¢)

275 ~ U2 pA pikgX—iwgt
Ei(r,)=2(L,L,L,) Y pae’>'er'+ha] (10 andag=4mNwy4| u|?T,/AC is the weak-field line-center in-

tensity absorption coefficient.

For the case when the probe field propagates a distance
| through the interaction region, the equation of motion for
. its annihilation operatofdetermined from Eq(4)] can be
B=iy27mhw;. The polarization operatdP(r) is related to replaced with an equation describing its spatial evolution by
setting the time equal ton,x/c, wheren, is the index of
refraction of the probe field. Furthermore, the correlation
functionsC*™ ~(i8) and Q" ~(is) will in general be func-
~ . R = tions of position. That is, the operating conditions of the
P(N=2> 8(r—R@®)g@, (2)  reservoir change with position. In the case of two-beam cou-

d pling, the spatial variation of the correlation functions is a

with the summation extending over all of the atoms in thed're.Ct. consequence of pumpjbeam' absor'pnon. Thg spatial
. ; . variation of the pump-beam intensity(x) is determined
Interaction region.

N T ~ o n A A from
The total HamiltonianH is given by H=H,+Hg+V,
whereH, andHg are the unperturbed Hamiltonian for the
atomic system and the field, respectively. The equation of
motion for the total density operatgr is determined from dx
the Heisenberg equation

is quantized in the volume,L,L ,. The probe field oscillates
at the frequencyw; = wy+ 6 and is associated with an anni-
hilation operato&. The normalization constay is equal to

the dipole moment operatt;i(“) for an atom at the position
R@ through the expression

dl
—2=—alnd M), (63

whereag’um,{A) is the Doppler-averaged value of the pump

ﬁ_p: — '_[|2|,;)]+ &_p , 3 absorption coefficient,y,{A) given by
Jt h at relax
where the effects of atomic relaxation are contained in the apumd A) = @o %o (6b)

~ O .
term (9p/dt) ax. The equation of motion for the field den- Nowpa [1+(AT2)%+1o/15]
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)

The Rabi frequency}, is related to the pump intensity d x
through the expressioh,/19=|Q|?T;T,, wherel? is the —[exp{f dx'[a(x")+a*(x")]
line-center saturation intensity.

Allowing for pump-beam absorption, the equation for the . x , .,
spatial variation of the probe-field annihilation operator is =[a(x)+a*(x)]ex J;dx [a(X")+a*(x")].
given by an

dx —a(x)a+f(x), (7a) The resulting expression for this expectation value is

where the quantity

<L*L>———<1 9]+ ~—=—|l9I?

IMI T,
w1 [£7))
C!(X) <2| |2T )C+ (|51X) (7b) |
M xf dx Re(Q™ (i 6,x))
0
can be shown to be identical to the modified probe-beam
absorption coefficient derived from the semiclassical theory X dx’ , .o
of two-beam coupling. The solution to Ea) can be easily xexp |, ax [a(X)+a®(X)]].
determined by using an integrating factor, and the result is

(12

Ann - For an ideal optical amplifigiwith |g|?>1), it can be shown
a(l)=ga(0)+L, (8a) that (L L) is equal to {g|>~1). Furthermore, under ideal

A . S . t 2
where a(0) is the annihilation operator of the probe field conditions(L"L) is equal to zero whetg|*<1.
before entering the interaction regic(]) is the annihilation
operator after exiting the interaction regiangiven by B. Effects of atomic motion

g=ex;{ — foldx’a(x’)

is the gain(or los9 experienced by the probe-field ampli-

tude, andL given by
~ I ~ X/
L=gf0dx f(x’)exp{ fo dx"a(x") (89 The pump field can then scatter off of this grating, producing
radiation with a frequencw, and wave vectoﬁl. That is,
is the Langevinor noisg operator associated with the two- energy from the pump field is coherently added to the probe

Atomic motion affects the two-beam coupling process in

(8b)  two ways: through Doppler shifts, and grating washout ef-

fects. Consider first the affects of atomic motion on the
population gratings. Note that the pump fidldith a fre-

quencyw, and wave vectoEo) and the probe fieldwith a
frequencyw,; and wave vectotzl) set up a grating in the
medium through the interference term fixlo,—ko)-r—iét].

beam coupling process. field. Atomic motion will cause these gratings to disperse or

It can be shown that the Langevin operaiosaﬁsﬁes the Wwash out, thus reducing the energy transfer efficiency of the
condition pump beam into the probe beam. Grating washout processes

o are included phenomenologically for each atomic velocity

([LLT)=1~]g|? (9  groupv. As mentioned above, atomic motion also produces

Doppler shifts in the frequency of the pump and probe. This
for an arbitrary state. Thus the commutator itself is equal tasffect is accounted for by performing Doppler averages.
[L LT] 1—|g|?. Note that this condition is identical to the Thus a proper description of the process of two-beam
condition derived by requiring that the output operai¢r)  coupling in atomic vapors requires the inclusion of atomic
obey the Bosonic commutator relation. Furthermore, the exmotion. In our theory, the effects of atomic motion are intro-
pectation vaIue$LTL> and(LLT> can be derived from the duced by first multiplying grating terms by an efficiency fac-
general expression fdr [Eq. (8c)] and its commutation re- tor S(v) and then performing a Doppler average. The grating
lation. Consider the expectatidh 'L) given by efficiency factorS(v) is close to unity when an atom moves
only a small fraction of the grating period in a tiriig before
making a transition back to the ground state. However,

S(J) will be approximately zero if an atom moves a distance
comparable to the grating period in a tifig. A convenient
(10)  choice for the grating efficiency factor is

<£TL>:|g|zﬂdxﬁdym(x)f(v)>exp[ f:dxla*(x,)

XeX[{judv'a(v’) .
0

1 N -
This expectation value will be of great importance in the - 5[1+CO9<(U)] for 0<X(v)<w
following since it is the quantity needed to calculate the v)= . (139
noise properties of the photocurrent. Equatid®) can be 0 for X(v)=m,

further simplified by using Eqg5b) and (5d) and the iden-
tity where
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. 1 . . where
X(U):§|kg'U|Tla (13b 1 -1 L
o CD(ZNG)(é)z(T——ia‘—iA) (—iQ) DL el kKo T
kg=ki—Ko is the grating wave vector, and is a grating 2 (18b)
parameter which has a value greater than zero. Whén
equal to unity, the grating will be completely washed out for g3ng
atoms which have moved a distance greater than one grating
period in a timeT ;. The parametes serves as a free param- ©) (R
eter when comparing the experimental results and the theo- P (9)=| - —i6-iA] (—iQo)P5(d) (180
retical predictions. 2

As will be shown below, the gratings terms are containedare the nongrating and grating terms, respectively. These
in the correlation functionsC* (i) and Q" ~(i8). The  quantities can be rewritten in the form of EG5) through
population grating terms can be isolated by examining thejse of
Bloch equations for the atoms in the presence of both the
pump and probe fields. In a frame rotating with the angular
frequency of the pumpsee Eq.(A3b)], the Bloch equations
can be written in the form

-1
025, (193

1
(i1 +Mg),t=|is+iA— =—
J '|'2

(il +M) " t=(i81+Mg) 1= (isl+My) 1

oD
= (Mot QoM +Q5M )+ X(QoM L +QEM ) (i8I +M)L,
+Qlei(lzl—lzo)~F—i(wl—w0)tM+(I) (19b)
+Qreikiko rHitor—ooty (14) PN (8)=—{(i51+Mg) QM DV} ,elkiko) T,
o (190

where the expressions for the matriddég andM .. are easil , _ , _
obtained frorr? Eq(A3d), andleZ,uE?/ﬁ is the Rabi fre)f D57(8)=—{[(i81+M) 1= (i 51+ M) 1] M . %,
guency associated with the probe field which is assumed to KDy

be much smaller in magnitude th&k,. The dipole moment e o (199
at the probe frequenay, determines the two-beam coupling
efficiency. Since the calculation is performed in a rotating
frame, the dipole moment and inversion at the frequenc
w, are determined from the quantiy(). Solving Eq.(14)

to lowest order in(},, the part of the Bloch vector oscillat-
ing at the probe-pump detuningjis equal to

Comparing Eqgs(19) with Eq. (15), the following procedure
can be used to isolate the nongrating and grating parts. The
¥10ngrating terms are obtained by replacMgby M, in the
dynamical matrixU. That is, the matrixU [Eq. (A6)] is
replaced by the matrix/ whereV=U|Qo=0. The grating

terms are obtained by replacing the dynamical mattiky
D(8)=—(i 81 +M)~1QM +¢(o)ei(ﬁrt€0>-?, (15) (U—-V). Note that the steady-state values of the Bloch vec-
tor in the presence of the pump field are still used.
Where(I)(O) [given by Eq(AS)] is the Steady_state value of As mentioned earlier, the quanti®+7 is related to the
the Bloch vector for the atom in the presence of the pum[j’lon”near Susceptlblllty of the medlum Thus th|S prOCEdUre
only, andM=Mg+ QoM , +Q3M_ . can be used to isolate the nongrating and grating terms of
The grating terms in E¢(15) can be isolated by examin- C* - A similar assignment applies to the quan@y ~ (the

ing the expanded form of E¢14) for ®,. The equation for hoise terms This can be understood by realizing that in the
&, becomes fully quantum-mechanical theory, the Bloch equations be-

come operator Langevin equations with the probe field now

0D, 1 . being replaced by the multimode vacuum of the radiation
arrab —T—2+|A ©,—iQ¢P3 field, i.e.,
—iQlei(lzl_RO)'F_i(‘”l_wO)t(‘I)S. (16) Qlei|21~ra*iwltcp3_>z eik‘-ra*iwktszékl (20)
K
Note further that for a weak probe field; can be expanded . )
in the form Such noise terms can be handled using standard methods.
The grating contributions in these noise terms would again
q>3:(p<30>+(q>3( Se @1ty cc), (17 arise from terms like) (@5 or Q,S* in Eqg. (16).

In light of the above discussion, the effects of atomic
WhereCDgO) is given by Eq.(A7c), and®5(d) is at least of motion are included in the following way. The correlation
the order(), as can be seen from E@l5). The quantity functionsC™ (i) andQ" (i d) are separated into a non-
®4(8) is clearly the grating term in the medium. Thus the grating[Cyg (i 8) and Qyg (i6)] and a grating{Cg ™ (i 6)
solution to Eq(16) to lowest order i), is clearly given by andQ¢ (i 8)] part, that is,

(8 =DPV(8)+ D) (9), (189 CT (i18)=Cfig(i+[CS(i6)ISv)  (21a
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and C. Photocurrent fluctuations

_ — — ~ The solution for the output annihilation operaédit) [Eq.

+ _NT +

Q" (19)=Qng (19)+[Qs (19)]S(v), (21D (8a)] can now be used to calculate the quantum-noise prop-
erties of the transmitted probe beam. The expectation value

h
where of the output photon-number operator is given by
Cllg (10)=[ul*To 2 Va(i9)(0,-205,®y);, (219 (A())y=((g*a’(0)+LN(ga0)+L)). (22
Using the fact that the Langevin operators are Gaussian in
Qg (i 5):|M|2T22 V(i 8)(— 2D, P, 1- 2D, P, nature, this expression can be simplified to
|

—2d,dy),, 219 (A(1))=1g|X(A(0))+(L'L), (23)

L , _ whereg and(I:TI:) are given by Eqs(8b) and(12), respec-
Cs (i8)=|ul TZZ (U=V)(i0)(0,—2P3,P,),, tively. Similarly, the variance of the photon number for a
(219 highly excited coherent-state input is given by

i , , ((AR(1)%)=|g|*(A0))[2(L L) +1]. (24)

QS (19)=[ul’ T2 (U=V)y(i8)(—2P,P;,1- 20, ®,,
! Then the Fano number is given by
—2®,dy),, (219 Aon
) Z=[2(L"L)+1], (25)

and S(v) is the grating efficiency factor. Finally, the
Doppler-averaged correlation functions are calculated byand it is by definition equal to the ratio of the power fluctua-
performing a two-dimensional Doppler integration on Egs.tions to the shot noise. Under ideal operating conditions, the
(22). Fano number is given by

(2G—1) for G>1 (ideal amplifier quantum-noise limit
1 for G=1 (ideal attenuator quantum-noise limit 26

where G=|g|?. In addition, the noise figure defined by the predictions of the theory and the experimental results was

T=(SIN)fpul (S/N)3iput i €qual to obtained for an entering pump intensity of 115 W/icna
crossing angle of 2.5°, a pump detuning-00.7 GHz, and a
= E 27) grating parametes of 3. The agreement between the theory
G and experimental results is quite good.
) Figure 3 shows a typical experimental measurement of the
for the two-beam coupling process. gain and normalized rms noise for the Rayleigh gain feature
with the corresponding theoretical predictions for the case in
IV. NUMERICAL RESULTS which approximately 5 Torr of helium buffer gas is present

The theoretical predictions for the gain and noise of thd" the cell. The pump power entering the cell was equal to
transmitted probe beam were generated numerically by intek30 MW. The best agreement between the predictions of the
grating the Doppler-averaged pump propagation equatioH”eOfy and the experimental results was obtained for an en-
[Egs. (6)] and using this result to calculate the Doppler-tering pump intensity of 80 W/cf a crossing angle of 2.5°,
averaged atomic-polarization correlation functions. Thes& pump detuning of- 1.5 GHz, and a grating parametenf
correlation functions were used to calculate the gpiand 1. The agreement between the theory and experimental re-
<LT|_)_ The Fano number of the transmitted probe field wassults is good, but not as good as that for the Rabi feature. The
then determined from Ed25). Finally, the normalized rms increased sensitivity to the crossing angle and buffer gas
noise was calculated by taking the square root of the produgiressure for the Rayleigh gain feature makes it very difficult
of the Fano number at the detector, and the probe transmite determine the precise experimental conditions.
tance through the cell. The ratio of the rms noise to the ideal amplifier quantum-

Figure 2 shows a typical experimental measurement of thaoise limit at the peak of the Rabi gain feature is plotted as a
gain and normalized rms noise for the Rabi gain feature witifunction of potassium number density in Fig. 4. The curve
corresponding theoretical predictions for the case in whictshows the prediction of the theory. This ratio increases
no buffer gas present in the cell. The pump power enteringlightly as the number density increases. The theoretical pre-
the cell was equal to 140 mW. The best agreement betweetiictions display the correct qualitative behavior.



53 STATISTICAL-NOISE PROPERTIES OF AN OPTICA. .. 3631

V. CONCLUSIONS where the components of the Bloch vectbrand the vector

. . . . . _Ware
In conclusion, a theoretical and experimental investiga-

tion of the quantum-noise properties of a probe beam ampli-
fied through two-beam coupling in atomic-potassium vapor
has been presented. For a spectrum analyzer frequency of %\Rd
MHz, the rms noise at the Rabi gain feature is typically
2.5-3.5 times greater than that of the ideal amplifier

®,=(S")elkoR-0o) =@ d,=(S?) (A3b)

guantum-noise limit. For the Rayleigh gain feature, the rms Y, =V,=0, ¥3=— —, (A3c)
noise at is typically 12—15 times greater than that of the ideal 2Ty
amplifier quantum-noise limit, and decreases as the helium . I
buffer gas pressure increases. These results are in go(g(aspectwely. The matrit is equal to
agreement with the predictions of a fully quantum- T —i CO*
- . . . >—iA 0 Qg
mechanical single-mode theory of two-beam coupling, in-
cluding the effects of atomic motion and pump-beam absorp- M= 0 —UT,+iA —iQp |, (A3d)
tion. iQ/2 —iQ§2 -1,
ACKNOWLEDGMENTS where A= wy— wy, is the detuning of the pump laser from
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theorem. The results given in terms of the steady-state solu-

tion of the Bloch equations and a mattikare[9]
APPENDIX

In this appendix we outline some of the intermediate steps CH(i8)=ul?T Uoi(16)(0.— 250 @0
in the calculation of the Langevin equation describing the (i0)=lul ZZ 2(19)(0, ]

guantum dynamics of the probe field. The master equation (Ada)
for the field density operator is given (9] and[10], g
an
dpe__ BN

— + (i Atra 4 +— (i

a2z (@ (L RAITE Ay Q" (19)=|ulT,3 Un(i8)(~ 200, 1- 20000,
x[a'{a,pr}])+H.a., (A1)
2070, (A4b)

where N is the atomic number density. The quantities
C*(i6) and Q" (i) are the Laplace transforms of spe- where the definitionu=pu, has been used to simplify the
cific linear combinations of two-time atomic-polarization notation. The steady-state solution of the Bloch equations in
correlation functions[9]. Physically, C*~(i8) is propor- the presence of the pump(® and the matrixU are deter-
tional to the nonlinear susceptibility that appears in the semimined from
classical theory of two-beam coupling. The quantity

Q" (i8), however, has no counterpart in semiclassical 0=-M"1w (AS)
theories, and it represents quantum fluctuations of the atomic
system. and

For the case of a two-level atom, the correlation functions
C* (i6) and Q" (i) are determined from the optical

i'?\'?ﬁg feoqrtr;atlons. First, the polarization operator is rewrlttenwherel is the identity matrix. The results of the calculations

T,U(io)=—(igl+M) "%, (AB)

are
P(r) =4S 8(F—R)+H.a., (A2) QET,(AT,+i)

# (I)(l()): — %, (A?B.)
whereS", its adjointS™, andS*=}[S*,S™] obey the com-
muj[at|on rglatltzns for a splé\-sy§tem. The quantitys is DO = (DO = QoTo(AT,—i) (A7)
defined byu=(u). Then the matrix form of the Bloch equa- 2 1 2P(0) '
tions for an atom located at the positiﬁ%interacting with
the pump field are given b 14 (AT,)?

2P(0)

&(I)—M(I) A\ A3
o M@, (A33)  nd
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. Q3T T, the evolution of the expectation value of a field oper&ds
Upy(io)= 2P(0) (A7d)  determined from the equation
2 _ |ﬂ|2 +—: Arat A +—-
Unfic)=— 2(yaT+i)[ (o zézgﬂ] Q| Tsz dt{G) -7 QT (i9)([a[a",GI)+C ™ (i9)
70 X({&[G,a"})+(Q" (i8)*([a"[a,G]])
QoTi[(o—A)Tp+i (s AT A A
Ui = — =0 1[(6;(0)) 2 l], (A7) (CT(ion*{{a’.[G.alh} (A10)

The equations of motion for the expectation value of the
where annihilation operatoa, its adjointa’, and the photon num-
ber operaton=2a'a are
P(0)=(1=iyoT)[(1=iaTy)?+(AT2)?]

_i 2 Lo
+(1-i0T,)[ QT4 T, (A79) dt< )= <2|M|2T )C (i6)(a), (All9
andy=T,/T,.

The master equatiofEq. (A1)] can be converted into an  — 3ty _ ( ) ct(isN*(at Allb
equation for the temporal evolution of the expectation valuedt< ) 2|,u|2T ( (i9)y(a’), ( )
of the moments of the probe field operator. In the Sehro
dinger picture, it can be shown that the derivative of thend
expectation value of a field operatGris given by[12] d

+- +- *
o S e N qi(f=- ( |,U«|TH[C (i8)+(C*(19)* )(A)
dt<>dt p=T 672, (A8)

1
+ Z[CT(i8)+(CT (i6)*—Q*" (id)
Furthermore, with the help of the identities 2

Tr(G[A.[B,pe]D =([B.[A,GI]) (A9a) —(@Q*(i8)*1!, (A110)
and
o o respectively. Equation@11) are used in Sec. Il A to derive
Tr(G[A{B,pe}])={{B,[G,A]}), (A9b)  the Langevin equatiof¥).
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