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Slow light, induced dispersion, enhanced nonlinearity, and optical solitons
in a resonator-array waveguide
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We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators
coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow
group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable
magnitude and sign. This device supports soliton propagation, which can be described by a generalized
nonlinear Schrodinger equation.
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Nanocomposite materials display useful optical proper
that can be qualitatively dissimilar@1# from those of their
underlying constituents. Nanocomposite materials are e
cially well suited for photonics applications, because th
can be constructed in such a manner as to produce enha
nonlinear optical response. Some such materials are for
by a random association of the underlying constituents@2,3#,
whereas others are formed with deterministic proper
through various fabrication methods@4,5#.

Nanofabrication techniques are capable of forming str
tures with specially tailored optical properties. One appro
leads to the creation of structures, such as photonic crys
@6–8#. In these materials, the refractive index is modula
periodically on the distance scale of an optical waveleng
Such structures necessarily produce a strong coupling
tween counterpropagating optical waves; for a sufficien
strong index modulation such structures produce a phot
band gap, that is, a range of frequencies over which li
cannot propagate.

In this paper, we describe a different sort of structur
optical medium that leads to exotic optical properties with
necessarily producing a strong back reflection. This struc
consists of a side-coupled integrated spaced sequenc
resonators~SCISSOR!, as illustrated in Fig. 1. Although the
light interacts strongly with the optical resonators, there is
mechanism for the creation of a strong reflected wave,
thus the device is totally transmissive at all frequenci
However, the device displays strong nonlinear and disper
effects in transmission. For a densely packed collection
high-finesse resonators, a light wave spends much more
circulating within each resonator than in propagating
tween resonators. Thus the group velocity of propagation
become very low. Because the time delay acquired in in
acting with each resonator depends critically on the detun
of the optical wave from the resonance frequency, this dev
displays tailorable dispersion with a magnitude much lar
than that of conventional materials. Also, owing to t
buildup of intensity within each resonator, the nonlinear
sponse of this structure is greatly enhanced~Heebner and
Boyd show that the enhancement scales as the square o
resonator finesse@9#! with respect to propagation through
bulk nonlinear material. Under appropriate conditions, th
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dispersive and nonlinear effects can precisely balance
another, leading to the propagation of optical solitons. O
mathematical analysis of this structure proceeds as follo

Figure 1 labels the fields associated with the coupling o
microresonator to a waveguide. The coupling is describ
mathematically by a transfer matrix in the frequency dom
as

S Ẽ4~v!

Ẽ2~v!
D 5S r it

i t r D S Ẽ3~v!

Ẽ1~v!
D , ~1!

where we assume that the self- and cross-coupling co
cientsr and t are independent of the frequency and intens
and that the coupling matrix is unitary such thatr 21t251.
The fieldẼ4 is fed back intoẼ3 via a mode of the microreso
nator, which may take the form of a mode of a ring wav
guide or a whispering gallery mode of a disk or sphere@10#.
We first assume that the internal attenuation and nonlin
behavior are negligible such that, after one pass, the fi
simply acquires aninternal phase shiftf such that

Ẽ3~v!5eif(v)Ẽ4~v!. ~2!

Furthermore, assuming negligible material dispersion, the
ternal phase shift may be linearly expanded in radian
quencyv about a resonance frequencyvR of the resonator.
Thusf5(v2vR)T can be understood as anormalizedde-
tuning, where the normalizing time of interest is the circu
ferential transit time (T5n2pR/c). Here,n is the refractive
index,R is the effective radius, andc is the speed of light. It
is easy to deduce from Eqs.~1! and~2! that the output field is
related to the input field as

Ẽ2~v!5eiF(v)Ẽ1~v!, ~3!

FIG. 1. A side-coupled integrated spaced sequence of res
tors.
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with a transmitted phase shiftF that exhibits the following
detuning dependence:

F5p1f12 arctan
r sinf

12r cosf
. ~4!

For a sequence of microresonators with unit spacingL, the
additional phase imparted by the microresonators mod
the propagation constant of the unloaded waveguide, wh
becomeskeff5nv/c1F/L. The dispersion relation (keff vs
v) is thus altered periodically as shown in Fig. 2. Near re
nance, the resonator contributionF/L to the propagation
constant becomes sensitively dependent frequency, lea
to a reduced group velocity. The inverse of the group vel
ity for a given detuningf05(v02vR)T, is specifically
given by

1

vg
5keff8 [

dkeff

dv
5

n

c
1

1

L

dF

dv

5
n

c F11
2pR

L S 12r 2

122r cosf01r 2D G
——→

f050,r'1

n

c S 11
4R

L
FD , ~5!

where the last form of this result refers to the resonant e
tation of a sequence of high finesse microresonators. A r
nant pulse propagating through a sequence of resona
would effectively travel with a group velocity that decreas
with the finesseF @11#.

Higher-order derivatives of the transmitted phase s
with respect to normalized detuningdmF/dfm describe the
frequency dependence of the group velocity that distorts
envelope of a pulse upon propagation. The transmitted ph
shift may be expanded in a Taylor’s series about the norm
ized carrier frequency,f0 as

F5F01 (
m51

`
1

m! S dmF

dfmD
f5f0

~f2f0!m. ~6!

In particular, the second derivative of the transmitted ph

FIG. 2. Dispersion relation for light propagation in a SCISSO
with differing values of the self-coupling coefficientr. keff2k0 is
the resonator contribution to the propagation constant.
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shift gives rise to the lowest-order effective group veloc
dispersion~GVD!

keff9 [
1

L

d2F

dv2

5
T2

L F 22r ~12r 2!sinf0

~122r cosf01r 2!2G
——→

f056p/A3F,r'1

7
3A3T2

16L

4

p2
F2. ~7!

The effective GVD is zero on resonance; however, a sm
positive or negative detuning can lead to a large anoma
or normal dispersion, respectively~see Fig. 3!. The extre-
mum values are, in fact, proportional to the square of
finesse, occurring slightly off-resonance atf05
6p/(A3F ). Still higher-order derivatives of the transmitte
phase shift correspond to higher-order contributions to
resonator dispersion. This dispersion, induced by the st
ture, may be many orders of magnitude greater than the
terial dispersion of conventional material systems@12#. For
example, a 10-ps optical pulse propagating in a sequenc
resonators with a finesse of 10p, free-spectral range of 10
THz (;5 mm diameter!, and a spacing of 10mm experi-
ences a group velocity dispersion coefficientkeff9 of roughly
100 ps2/mm. In general, this structural dispersion can
four to eight orders of magnitude greater than material d
persion in conventional materials such as silica fib
(20 ps2/km).

In addition to inducing a strong group delay and disp
sion, a resonator may enhance a weak nonlinearity. The r
of circulating intensity uẼ3u2 to incident intensity uẼ1u2,
known as the build-up factor, is easily derived from Eqs.~1!
and ~2! and is given by

uẼ3u2

uẼ1u2
5

12r 2

122r cosf01r 2
——→

f050,r'1

2

p
F. ~8!

The last form of this result shows that for a high fines
resonator, the maximum build-up factor is 2/p times the fi-
nesse. If the resonator material possesses a Kerr nonline
then the resonance frequency will be intensity dep

FIG. 3. Functional dependence of~a! the group velocity reduc-
tion, ~b! group velocity dispersion,~c! third-order dispersion,~d!
Kerr coefficient, and~e! self-steepening coefficient on the detunin
for a SCISSOR. The parameters have been scaled such tha
curves are universal and fit within the same plot limits.
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dent, which may be modeled by adding a contributi
guẼ3u22pR to the normalized detuning, whereg represents
the strength of the intrinsic material nonlinearity. Th
strength of the enhanced nonlinearity is calculated from
derivative of the transmitted phase shift with respect to
input intensity as

geff[
1

L

dF

duẼ1u2
5

1

L

dF

df

df

duẼ3u2

duẼ3u2

duẼ1u2
→

f050,r'1
g

8R

pL
F2.

~9!

As can be seen from the equation, it is the combined ac
of the group velocity reduction and the buildup of the inte
sity, that yields an overall nonlinear response, which isqua-
dratically enhanced by the finesse at resonance@9#. Qua-
dratic finesse enhancements in ring resonators have also
shown for otherx (3) processes, such as four-wave mixin
@13,14#.

We next derive a pulse-envelope evolution equation t
retains the lowest-order dispersive and nonlinear terms
modulated field can be decomposed into a slowly vary
envelopeA(t) and a carrier wave with frequencyv0 as
E(t)[ 1

2 A(t)expikeff(v0)z(2 iv0t)1c.c. By taking the Fou-
rier transform of the transfer functioneiF and adding the
nonlinear term as a perturbation along with the normaliz
modulation frequency, (v2v0)T, we obtain an impulse re
sponse function for pulse envelopes passing through a si
resonator. By convolving the impulse response~up to second
order in finesse! with the incident pulse envelopeA(z,t),
then time shifting to a retarded time coordinate (t5t
2keff8 z), and replacing differences for a single resonator w
differentials for a continuum of distributed resonators w
density 1/L, an evolution equation emerges for pulses pro
gating in a sequence of resonators. We find that, in this lim
the pulse evolution is governed by a nonlinear Schro¨dinger
equation~NLSE! with the effective parameters introduce
above,

]

]z
A52 i

1

2
keff9

]2

]t2
A1 igeffuAu2A. ~10!

Soliton solutions exist provided that the enhanced nonline
ity and induced dispersion are of opposite signs. While
sign of the enhanced nonlinearity is predetermined by
material properties, the sign of the structurally induced d
persion is, as previously shown in Eq.~7!, determined by the
sign of the detuning from resonance as illustrated in F
3~b!. The fundamental soliton solution for this equation
given by

A~z,t!5A0 sech~t/Tp!ei (1/2)geffuA0u2z, ~11!

where the amplitude and pulse width are related accordin
uA0u25ukeff9 u/geffTp

2 . The finite response time of the resonat
places a lower bound on the pulse widthTp . We define a
scaling factor B as the ratio of the pulse bandwidt
(2 arcsech(1/A2)/p2Tp) to the resonator bandwidth (1/FT),
such thatB5@2 arcsech(1/A2)/p2#FT/Tp . We also define a
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nonlinear strength parameter asG5(4/p2)F2guA0u2R. With
these definitions, a simple relation holds betweenG andB for
the fundamental soliton operating at the peak of the disp
sion maxima@15#

G5
p

2A3 arcsech2~1/A2!
B2'B2. ~12!

Higher-order dispersive and nonlinear terms become sig
cant when eitherB and/orG approach unity. By ensuring tha
B&1 and G&1, one can ensure that propagation can
accurately modeled by the NLSE.

To test the validity of this approximation we have co
ducted rigorous time domain simulations. In Fig. 4~a! we
show the pulse evolution of a low-power 10-ps full width
half maximum~FWHM! hyperbolic secant pulse detuned f
maximum anomalous GVD (B50.13) in a chalcogenide
glass-based system. The system consisted of 100 reson
spaced by 10mm each with a 5mm diameter and finesse o
10p. As can be seen, the temporal pulse profile is grea
dispersed. Figure 4~b! shows the pulse evolution for th
same system, but with a peak power of 125 mW correspo
ing to the fundamental SCISSOR soliton (G50.0196). As
can be seen, the pulse shape is well preserved upon pr
gation. Many of the familiar soliton characteristics, such
robustness, reshaping, and pulse compression or expan
have been observed to carry over from the continuo
medium case. In particular, higher-order breathing solito
satisfyingG'N2B2, whereN is an integer, are readily ob

FIG. 4. ~a! A weak pulse propagating in a SCISSOR dispers
~b! A pulse with amplitude corresponding to the fundamental s
ton propagates without dispersing.~c! A higher-order breathing soli-
ton is unstable under the influence the resonator-induced inten
dependent group velocity~self-steepening!.
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served in the simulation, but are unstable due to of high
order dispersive nonlinear effects present in this system@16#.
Specifically, the frequency dependence of the nonlinear
hancement results in an intensity-dependent group velo
that leads to the phenomenon of soliton decay such tha
Nth-order breathing soliton is split intoN fundamental soli-
tons of differing pulse amplitudes and widths@17#. Figure
4~c! shows a situation in which a second-order soliton wit
launched peak power of 500 mW undergoes decay and s
into two stable fundamental solitons. The solitons are w
isolated in time and one of them possesses a higher p
power and narrower width than the original demonstrat
the potential for optical pulse compression.

In many respects, the SCISSOR soliton is analogou
the gap@18# or Bragg@19# soliton, which results from non
linear pulse propagation within the photonic band gap~PBG!
of a distributed feedback structure. The structure itself be
similarity to a coupled resonator optical waveguide, wh
consists of a multidimensional array of intercoupled reso
tors and no side-coupled waveguide@8#. While resonators
coupled to a guide display PBG-like enhancement of non
ear effects arising from feedback, they do not restrict lig
from propagating at any frequency.

At present, many single microresonator systems with
cellent optical properties have been constructed@20–26#. In
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many of these cases, extending the fabrication technique
construct long sequences of such devices is achievable.
thermore, via the application of thermal or electrical fields
is possible to control the resonance frequency and/or c
pling coefficients. We envision that such structures could
used as artificial media to study NLSE pulse propagat
effects on an integrated chip with thermally or electrica
controllable parameters (keff8 ,keff9 ,geff , . . . ). Other applica-
tions might include studies of slow-light phenomena, va
able optical delay lines and clean pulse compression o
chip without pedestal formation via the soliton decay mec
nism. Finally, soliton-based optical switching with low e
ergy pulses perhaps even at the single-photon level migh
feasible. While all of these concepts have been implemen
in various geometries and material systems, the SCISS
system has the potential for providing a highly compact,
tegrated optical structure for their study.
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