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Slow light, induced dispersion, enhanced nonlinearity, and optical solitons
in a resonator-array waveguide
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We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators
coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow
group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable
magnitude and sign. This device supports soliton propagation, which can be described by a generalized
nonlinear Schrodinger equation.
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Nanocomposite materials display useful optical propertieglispersive and nonlinear effects can precisely balance one
that can be qualitatively dissimildil] from those of their another, leading to the propagation of optical solitons. Our
underlying constituents. Nanocomposite materials are esp&athematical analysis of this structure proceeds as follows.
cially well suited for photonics applications, because they Figure 1 labels the fields associated with the coupling of a
can be constructed in such a manner as to produce enhancedcroresonator to a waveguide. The coupling is described
nonlinear optical response. Some such materials are formgtathematically by a transfer matrix in the frequency domain
by a random association of the underlying constitug¢at3), as
whereas others are formed with deterministic properties - -
through various fabrication methofi,5]. Es(w) roit) [ Es(w)

Nanofabrication techniques are capable of forming struc- Ey(0) “lit r Ei(0) ' )
tures with specially tailored optical properties. One approach 2 1

leads to the creation of structures, such as photonic crystalghere we assume that the self- and cross-coupling coeffi-

[6—8]. In these materials, the refractive index is modulatedgientsr andt are independent of the frequency and intensity
periodically on the distance scale of an optical wavelengthgng that the coupling matrix is unitary such that-t2=1.

Such structures necessarily produce a strong coupling b%"he fieldE, is fed back intcE5 via a mode of the microreso-

tween counterpropagating optical waves; for a sufficientl)_/nator, which may take the form of a mode of a ring wave-

Etrogg |nde;<hrr;o'dulat|on suchfsftructure; produce ahp?lofprr': uide or a whispering gallery mode of a disk or sphai@.
and gap, that 1S, a range of lrequencies over Which I9Ntyq first assume that the internal attenuation and nonlinear

cannot propagate. ehavior are negliai -
! . . gligible such that, after one pass, the field
In this paper, we describe a different sort of structuredgimply acquires amternal phase shifip such that

optical medium that leads to exotic optical properties without
necessarily producing a strong back reflection. This structure = — i) E
; . . E =e'E . 2
consists of a side-coupled integrated spaced sequence of 3(@) a(@) @
resonator¢SCISSOR, as illustrated in Fig. 1. Although the  Fyrthermore, assuming negligible material dispersion, the in-
light interacts strongly with the optical resonators, there is NQernal phase shift may be linearly expanded in radian fre-
mechanism for the creation of a strong reflected wave, angyency«w about a resonance frequeney, of the resonator.
thus the device is totally transmissive at all frequenciesThys 4= (w—wg)T can be understood asmarmalizedde-
However, the device displays strong nonlinear and dispersivgning, where the normalizing time of interest is the circum-
effects in transmission. For a densely packed collection ofgrential transit time T=n2R/c). Here,n is the refractive
high-finesse resonators, a light wave spends much more timgqex R is the effective radius, andis the speed of light. It

circulating within each resonator than in propagating be-g easy to deduce from Eq4) and(2) that the output field is
tween resonators. Thus the group velocity of propagation caps|ated to the input field as

become very low. Because the time delay acquired in inter-

acting Wlt_h each resonator depends critically on the _detunl_ng Ex(w)=e®@E,(w), (3)
of the optical wave from the resonance frequency, this device

displays tailorable dispersion with a magnitude much larger

than that of conventional materials. Also, owing to the o @E @\R @
buildup of intensity within each resonator, the nonlinear re- 3 4

sponse of this structure is greatly enhanceleebner and E E, - —»
Boyd show that the enhancement scales as the square of the

resonator finessg9]) with respect to propagation through a  FIG. 1. A side-coupled integrated spaced sequence of resona-
bulk nonlinear material. Under appropriate conditions, theseors.
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FIG. 3. Functional dependence @) the group velocity reduc-
FIG. 2. Dispersion relation for light propagation in a SCISSORtion, (b) group velocity dispersion(c) third-order dispersion(d)
with differing values of the self-coupling coefficient koz— kg is Kerr coefficient, ande) self-steepening coefficient on the detuning
the resonator contribution to the propagation constant. for a SCISSOR. The parameters have been scaled such that the
curves are universal and fit within the same plot limits.
with a transmitted phase shifb that exhibits the following

detuning dependence: shift gives rise to the lowest-order effective group velocity

dispersion(GVD)
o ) rsing A ,_1 d?d
=+ ¢+ arCt&I’m. (4) eff— | dew?

For a sequence of microresonators with unit spadinthe _ T2| —2r(1-r?)sing,
additional ph_ase imparted by the microresonators_ modifi_es L (1—2r cOSchy+12)2
the propagation constant of the unloaded waveguide, which
becomess=nw/c+®/L. The dispersion relationkgs vs 3./3T2 4
w) is thus altered periodically as shown in Fig. 2. Near reso- + 160 —232- (7)
nance, the resonator contributiah/L to the propagation bo==m/3F,r~1 m

constant becomes sensit_ively de_pendent frequency, IeadinIgne effective GVD is zero on resonance; however, a small
FO a reduce.d group ve_Iocny. The inverse Of the group VeIOC'positive or negative detuning can lead to a large anomalous
ity for a given detuninggo=(wo—wr)T, is specifically - qrmq| dispersion, respectivelgee Fig. 3 The extre-

given by mum values are, in fact, proportional to the square of the
1 dkg n 1 dd finesse, occurring slightly off-resonance aipy,=
— =klg= L +ar/(\/3F). Still higher-order derivatives of the transmitted
Ug de ¢ Lde phase shift correspond to higher-order contributions to the
5 resonator dispersion. This dispersion, induced by the struc-
_n 2mR 1-r ture, may be many orders of magnitude greater than the ma-
c L \1-2rcosgy+r? terial dispersion of conventional material systefhg|. For
example, a 10-ps optical pulse propagating in a sequence of
n 1 ﬁ resonators with a finesse of &Qfree-spectral range of 10
c * L S ©) THz (~5 um diamete), and a spaci fl i-
bo=0r~1 s \ pacing of 1Qum experi

ences a group velocity dispersion coefficiéfi§ of roughly

where the last form of this result refers to the resonant excid00 p$/mm. In general, this structural dispersion can be
tation of a sequence of high finesse microresonators. A resdour to eight orders of magnitude greater than material dis-
nant pulse propagating through a sequence of resonatopgrsion in conventional materials such as silica fiber
would effectively travel with a group velocity that decreases(20 ps/km).
with the finesse§ [11]. In addition to inducing a strong group delay and disper-

Higher-order derivatives of the transmitted phase shiftsion, a resonator may enhance a weak nonlinearity. The ratio
with respect to normalized detunimtf’®/d¢™ describe the of circulating intensity |E5|? to incident intensity|E,|?,
frequency dependence of the group velocity that distorts thknown as the build-up factor, is easily derived from Eds.
envelope of a pulse upon propagation. The transmitted phaged (2) and is given by
shift may be expanded in a Taylor’s series about the normal-
ized carrier frequencyp, as Esl® 1-r2 2

Bl 3 ®)
. N |E4|?  1—2r cosgo+rgy=0r~17
P=Po+ 21 H( g m) (¢— o)™ (6)  The last form of this result shows that for a high finesse
m=1 T\ dé b=¢ resonator, the maximum build-up factor ism2fimes the fi-

nesse. If the resonator material possesses a Kerr nonlinearity,
In particular, the second derivative of the transmitted phaséhen the resonance frequency will be intensity depen-
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dent, which may be modeled by adding a contribution a)

0.3+
7|E3|227TR to the normalized detuning, whenerepresents 5 021 Dispersing Pulse
the strength of the intrinsic material nonlinearity. The \f/ e
strength of the enhanced nonlinearity is calculated from the %’ 0.17 0
derivative of the transmitted phase shift with respect to the B0y = 100
input intensity as 40 60 2

80 150 00+ (ps)

z (resonator #)

1 db 1dd d¢ dEs? 8R_, b

= T = o= T T = -, Y5
L d[Ey? L dé d|Ey|? d[Ey|pp-0r~1 7L (
9)

As can be seen from the equation, it is the combined action
of the group velocity reduction and the buildup of the inten-
sity, that yields an overall nonlinear response, whichua-
dratically enhanced by the finesse at resonafe Qua-
dratic finesse enhancements in ring resonators have also been

Yeff

power (W)

Second Order
SCISSOR Soliton

shown for othery® processes, such as four-wave mixing 2 12 Splitting
[13,14. g 038
We next derive a pulse-_envelppe evolution_ equation that § 04
retains the lowest-order dispersive and nonlinear terms. A g 0
modulated field can be decomposed into a slowly varying % b 100
envelopeA(t) and a carrier wave with frequency, as , (reson:tgr 450100 200 ¢ (ps)
E(t)=3A(t) expKen( wg) Z( — i wgt) +C.C. By taking the Fou-
rier transform of the transfer functioe® and adding the FIG. 4. (a) A weak pulse propagating in a SCISSOR disperses.

nonlinear term as a perturbation along with the normalizedb) A pulse with amplitude corresponding to the fundamental soli-
modulation frequency,d— wg) T, we obtain an impulse re- ton propagates without dispersir(g) A higher-order breathing soli-
sponse function for pulse envelopes passing through a singten is unstable under the influence the resonator-induced intensity-
resonator. By convolving the impulse respoligg to second dependent group velocitiself-steepening

order in finessewith the incident pulse envelopa(z,t),

then time shifting to a retarded time coordinate=(t nonlinear strength parameter Bs= (4/7%)§2y|Ao|?R. With
—k¢x2z), and replacing differences for a single resonator withthese definitions, a simple relation holds betwEesndB for
differentials for a continuum of distributed resonators withthe fundamental soliton operating at the peak of the disper-
density 1L, an evolution equation emerges for pulses propasion maxima15]

gating in a sequence of resonators. We find that, in this limit,

the pulse evolution is governed by a nonlinear Sdhrger

T
i i i i r= B?~B? (12
equation(NLSE) with the effective parameters introduced 5 \/§arcsecf'( 1/ ﬁ)
above,
J 1 72 Higher-order dispersive and nonlinear terms become signifi-
—A=—i-Kly — A+ivyerAPA. (100  cantwhen eitheB and/orl” approach unity. By ensuring that
Iz 2 % 972 B=1 andI's1, one can ensure that propagation can be

_ ) ) ) ~accurately modeled by the NLSE.
Soliton solutions exist provided that the enhanced nonlinear- To test the validity of this approximation we have con-

ity and induced dispersion are of opposite signs. While thejucted rigorous time domain simulations. In Figa4we
sign of the enhanced nonlinearity is predetermined by th&how the pulse evolution of a low-power 10-ps full width at
material properties, the sign of the structurally induced dishalf maximum(FWHM) hyperbolic secant pulse detuned for
persion is, as previously shown in Eq), determined by the  maximum anomalous GVDE=0.13) in a chalcogenide
sign of the detuning from resonance as illustrated in Figglass-based system. The system consisted of 100 resonators
3(b) The fundamental soliton solution for this equation is Spaced by 1QLm each with a 5Lm diameter and finesse of
given by 107r. As can be seen, the temporal pulse profile is greatly
, ) dispersed. Figure (8) shows the pulse evolution for the

A(z,7)=Ag secti7/T,) el WDerlfolz, (11)  same system, but with a peak power of 125 mW correspond-

) ) ~ing to the fundamental SCISSOR solitoh € 0.0196). As
where the amplitude and pulse width are related according tgan pe seen, the pulse shape is well preserved upon propa-
|Aol?= |Kegl/ ver T - The finite response time of the resonator gation. Many of the familiar soliton characteristics, such as
places a lower bound on the pulse widl. We define a  robustness, reshaping, and pulse compression or expansion
scaling factor B as the ratio of the pulse bandwidth have been observed to carry over from the continuous-
(2 arcsech(llf)/szp) to the resonator bandwidth @IF),  medium case. In particular, higher-order breathing solitons,
such thaB=[2 arcsech(4/2)/m?]3T/T,. We also define a  satisfyingI'~N2B?, whereN is an integer, are readily ob-
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served in the simulation, but are unstable due to of highermany of these cases, extending the fabrication techniques to
order dispersive nonlinear effects present in this sy$teh  construct long sequences of such devices is achievable. Fur-
Specifically, the frequency dependence of the nonlinear erthermore, via the application of thermal or electrical fields, it
hancement results in an intensity-dependent group velocitis possible to control the resonance frequency and/or cou-
that leads to the phenomenon of soliton decay such that goling coefficients. We envision that such structures could be
Nth-order breathing soliton is split intd fundamental soli- used as artificial media to study NLSE pulse propagation
tons of differing pulse amplitudes and width&7]. Figure effects on an integrated chip with thermally or electrically
4(c) shows a situation in which a second-order soliton with acontrollable parametersk{s,Ks¢, Yes, - - - ). Other applica-
launched peak power of 500 mW undergoes decay and splittons might include studies of slow-light phenomena, vari-
into two stable fundamental solitons. The solitons are wellable optical delay lines and clean pulse compression on a
isolated in time and one of them possesses a higher peakip without pedestal formation via the soliton decay mecha-
power and narrower width than the original demonstratingnism. Finally, soliton-based optical switching with low en-
the potential for optical pulse compression. ergy pulses perhaps even at the single-photon level might be
In many respects, the SCISSOR soliton is analogous téeasible. While all of these concepts have been implemented
the gap[18] or Bragg[19] soliton, which results from non- in various geometries and material systems, the SCISSOR
linear pulse propagation within the photonic band adBG)  system has the potential for providing a highly compact, in-
of a distributed feedback structure. The structure itself bearsegrated optical structure for their study.
similarity to a coupled resonator optical waveguide, which
consists of a multidimensional array of intercoupled resona-
tors and no side-coupled waveguif®. While resonators This work was sponsored by the AFOSR under Grant No.
coupled to a guide display PBG-like enhancement of nonlin+49620-00-1-0061, and by the DARPA under Grant No.
ear effects arising from feedback, they do not restrict lightMDA972-00-1-0021. The content of this paper does not nec-
from propagating at any frequency. essarily reflect the position or the policy of the government,
At present, many single microresonator systems with exand no official endorsement should be inferred. The authors
cellent optical properties have been constru¢@@-26¢. In  thank Richard Slusher for many useful discussions.
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