PHYSICAL REVIEW A

VOLUME 51, NUMBER 4

APRIL 1995

Optical phase conjugation of nonclassical fields

Mary Y. Lanzerotti* and Alexander L. Gaeta
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853

Robert W. Boyd
Institute of Optics, University of Rochester, Rochester, New York 14627
(Received 1 September 1994)

We investigate theoretically the quantum-noise properties of optical phase conjugation via four-wave
mixing of nonclassical signal fields. We show that while the field generated at a phase-conjugate mirror
(PCM) can be in a nonclassical state, the generated field is not necessarily useful within the context of
phase conjugation. For the case in which a quadrature-squeezed signal field is incident at a PCM, we
determine that the signal-to-noise ratio of one of the quadrature components of the generated field can
approach the signal-to-noise ratio of the corresponding quadrature component of the signal field as the
amount of squeezing of the vacuum field injected at the rear of the PCM is increased. For the case in
which the signal field is amplitude squeezed, we determine that the signal-to-noise ratio of the conjugate
field is always much smaller than that of the signal field. These results demonstrate that the phase-
conjugation process can preserve the desirable quantum-noise properties of quadrature-squeezed fields

but not those of amplitude-squeezed fields.

PACS number(s): 42.50.Ct, 42.50.Dv, 42.65.Hw

I. INTRODUCTION

The nonlinear optical technique of optical phase conju-
gation is useful for correcting distortions imparted on an
optical wave front [1]. Recent quantum-mechanical
treatments [2—5] of phase conjugation have shown that
noise is inherent in the phase-conjugation process and
that the conjugate-reflected field is typically noisier than
the incident signal field. For the case of optical phase
conjugation by four-wave mixing, the noise can be attri-
buted to a vacuum field that is incident at the rear port of
a phase-conjugate mirror (PCM) and that is amplified as
a result of the four-wave mixing process [6], as shown in
Fig. 1. Previous work [5] has shown that for these condi-
tions the conjugate field has a positive, semidefinite
phase-space density, which implies that the conjugate
field cannot exhibit any nonclassical features. These re-
sults have implications for performing phase conjugation
of quadrature-squeezed fields, amplitude-squeezed fields,
and fields having only a few photons per mode [7,8].
More recently, Bajer and Perina [9] have shown that, for
the case in which a quadrature-squeezed field or a Fock
state field is incident at the rear of the PCM, the generat-
ed field can exhibit either quadrature squeezing or ampli-
tude squeezing, respectively. Demonstrating that the
generated field is nonclassical does not guarantee, howev-
er, that it is in fact the desired phase conjugate of the sig-
nal field. For example, in the limit in which the phase-
conjugate reflectivity vanishes, the noise and wave-front
properties of the generated field are in fact those of the
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rear field rather than those of the conjugate of the signal
field.

In this paper, we analyze the ability of a PCM to pro-
duce an ideal phase conjugate of a quadrature-squeezed
field and an amplitude-squeezed field. We show that the
field generated by the PCM can also be in a nonclassical
state, as obtained previously [9], but that this field is not
necessarily the ideal phase conjugate of the nonclassical
signal field. We determine the quantum-noise properties
of the generated field for conditions under which the field
injected at the rear of the PCM is in a vacuum state, a
quadrature-squeezed vacuum state, or a Fock state. For
the case in which the signal field is in a quadrature-
squeezed state, the generated field preserves the signal-
to-noise ratio of one of the quadrature components of the
signal field only when the corresponding quadrature com-
ponent of the rear field is perfectly quadrature squeezed.
For the case in which the signal field is in an amplitude-
squeezed state, the signal-to-noise ratio of the generated
field is typically much less than that of the signal field.
We conclude that the process of optical phase conjuga-
tion can preserve the signal-to-noise ratio of only those
sighal fields that are quadrature squeezed.

PCM
. T
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-
FIG. 1. Schematic illustration of the signal field £,, the rear

field £,, and the conjugate field £, interacting via four-wave
mixing at a phase-conjugate mirror (PCM).
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1. PHASE CONJUGATION
OF QUADRATURE-SQUEEZED FIELDS

We consider a single-mode signal field Es incident at
the front of a four-wave-mixing PCM. As a result of the
four-wave-mixing process, the signal field is coupled to
the rear field £ . incident on the rear port of the PCM to
produce the conjugate-reflected field E,, as shown in Fig.
1. For the case of degenerate four-wave mixing, the two
modes incident at the PCM are represented in the scalar
approximation by the expressions

B.(7,1)=Ca,expli(R F—wt)]+H.a. , (la)
E.(7,0)=C*a,expli(—k F—ot)]+H.a. , (1b)

where the constant C=—i(2m#iw/V)"/? and V is the
quantization volume. For the case of nearly degenerate
four-wave mixing, the two fields no longer have the same
frequencies; nevertheless, the following analysis can still
be applied. A quadrature-squeezed signal field typically
used in ultraprecision measurements is a superposition of
a signal contribution and a squeezed vacuum back-
ground. For example, the signal contribution can be pro-
duced by a weakly modulated laser field [10]. For these
conditions, the annihilation operator &, of the signal field
is described by the expression

a,=ya,+V'1—y%, , ?))

where &, is the photon annihilation operator associated
with a strong coherent laser field, and @, is the photon
annihilation operator of the background vacuum field
that may be quadrature squeezed. The parameter v is
much less than unity and represents the fraction of the
strong laser field that is coupled into the signal field mode
to create the signal contribution. The expectation values
{@,) and (@,) of the photon annihilation operators of
the laser field and signal field are then given by the rela-
tions

(2,)Y=a=|alexp[if,] , (3a)

(a,)=a,=|a,lexp[if;]=ra , (3b)

where the parameters 0, and 0 are the phases of the
laser field and signal field, respectively.

The field Ec, generated at the PCM, is represented in
the scalar approximation by the expression

B (7,0)=C*a,exp[i(—k F—ot)]+H.a. , (4)

where @, denotes the photon annihilation operator of the
conjugate field. The photon operators @;, @,, &,, and @,
satisfy the canonical boson commutation relations

[a,8]1=1, (5)

where j =s,a,r,c. The signal field operators and rear field
operators are assumed to commute. It has been shown
[6] that for a field generated at a four-wave-mixing PCM,
the annihilation operator of the field is related to the
creation and annihilation operators of the signal field and
rear field as ;
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8, =vy i+, , 6)

where v, is the phase-conjugate amplitude reflectivity,
and where the relation lupclz——[vpclz=1 ensures that @,
satisfies Eq. (5). The expectation value of the photon an-
nihilation o?erator of the generated field is then
(@,)=v,(8/)+p,(a,). The phase-conjugate reflec-
tivity R . is Rpe = Vgl

The quadrature components @;; and @, of any of the
field operators are given by the relations

(@ +a))

o= 4 5 = (7a)
_(@;,—a))

= (7b)

where j =s,b,7,c. We allow either the background mode
of the signal field or rear field to be in a quadrature-
squeezed vacuum state by representing the annihilation
and creation operators of these fields with the relations

(4]

t = +vibl (8
where k =b,r, | |>*— |v;|>=1, and b, is the annihilation
operator of the appropriate vacuum field mode. In the

following analysis, we assume that the parameters p; and
v are real quantities, to ensure that the noise in each

- quadrature of the vacuum modes contributes only to the

noise in the corresponding quadrature of the conjugate
mode.

We identify the noise N, and N,, in each quadrature
component of the two vacuum modes with the variance
of the corresponding quadrature component, such that

1
Niy={ (A, >~—4nk , (9a)

1
Nip={(A2,)*) = —4"— . : (9b)
where the noise parameter 7, is given by the relation

= . - - (10)
BtV

Mk

The noise parameter 7, can take on values between zero
and unity, which correspond to the cases for which the

~field is in a perfectly quadrature-squeezed state or

coherent state, respectively. As the value of the noise pa-
rameter is decreased from unity, Egs. (9a) and (9b) indi-
cate that the noise in the first quadrature is increased
above the shot-noise limit of f, while the noise in the
second quadrature is decreased below the shot-noise lim-
it.

We now consider the noise properties of the signal field
and generated field and determine the conditions under
which the optical phase-conjugation process preserves
the noise properties of the signal field. We assume that
the phase-conjugate amplitude reflectivity v,.=1/ R
and the four-wave-mixing amplitude gain y,pc=1/ I+R .
are also real quantities, to ensure that the noise in each
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quadrature of either input mode contributes only to the
noise in the corresponding quadrature of the generated
field mode.

The signal-to-noise ratios A2 ;1 for the quadrature com-
ponents of both fields are defined to be

__fa
T ((agy )y’
where j=s,¢ and [=1,2. Using Egs. (2), (3), and

(9)—(11), we find that the signal-to-noise ratios of each of
the quadrature components of the signal field are

- (D

Ry =41, a,|*cos?0, , (12a)

Ryy=—|a, |Psin%, (12b)
Mo

where we have used the assumption that the parameter y
of Eq. (2) is much less than unity. Equations (12a) and
(12b) show that the signal-to-noise ratio in the second
quadrature is enhanced when the quadrature squeezing of
the background vacuum field is increased. For the case
in which the signal field is perfectly quadrature squeezed,
the signal-to-noise ratio of the second (first) quadrature
diverges (vanishes).

Using Eq. (6), the signal-to-noise ratios for the quadra-
ture components of the generated field are given by the
expressions ,

4 M. |a,|*cos?0 -
7{01= MM pcis s S C < (13a)
nb+Mpcnr
4M__|a,|%sin%0
@ =l % ST e (13b)
It Mpem,
where the parameter M, is given by M,
=R, ./(1+R.).

We now calculate the information transfer coefficients
T; (1=1,2) [11] for both quadrature components of the
generated field to characterize the extent to which they
retain the quantum-noise properties of the signal field.
From Egs. (12) and (13), we obtain the expressions

R M

r=2t= el S = (14a)
7231 Mo +Mpc77r
R M

T2= 2 . pc b . e e (14D)
ﬁsZ 'r]r+Mpc77b

Equations (14a) and (14b) show that the transfer
coefficients in the two quadrature components are always
equal to or less than unity. As the amount of squeezing
in the rear vacuum field is increased, the transfer
coefficient T, for the first quadrature is decreased, while
the transfer coefficient T, for the second quadrature is in-
creased. For the case in which the rear vacuum field is
perfectly quadrature squeezed, the transfer coefficient for
the first quadrature vanishes, and the transfer coefficient
for the second quadrature achieves the maximum value of
unity, since no noise is added to this quadrature. These
results indicate that when the rear vacuum field is per-
fectly quadrature squeezed, optical phase conjugation can
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FIG. 2. Information transfer coefficients T (a) and T, (b) of
the two quadrature components of the conjugate field as func-
tions of the background field noise parameter 73, for different
values of the PCM reflectivity R, for the case in which the
rear field is in a vacuum state.

preserve the noise properties of the second quadrature
component of the signal field.

For the case in which the field E, injected into the rear
port of the PCM is in an ordinary vacuum state, the in-
formation transfer coefficients for both quadrature com-
ponents become -

R

- _ “tpe U .

Ty R, +(1+R, )y, ’ , (152)
R

T, el © (15b)

(14R,)+R ey

Figures 2(a) and 2(b) are plots of these transfer
coefficients as functions of the noise parameter 7, for
different values of the phase-conjugate reflectivity R ..
The signal-to-noise ratio of the initially squeezed quadra-
ture is always degraded, and this degradation is most pro-
nounced for large squeezing (7, <<1) of the signal field.
These results are consistent with those of previous work
[S], which showed that the conjugate field cannot exhibit
nonclassical features such as squeezing when the rear
field is in an ordinary vacuum state.

III. PHASE CONJUGATION
OF AMPLITUDE-SQUEEZED FIELDS

We now consider the effect of optical phase conjuga-
tion on a general single-mode signal field £, that is ampli-
tude squeezed. The expressions for the signal field, rear
field, and conjugate-reflected field interacting at a PCM
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FIG. 3. Production of an amplitude-squeezed signal field £,
by combining a Fock state |n) and a coherent state |a) at a
beam splitter (BS) having a reflection coefficient R.

are still given by Egs. (1a), (1b), and (4), respectively. We
create an amplitude-squeezed signal field by combining a
Fock state field with a coherent-state field at a beam-
splitter with reflection coefficient R, as shown in Fig. 3.
The degree of amplitnde squeezing of the field can be
varied continuously by changing the value of the beam-
splitter reflection coeflicient. The annihilation operator
@, of the amplitude-squeezed signal ﬁeld is given by the
expression

=v1-Ra,+ivVRe,, (16)

where @, is the photon annihilation operator of the Fock
state field |n ), and @, is the photon annihilation operator
of the coherent-state field |a). The expectation value of
the photon-number operator of the s1gna1 ﬁeld (fiy)is

(8,)=(1—RX#,Y+R(A,), (17

where #, and fi, are the photon-number operators for
the Fock state field and the coherent-state field, respec-
tively. By setting the expectation values of both photon
number operators f, and f, equal to n, ={#; ), the pho-
ton number of the amplitude-squeezed state is fixed at n,,
regardless of the value of the beam splitter reflection
coefficient R. N

The noise N, in the photon number of the signal field is
identified with the variance of the signal-field photon-
number operator such that

N,={(AR,?)=2n’R(1—R)+n,R(2—R).  (18)

We further quantify the photon statistics of the signal
field by calculating the Mandel Q parameter [12] Q, for
the arnphtude-squeezed signal field, which is given by the
expression

N,
y=—~———1=R(1—RX1+2n,)+R —1. 19
Qo () ( ( ng) (19)

The parameter Q; can take on any value between zero
and —1. For the case in which the parameter Q; is less
than zero, the field exhibits sub-Poissonian statistics and
|
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" is amplitude squeezed. The signal-to-noise ratio &, for

the photon number in the signal field can be expressed in

terms of the parameter Q; as

n? ng

R, = -
Py it

We now characterize the noise properties of the pho-
ton number of the generated field by calculating the cor-
responding Q parameter Q,, the signal-to-noise ratio &,
and the information transfer coefficient T,. The expecta-
tion value of the number of photons n, in the generated
field is nonzero, even when the signal field and rear field
are both in ordinary vacuum states {5]. It is therefore
physically meaningful to define the signal-to-noise ratio
R and the transfer coefficient T, to be

= 0)

gt L
¢ N,
and
T,= ?; , - -(22)
s
" “where n0" is the expected value of the photon number in

the generated field when the signal field is “on,” and n°f
is the expected value of the photon number when the sig-
nal field is “off”” (i.e., is in the ordinary vacuum state).
Using Eqgs. (6) and (16), we calculate the Q parameter, the
signal-to-nioise ratio 7., and the information transfer
coefficient T, to be

7 N
QC‘Rpc(ns+1')+<Rp;+1)h,' b 23
R%n?
R. N, (23b)
and .
~ mRL(Q;+1)
. N ; - - (23¢)

where n, = (1, ) is the expectation value of the number of
photons in the rear field and N, = ((A#,)?) is the noise in
the photon number of the generated field.

For the case in which the rear field E is in a Fock
state |n, ), the noise in the generated field is given by the

expression
N, =R, (1+R,)[1+n,+n,+2nn,]+Ron(Q,+1) .

(24)

In this case, the expressions for the Q parameter, the

signal-to-noise ratio, and the transfer coefficient become

R2 +n,(RL —1)+2R cn; n (1+R )+n, R2 5(Qs+2)

<= n(1+R )+

2
Rpclls

(1FR o)1+ 0, +n,+2n,n,) TR (0, +1) °

(n +1)

R,=

e e e e o (25)

e e . (26)
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and

Ryen,(Q,+1)
¢ (1+R, N1+n,+n,+2nn,)+FRon,(Q, +1)

(27)

For the case in which the field injected at the rear of
the PCM is in a vacuum state (i.e., n,=0), Eq. (25) indi-
cates that the photon statistics of the generated field are
always super-Poissonian for an amplitude-squeezed signal
field, since the parameter Q. is always greater than zero.
This result is consistent with previous work [5], which
demonstrated that under these conditions the generated
field cannot exhibit any nonclassical features. According-
ly, the information transfer coefficient T, is always less
than unity and reaches a maximum value of one-half in
the limit in which Q,=0 and n,=0 and the number of
photons R n, expected in the classical limit in the conju-
gate field is large. Figure 4 is a plot of the signal-to-noise
ratio 72, as a function of the phase-conjugate reflectivity
R, for a signal field having various values of Q; and
n,=35. The signal-to-noise ratio is maximized for the
case in which the signal field is in a Fock state (Q,=—1).

Figures 5(a) and 5(b) are plots of the parameter Q, and
information transfer coefficient T, as functions of the
phase-conjugate reflectivity R . for different values of the
photon number n, in the rear field, where we have set
n,=5 and Q.,=—0.5. We have allowed for a nonzero
number of photons in the rear field to compare our re-
sults with those of Bajer and Perina [9]. Figure 5(a)
shows that the photon statistics of the generated field are
sub-Poissonian when the phase-conjugate reflectivity R
is less than unity and when the number of photons in the
rear field is greater than zero. This result of sub-
Poissonian statistics, which was also obtained previously
[9], requires careful interpretation, since it is precisely in
this limit that the photon statistics of the generated field
are dominated by the statistics of the rear Fock state (for
which Q,=—1) rather than by the statistics of the
amplitude-squeezed signal field. Furthermore, the wave-
front properties of the field produced by the PCM are
also associated in this limit with those of the rear field

FIG. 4. Signal-to-noise ratio &, of the generated field as a
function of the phase-conjugate reflectivity R, for different
photon statistics in the amplitude-squeezed signal field. The
number of photons in the signal field n; and in the rear field n,
are equal to 5 and O, respectively.
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FIG. 5. Parameter Q. (a) and information transfer coefficient
T, (b) of the conjugate-reflected field as a function of the phase-
conjugate reflectivity R,. for different values of the photon
number #, in the rear field. The number of photons », in the sig-
nal field is 5, and the parameter Q, of the signal field is —0.5.

rather than with those of the desired conjugate of the sig-
nal field. Alternatively, an appropriate measure of the
extent to which the generated field can in fact retain the
desirable quantum-noise properties of the signal field is
the information transfer coefficient T, of the photon
number of the generated field. Figure 5(b) shows that the
transfer coefficient is always much less than unity for
conditions in which the signal field is in an amplitude-
squeezed state. In fact, the transfer coefficient is opti-
mized when no photons are injected into the rear port of
the PCM. This result signifies that under conditions in
which the signal field is in an amplitude-squeezed state,
the signal-to-noise ratio of the field generated through
phase conjugation can never equal that of the signal field.
Therefore, although the generated field can exhibit non-
classical statistics, this field is not necessarily useful

‘within the context of optical phase conjugation.
T P I

IV. SUMMARY AND CONCLUSIONS

_....We have calculated the quantum-noise properties of

fields generated by optical phase conjugation via four-
wave mixing from nonclassical signal fields under condi-
tions in which the field injected at the rear of the PCM
can be in a vacuum state, a quadrature-squeezed vacuum
state, or a Fock state. We have used the information

‘transfer coefficient as a measure of the extent to which

the field generated at the PCM is the desired phase conju-

- gate of the nonclassical signal field. Specifically, we find

that, while the generated field may be nonclassical, this
field is not necessarily useful within the context of optical
phase conjugation in the sense of being the desired ideal
conjugate of the signal field. For the case in which the



signal field is in a quadrature-squeezed state, we have
determined that the signal-to-noise ratio of one of the
quadrature components of the generated field can
preserve the signal-to-noise ratio of the signal field. For
the case in which the signal field is in an amplitude-

squeezed state, we have determined that the signal-to-

noise ratio of the generated field is always less than that
of the signal field.
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