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Third-order nonlinear optical response resulting from optical pumping: Effects of atomic motion
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The formalism of Maker, Terhune, and Savage [Phys. Rev. Lett. 12, 507 (1964)] for third-order non-
linear susceptibilities is extended to account for nonlocal response. In the case of counterpropagating
beams, we show that five constants instead of two are required in general to describe the nonlinearity. In
the particular case of optical pumping nonlinearities, which we study extensively, we show that four con-
stants, which describe the magnetization and electric-quadrupole moment of the medium induced by the
forward and backward beams, are sufficient. We evaluate these constants for various values of the angu-
lar momenta of the atomic levels connected by the incident field. We finally show how this formalism
can be applied to several problems such as induced focusing, four-wave-mixing generation, optical insta- }
bility, and polarization properties of phase-conjugate and phase-contrast mirrors.

PACS number(s): 42.65.—k

I. INTRODUCTION

In 1964, Maker, Terhune, and Savage [1] showed
that the third-order nonlinear polarization P(r,t)
=Pexp(—iwt)+c.c. induced in an isotropic medium
with local response by a monochromatic optical field of
the form E(r,t)=Eexp(—iat)+c.c. can in general be
expressed in the form

P=a(B-E*)E+1b(E-E)E*, (1)

where the coefficients a and b are parameters that charac-
terize the nonlinear material and which can be expressed
in terms of the components of the third-order optical sus-
ceptibility tensor as a =6y, ,(0;0,0,—®) and b
=6X121{w;0,0, —®). Equation (1) can be derived either
from explicit consideration of the symmetry properties of
the nonlinear optical susceptibility tensor for an isotropic
medium [1,2] or can be deduced more simply by noting
that the form shown is the most general way in which
three vectors E, E, and E* can be combined to form a
new vector in a manner that is consistent with the as-
sumed isotropy of the material system.

The goal of the present paper is to show how Eq. (1)
must be modified for the more general case of a medium
in which the response is not local. For instance, we con-
sider the example illustrated in Fig. 1(a) in which coun-
terpropagating waves described by

E=Ee+B e =E "/ "+B,e™, ()
with k, = —k,, interact in an atomic vapor. Note that
the wave described by Eq. (2) displays significant spatial
modulation of the electric-field amplitude on a distance
scale of an optical wavelength. The response of an atom-
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ic vapor to such a field can be significantly influenced by
the effects of atomic motion. For example, if an atom can
move a distance of an optical wavelength in an atomic
response time, the degree of atomic excitation will be
determined by the spatial average of the electric-field am-
plitude rather than by its local value. Such effects are
commonly known as grating washout effects and lead to a
nonlocality in the response of the material system.

In certain special cases, such grating washout effects
can be treated by a simple modification of Eq. (1). For
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FIG. 1. (a) Nonlinear medium interacting with counterpro-
pagating beams. The forward field E; propagates along the z
axis and the backward field E, in the opposite direction. (b)
Four-wave-mixing geometry. Nonlinear medium interacting

"with two counterpropagating fields E; and E, and with two

weak beams E, and E.. The direction of propagation of E,
makes a small angle 6 with the z axis and the beam E, propa-
gates in the direction opposite to E,,.
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example, the first term in Eq. (1) can sometimes be inter-
preted as describing a population grating that is written
in the medium by the interference of E with E* and
which is read out by the scattering of E from this grating.
Such a contribution would be expected to be strongly di-
minished by grating washout effects, and these effects can
be modeled by multiplying the coefficient a of Eq. (1) by a
grating washout factor 7, where || <1, for those contri-
butions to E-E* that display significant spatlal modula-
tion. On the other hand, the second term in Eq. (1) can
sometimes be interpreted as descrlbmg a spatially invari-
ant two-photon coherence described by the product E-E,
which is probed by an emission process described by E*.

Such a contribution would not be expected to be

influenced by grating washout effects. In general, howev-
‘er, as we show below, the preceding physical interpreta-
tions of the two components of Eq. (1) are not correct,
the effects of motion cannot be described so simply and
an expression more general than Eq. (1) must be em-
ployed to describe the nonlinear interaction.

II. NONLINEAR POLARIZATION

A General expressxon '

Most generally, the nonlinear polarization at frequency
o produced by an optical field of the form (2) can be
represented as

o

P=P,c""+P,e "““P s +P,, ' , 3)
. R T

where P ¢ is given by the expresswn
Pf—al(Ef Ef)Ef+az(Eb EZ)E}"*‘G:;(EJ‘ Eb )Eb
+1b,(E;-E/)ES+by(Ey-EL)Ef @

and where P, is given by an analogous expression ob-
tained by interchanging subscripts f-and b everywhere.
The factor of § is included in the fourth but not the fifth
terms in Eq. (4) for later convenience. The form of Eq.
{4) follows from the fact that the five displayed terms are
the only third-order combinations of the vectors E 7+ Ef,
E,, E} that represent a response having frequency o (.e.,
containing a positive-frequency field amplitude twice and
the complex conjugate of a positive-frequency field ampli-
tude once) and having wave vector k.

In the limit in which grating washout effects are negli-
gible, the predictions of the formalism [Egs. (3) and (4)]

must reduce to those of the standard expression (1) with

E given by expression (2). From this requirement we
deduce that in the absence of grating washout effects the
coefficients in our expression are related to those of the
standard form (1) by

a,=a,=as;=a, b,=b,=b. ‘ (5)

Of course, in general the five coefficients a,, a,, a3, by,
and b, are expected to be distinct and their values must
be determined either by experiment or by explicit calcula-
tion involving consideration of the physical mechanism

: leadmg to a nonlinear response and to the effects of atom-
ic motion.

B. Relation with the components
of the third-order nonlinear susceptibility tensor

From a formal point of view, the coefficients a,, a,, a;,
by, and b, can be related to the components of a general-
ized. nonlinear susceptibility tensor defined so as to de-
pend functionally upon both the frequencies and wave
vectors of the interacting waves. This tensor is defined
such that the frequency and wave-vector-dependent po-
larization is related to the frequency and wave-vector-
dependent electric-field amplitude according to
P,-(a),k)= 2 z Xijkl(m’k;mmkmiwnkn’woko)

Jrk, I m,n,0

X Ej(@pkp Er(0,k, )E/(0,k,) , (6)

where it is to be understood that in performing the sum-
mation over m, n, and o only those terms are to be re-
tained for which w=w,, +o, +o, and k=k, +k, +k,.
Let us now determine the independent components of
this tensor that are needed to describe the nonlinear in-
teraction shown in Fig 1(a). We first note that even with
the frequencies (@,,,,,, ) arbitrarily taken in the order
(w,m, —w), there are still three ways in which the wave
vectors can sum to k £ namely,

kf=kb +kf_kb . (7)
Each of these three wave-vector orderings can occur with

each of the three independent Cartesian components of
the susceptibility tensor, namely,

X1212 » X221 - (8)

However, because the nonlinear susceptlblhty must pos-
sess intrinsic permutation symmetry, not all nine of these

X1122 »

- quantities are independent. For example, it is clear that

Xun(oks; ok, 0k,, —0o—k,) must be equal to
X1212{ 0k s; 0k, 0k r, —0—k, ) since these two quantities
are related by the interchange of dummy variables, name-
ly, the simultaneous interchange of the Cartesian indices,
frequencies, and wave vectors of the second and third
fields. By applying such arguments systematically, one
finds that there are in fact five independent components
of the susceptibility [they are listed in Eq. (9) below]. Fi-
nally, these susceptibility components are related to the
parameters ‘appearing in Eq. (4) by requiring that
P(w,k;) of Eq. (6) must equal P, of Eq. (4). We thereby
find that

a; =6 1n(0ks0ks, 0k, —0—k/)
=6x stk 0k, 0k, —0—k,)
a,=6) 11wk 0k, 0k, —w—k,)
=6X 12120k s 0k, 0k p, —0—k, ), -
as =_6X1122(wkf;(ukb,wkf,—co—kb)
=6X1a1(0k 0k, 0k, —0—k,) ,
by =6x 1 0ky;0ks, 0k, —0—kf),
by =6x 19 (wky;0ks, 0k, —0—k,;)

=6Y 1201 (0k 30k, 0k, —o —k,).
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Equation (9) establishes the relation between the parame-
ters a; and b; that appear in Eq. (4) and the components
of the nonlinear optical susceptibility tensor.

The form of expression (4) shows that in general five
parameters are needed to describe the nonlinear polariza-
tion induced in a nonlinear medium by counterpropagat-
ing waves. Under special circumstances, not all five of
these parameters are independent. For example, when
grating washout effects are unimportant, as in the case of
highly nonresonant electromc nonlinearities, only two of
these parameters are independent. Moreover, Saikan [3]
has shown that the near-resonant electronic response of a
Doppler-broadened atomic transition connecting two ex-
cited levels (within the Lamb model) can be described by
three independent components of the nonlinear optical
susceptibility. o

C. Effective linear susceptibility

For computational convenience, it is often useful to be
able to describe the nonlinear polarization in terms of an
effective linear susceptibility. For example, the nonlinear
polarization influencing the forward-going wave can be
represented as

Z(XEO)EfJ +X(2k)Ebj) , : ' (10)

where x{?' describes the spatially uniform part of the’

effective llnear susceptibility and where X‘Jzk) describes the
part of the effective linear susceptibility associated with a
spatial dependence of exp(2ikz).

We find that Eq. (10) leads to prediction identical to

those of Eq. (4) if these two quantities are equal to

N :
9= {01-_2- (Ef'E})+(a2—b2)(Eb'E§) 8y
by o, E* 11
t S EnEf+ELER) (112)
and
X '=a3(B - B3)8; +by(EES+ELES) . (11b)

Note, however, that the decomposition of Pft into the
two terms shown_in Eq. (10) is not unique and in fact the

value of Py, is left unchanged if the expresswns for X(O)
and )((2") are modified according to
Xﬁ;” X‘ +c(Ey-B} )8y (12a)
X3H >y —cELEY , (12b)

where c is any complex number.

Even though there is no unique form for the quantities
x and x?* of Eq. (10), there may be particular forms for
these quantities which more naturally reflect the Pphysical
meaning of these quantltzes For example, one may re-
quire that the expression of ; j ), which describes the spa-
tially uniform part of the susceptibility, be independent of

grating washout coefficients [4].

1II, OPTICAL PUMPING NONLINEARITIES

In the remainder of the present paper, we present a
theoret :al treatment of the tensor properties of the
third-or "er nonlinear optical response of an atomic vapor
resulting from optical pumping (i.e., caused by the redis-
tribution of population among the Zeeman sublevels of
the ground state induced by the incident beams). We
chose to study this type of nonlinearity both because it
can lead to a very large nonlinear optical response and
because it is strongly influenced by grating washout
effects. Both of these properties result from the fact that
the response times for optical pumping tend to be quite
long (microseconds to milliseconds). Optical pumping
nonlinearities are known to lead to optical phase conjuga-
tion with high reflectivity [5], to bistability [6], instabili-
ties, and chaos [7] in interacting laser beams. While there
have been previous treatments that deal with the tensor
properties of optical pumping nonlinearities in special
cases [8], our treatment generalizes this previous work by
allowing the upper and lower electronic levels to possess
arbitrary angular momentum quantum numbers (J) and
by considering counterpropagating beams. Our approach
also differs from Saikan’s theory [3] because we discuss
the case of a closed system where the lower state is the
ground state while Saikan considers an open system
where the lower state is an excited state. Furthermore,
___while the model of Saikan describes optical pumping due
to absorption (Dehmelt-type optical pumping), our ap-
proach includes both absorption and transfer of excited-
state observables by spontaneous emission (Kastler-type
optical pumping).

A. Components of the nonlinear polarization

The details of the calculations are presented in the Ap-
pendix. Here we simply quote the results. We find that
the amplitude of the nonlinear polarization. influencing
the forward-going wave is given by an expression having
the form of Eq. (4) with

@ =(~$xi+4))

i a3=_'§‘(X§_X§) ’
biy=(+x3), (13)
by=3(xi+x3),

where Y] and x{ respectively correspond to the nonlinear
response resulting from the induced magnetization of the
ground-state orientation by the field E, (self-action) and
the field E, (cross action). Similarly x5 and x§ describe
the nonlinear response resulting from the induced quad-
rupole moment of the ground state (alignment) due to the
forward and backward fields, respectively.



A better insight into the tensorial properties of the po-
larization P, can be obtained by writing Eq. (4) as
xi

xi 1

sl
3

X
2

+ 2 BB+ 2B (BeE,), ()

where we have set A-(BxC)=(A-B)C+(A-C)B.

B. Defailed expression of the four optical pumping pogﬂiéients
The coefficients ¥}, X5, ¥, and X5 are given by
X;=g;F38), | (15a)
Xi=g,F8),

with

et

By(Jp,J)=(—1V*1 | B,(J,,d)+(— 1) e(2r, +1)

where J, and J, represent the angular momentum quan-
tum numbers of the ground and excited states, respective-
ly, and { } represents the 6 symbol. In Table I, the quan-
tity C;=B;B; is listed for several different values of J,
and J,. .

In formulas (15d) and (15¢) W(v,) describes the nor-
malized velocity distribution. If we assume a Maxwell-
Boltzmann distribution

TABLE 1. C, =B, B, coefficients versus angulér momenta of
the ground (J, ) and excited (J, ) levels.
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 (15b)

Transition C, C,
CJg=g—d =1 % 0

R=ior=3 =k 0
Jg=1-J,=0 i -3
Jy=1-J,=1 L —o -
J=1—J,=2 -4 .
J,=2—J,=1 + — Ak
Jy=2-J,=2 s —
Jg=2—J,=3 -5 gy
Jy=3—J,=2 o ‘—%Vla—:ﬁ
Jy=3—J,=3 —
o 2756896 V5630856
Jy=3—J,=4 —— ' :
£ V'56 X896 7 V56 X43904

1329
ND* 1 T _ —
g =————F———B.B,, (15¢)
j # 2, +1y, ) ‘1 \
Fo8)= [ dv, Wv,) - L , -

2

I
(S_kvz)z_l__l_};_ (8—-kuz)+z?

(15d)
1 1

C —_ .
Fe(8) fdu,W(v,M o on
(8+kvz) +T z 2

(15e)

Here N is the number density of atoms, D is the reduced
matrix element of the dipole moment operator defined by
Eq. (A9) of the Appendix, T is the spontaneous emission
population decay rate of the upper level. y, is the relaxa-
tion rate of atomic magnetization, ¥, (which is often ap-
proximately equal to y;) is the relaxation rate of the
ground-state quadrupole moment, and §=w—=w, is the
detuning from resonance. The quantities B ; and B_j are
given by the expressions

L 11 j
PRV E S0 A8 X J
. B, )=(—1) £ [Jg J, Je} (16a)
and
Jo i
J, 1 B;(J.,Jg) | s (16b)
[
Wiv,)=— v 17
v, = exP " 17

with u =1/2kz T /m , two limits are of particular interest
depending on the relative values of the Doppler width ku
and of the detuning § =w—w,,.

(i) Detuning larger than the Doppler width (}8| >>ku ).
In this limit, formulas (15d) and (15e¢) yield

s — 4 —~ 1 .
FO(8)=F¢ ’(6)~33— ) (18)

It can also be noticed that the effect are purely dispersive
. in this range of detunings. Note also that even in this

domain where P, only depends on two parameters (be-
cause X;=Xj), there is no possibility to write P s in a
form similar to Eq. (1) because the relation (5) is not
satisfied. o : -

_ (ii) Detuning smaller than the Doppler width
(|8] <<ku). In this limit a contour integration in the
‘complex plane gives 7

2V
F(s) S =T ] 1
S ( ) . l"z(ku) ( 9a)
Fs) = T : (19b)
e T(ka) 6+i§]
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The cross term thus displays a resonance for § =0 while
the self-term remains constant for detuning smaller than
the Doppler width. Note also that the effect is now
mostly absorptive.

The range of validity of the present approach is limited
by the condition s <<7; /T’ <<1 where s is the saturation
parameter [s=DXI, +Ib )/#H8*+T2/4)].

We also assume I'/ku <<1 so that almost complete
grating washout is achieved. When the grating induced
by the counterpropagating beams is not completely des-
troyed by atomic motion, additional terms proportional
to grating washout factors 7; should be added. The
coefficients 7; are on the order of y; /ku. In most cases,
they are very small ( <1073) and can be replace by 0. In
fact, we neglect also in the calculation terms arising from
saturation of electronic nonlinearities (or from light-shift
effects) that are smaller than the optical pumping non-
linearities (by a factor on the order of y, /T') but general-
ly larger than the product of these optical pumping non-
linearities by 7;.

C. Effective linear susceptibility

We have shown in Sec. II C that the form for the quan-
tities x}Y’ and x*) of Eq. (10) is not unique. Nevertheless
there exmts certain forms for these quantities which are
more natural. For example, for optical nonlinearities re-
sulting from optical pumping, these quantities can be ex-
pressed as

X3

Xi
Xf?)“_‘—‘[EfiEf; EpEf)+ S ERE,; +ERE]

X3 Xi

X; * * X; %
+~2_[EblEb] +EblEb1]_?(Eb’Eb )8,] (20)

and

=0 o

This last equation should be understood as a r;atural
consequence of the complete destruction of the short-
period grating by atomic motion.’

ae

IV. APPLICATIONS

We now present applications of the preceding formal-
ism to several interesting physical problems: self- and in-
duced focusing, phase-conjugate and phase-contrast mir-
rors, and optical instabilities.

A. Counterpropagating beams

We begin by considering two counterpropagating
beams E; and E,. For the principal polarizations con-
sidered below (beams linearly polarized along the x or y
direction or having a circular polarization o™ or ¢7),
the atomic polarization P, and the forward wave E,
have the same polarization. The amplitude P, can be ex-
panded into two components proportional to lEfl E;

and |E,|?E; whose coefficients depend on the beam po-
larization. The values of these coefficients are given in
Table II in terms of the five coefficients a; and b; intro-
duced in Eq. (4). For the case of optical pumping non-
linearities, analogous results are obtained in terms of the
quantities ¥; and X in Table III. The first column of
Tables IT and ITI describes self-action of a traveling wave
whereas the second column describes the effect induced
by the counterpropagating wave.

We first consider self-action of a linearly polarized
wave. The only optical pumping coefficient relevant for
this discussion is Y3 as can be seen in Table III. This re-
sult originates from the fact that a linearly polarized
beam creates only alignment in the lower level. The
beam will experience self-defocusing when Y3 <0 and
self-focusing when x3>0. According to Egs. (15a) and
(18), the sign of y, for large |8] is determined by the signs
of & (detuning) and C, =B, B,. Table I shows that C, is
negative for J, —J, and J, —J, —1 transitions whereas it
is positive for J,—J, +1 transitions. We deduce from
this result that optical pumping nonlinearities tend to in-
duce self-defocusing below resonance for J,—J, and
Jy—J,—1 transitions while it induces self-focusing for
Jg —»Jg + 1 transitions. We note that in this last case, the
effect of optical pumping is opposite to the well-known
effect of atomic saturation which leads to self-defocusing
below resonance. To understand this point, we can, for
example, consider the J,=1-—J, =2 transition (Fig. 2)
and a m-polarized beam. Optical pumping tends to cause
more atoms to accumulate in the m =0 Zeeman sublevel
than in the m =1 sublevels. This leads to a larger value
of the susceptibility because the Clebsch-Gordan
coefficient connecting the m =0 sublevels is larger than
the Clebsch-Gordan coefficients for m,=—1—-m,=—1
and mg= 1—sm,=1 transitions.

We now cons1der self-action in the case of a circularly
polarized beam. Because circular polarization generally
creates both orientation yj and alignment Y3, the condi-
tion for self-focusing or self-defocusing depends upon
some combination of these quantities (see Table III).
Here again, optigal pumping can have the same effect or
an effect opposite to that of atomic saturation. For exam-
ple, we discuss the simple case of transitions starting

from J,=%- (for which x3=0). In the case of
Jy=3—J. =7 transitions, optical pumping and atomic

saturation both tend to induce self-defocusing below reso-
nance while for a J,=1—J,=3 transition, optical
pumping and atomic saturation have opposite effects. If

TABLE II. Expansion of the forward polarization P, into
two terms, respectively proportional to |E/|’E; and |E,|’E/,
for various polarizations e, and e,. Proportionality coefficients
are given in terms of the coefficients @y, a,, a 3 by, and b,.

Coeﬁiment of P |Ef2E; IEblef
Pxx _Pyy a1+-7‘:b, a2+a3+b2
P,=P, a;++1b, a,

,P++ =P__ . a, az+a3
P+_ =P_+ a; a2+b2
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TABLE III. Expansion of the forward polarization Py, into
two terms, respectively proportional to |E,|2E; and to |E,|E,
for different polarizations e; and e, Proportionality
coefficients are given in terms of the coefficients y3, ¥$, x5, and

5.

Coefficient of be ]EfIZEf |Eb|2Ef
Py 3 X

ny %XI - _;‘X; R
Pes bivbs  —hitim
2 “hitha bt

optical pumping is the dominant nonlinear effect one
should in this case observe self-focusing below resonance
and self-defocusing above.

We now study the case of induced focuszng caused by
an intense counterpropagatmg beam. In the hmlt
(Ef <<E,) and assuming similar transverse dlmensmns
for the two beams, the focusmg of E Y will be determined
by the coefficients of the second column of Tables II and
III. From the relative signs of the cocﬁiaents of |E, |2E 5
in the two first lines of Table III, we 1mmed1ately de-
duced that the effect induced by an x-polarized beam is
just opposite to the effect induced by a y-polarized beam.
If an x-polarized beam induces focusing, a y-polarized
beam induces defocusing and vice versa. Similar effects
occur for circular polarlzatlon For example, for transi-
txons starting from J (where X5=0), one can sthch
from induced focusmg to mduced defocusing by changmg
the polarization o, of the counterpropagating beam into
its opposite o _ (see third and four lines of column 2 of
Table III).

B. Four-wave-mlxing geometry

We naw consxder four-wave _mixing mteractlons We
introduce a probe beam E, whose direction of propaga-
tion makes a small angle 6 with respect to the direction
of propagation of the forward beam [Fig. 1(b)]. The
beam propagating in the +z dlrectlon can then be writ-

ten as i
[Ef+E, exp(zK r ]exp(zkf r)

where K lies in a plane orthogonal to k £ The magmtude
of K=k@ is assumed to be sufficiently small that any re-
sidual Doppler effect due to atomic motion in the xy

FIG. 2. Scheme of the atomic levels and Clebsch—Gordan
coefficients for a J; =1—J, =2 transition.

plane can be neglected. The interaction of the fields E 1
E,, and E in the nonlinear medium induces the genera-
tion of a conjugate beam E, [9] so that the field propaga-
ting in the —z direction can be written as

[Eb +E exp(-—zK r)]exp(zk,, ).

" The amphtudes E and E, of the new fields are as-
sumed to be much’ smaller than the amplitudes of the
pump fields E, and E,. The following calculation will
thus be limited to first order in E, and E.. The terms

.- that involve only the fields E, and E, are identical to

those shown in Tables II and III We now consider the
new terms which can be separated into five components
(Tables IV and V). First there are terms proportional to
|E;|’E, and |E, |2E, which describe the influence of the
forward pump beam and of the backward pump beam on
the nonlinear index of the probe field. We see that the
influence of the backward pump on the probe is identical
to the effect of the backward pump on the forward pump
(see Tables II and III) as expected. Terms such as
|E;|’E, are interesting for several problems. For exam-
ple, such terms describe induced focusing and show that
the effect of a copropagating beam may be different from
the effect of a counterpropagating beam. Consider, for ex-
ample, a probe beam polarized along the y direction and
a pump beam polarized along the x direction. If the
pump beam is counterpropagating, the relevant parame-
ter is —yx3/3 while the corresponding parameter is
—X1/2+x3/6 for a copropagating beam (see Table V,
line 2, columns 1 and 2). In particular, for a transition
starting from a J, =1 ground state (y;=x5=0), a coun-
terpropagating beam will have no effect while some in-
duced effect is expected from a copropagating beam. The
fact that a xj coefficient appears for linear polarizations
arises from the fact that by combining E, and E, with
linear orthogonal polarizations, one obtams a field whose
polarization has somie circular component (a similar re-
sult occurs with E, and E,, but the resulting atomic po-
larization is vamshmg]y small because of grating
washout). A similar discussion can be made for circular-
ly polarized beams (see Table V, line 6, columns 1 and 2).

Another use of the first column of Table V is that it
permits one to determine when the forward four-wave-
mixing emission may be phase matched. Following [10],
one can show that, because of the difference between the
nonlinear indices of the pump and the probe, the forward
four-wave-mixing emission can be phase matched for a

.. value of 8 that satisfies

NN L

A+, /20c080=(14x;/2), (22)

where X, and Y, are the effective susceptibilities of the
probe and forward pump. For small 8, Eq. (22) yields

=(x,—Xs) - (23)

Phase matching is thus possible only on the side of the
resonance for which (x,—x,) is positive. The value of

(Xp—Xy) is deduced from the first column of Tables V

and III and is reported in Table VI. The polarization of
the probe field is essential for this process and completely
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TABLE IV. Expansion of the forward polarization Py, to first order in weak fields E, and E, for
different field polarizations ¢, €, ¢,, and ¢,. Proportionality coefficients versus a, @, a3, by, and b,.

Coefficient of Py, |EF|’E, |Ey|’E, E/E,EX _E}E} E/EfE.
Pxxxx 2a1+b1 a2+(13+b2 é2+é3+b2 a,+-;-b1 a2+a3+b2
Pxxyy a; . a2» b2 ';—bl as
nyxy 201+b1' a; a, a,+%b1 a;
nyyx B a, ) a2+(13 +b2 as ';'bl b2
Piias C: . 2a atas a,+a; a; a+ta;
_P++_._ [ ,,‘ ,-,a,1+b1 a2+b2 0 0 a3+b2
Py _4_ - 2a, a,+b, az+b2 7 a; a,+b,
P+__+ a2+a3_ a3+b2 0 0

a;+b,

different results are expected for a y- and an x-polarized
probe. For example, for a transition starting from a
Jy =+ ground state (x3=0), phase matching in a direc-
tion 670 can only be achieved for a probe beam cross po-
larized with the pump beam. The side of the resonance
for which this effect occurs depends on the sign of 3}
which implies, using Table I, that the emission will be
phase matched above resonance for a J,=;—J, =1
transition and below resonance for a J =17, =1 tran-
sition (provided that optical pumping is the dominant
nonlinear effect).

The third column of Tables IV and V gives the com-
ponent of the atomic polarization that generates the
phase-conjugate beam E,. To maximize optical phase
conjugation, one needs to have a coefficient whose magni-
tude is as large as possible. Because most coefficients are
linear combination of x{ and x3, it is not possible to give
general rules valid for any transition and one should cal-
culate the x§ using Egs. (15) for each transition under
consideration. However, by comparing the first and the
third lines of Table V, it is possible to show that the
phase-conjugate reflection will be larger by a factor 4
when the counterpropagating beams have the same linear
polarization in comparison with the situation where they
have orthogonal polarizations, the probe beam having al-
ways the same polarization as the forward pump. We
note also that, because of angular momentum conserva-
tion, phase conjugation is not possible for one
configuration of polarization. Note that a complete

description of optical pumping effects in optical phase
conjugation has been reported by Ducloy and Bloch [11].
Column 4 of Tables IV and V gives the components of
the atomic polarization that drives forward four-wave-
mixing generation. Column 5 of these same tables gives
the components of the atomic polarization that generates
another four-wave-mixing process sometimes named dis-

. tributed feedback. This contribution appears, for exam-

ple, in the realization of the phase-contrast mirror [12].
For this problem, the interference between the phase-
conjugate emission and the distributed feedback emission
that propagate in almost the same direction transform
the phase variations of a weak incident field into ampli-
tude variations in the reflected field. A good phase-
contrast mirror should fulfill several constraints. First,
the phase-conjugate emission and the distributed feed-
back emission should have the same polarization and this
polarization has to be orthogonal to the pump polariza-
tion to separate easily the reflected beam from the
transmitted pump. Second, the phase-conjugate emission
and the distributed feedback emission should have similar
magnitudes to have the maximum contrast on the
reflected beam. The first constraint implies that the only
possible situation is described by line 2 of Tables IV and
V. In this situation, the coefficients for phase conjugation
and distributed feedback generations are, respectively,
equal to {x§/2+x5/2) and (—x5/2+x5/2). A perfect
contrast can only be obtained when x{=0 or y5=0. The
second possibility (¥5=0) is automatically achieved for a

TABLE V. Expansion of the forward polarization Py, to first order in weak fields E, and E, for
different field polarizations e, ¢;, ¢,, and e.. Proportionality coefficients versus x{, x3, x§, andy3.

Coefficient of Py, |E/|’E, |E, |’E, E/E,E} E}EP*A EE}E,

- Prcxr 6 R 3 o i '
Py -t 36 X+ 38 i+ 506 —aXi+ 3
Pyysy %X; _%X 3 —%-Xﬁ %’Xi "“;‘Xg
Py —3xitixs =it xiting xi+ixs
Piigs _X’H‘é-)(i _‘;'X?'l'z}')(; _%XH‘%XS _%:XH'%X'; "%‘X‘H‘%‘Xﬁ

Pl WiHe it o 0 X%

Pyos- —xitia bdthe bdtha —hdthd fxitie

- %X'{“'%X; —%x€+-}x§ X5 0 0




TABLE VI. Difference (Y, —X,) between the effective sus-
ceptibilities of the probe E, and forward pump E; for different
polarizations ¢, and e;.

(Xo—Xxs)

p=x,f=x = $x
p=y.f=x — (=3
p=+,f=+ —i+ (s

transition starting from a J, = level. This was actually
the experimental conditions of [12]. ‘

Finally, we remark that the coefficients of Tables II
and ITI, on one hand, and Tables IV and V, on the other
hand, are useful to predict the characteristics of polariza-
tion instability and transverse instability [6] for a standing
wave in a nonlinear medium. For example, it can be seen
that when all beams have the same polarization and for
|8] >>ku, all coefficients are equal, expect for the
coefficient of |Ef[2E which is twice the others. This
shows that the equations used to determine the threshold
in this configuration will be the same as the one used for
a scalar Kerr medium assuming a total grating washout
[13]. The predictions (instability threshold versus 0, etc.)
can thus be directly deduced from these preceding ap-
proaches.

V. CONCLUSION

We have studied the third-order nonlinear response of
an atomic vapor interacting with counterpropagating
beams. We have shown that the formal expression of the
third-order nonlinear polarization resulting from optical
pumping is very different from what is expected from a
crude extension of Ref. [1]. This demonstrates that the

effect of atomic motion can be important and that its

description requires considerable care.

We believe that the expression of the thlrd order non-
linear polarization glven in the present paper is more reli-
able than the expressions previously used for problems
dealing with counterpropagating beams in atomic vapors.
However, the present description has still some limita-
tions. First, it often occurs that the effective lifetime of
the atomic ground state is associated with transit-time
effects through the laser beam. Even though these effects
are often described by an empirical relaxation rate y, it
should be remembered that transit time effects generally
do not lead to Lorentzian line shapes. Second, it is well
known that even moderate cw laser beams are sufficient
to fully saturate an atomic transition. In this case, the
description presented in this paper is inappropriate and a
nonperturbative approach should be used.
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APPENDIX

The polarization P(r,t) is obtained by averaging the
atomic polarization of an atom located at r at time ¢ hav-
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ing velocity v, P(r,v,t), over the velocity distribution:
P(r,t)=N [ W(v)P(r,v,0)d . (A1)

N is the atomic density and W(v) is the Maxwell-
Boltzmann distribution.

P(r,v,?) is equal to the mean value of the electric di-
pole moment operator d

U PB(r,v,0)=Tro(r,v,)d=Tr{d 0 (r,v,N+H.c.] (A2)

with
04g(1,v,1)=P,0(r,,1)P, , (A3a)
d~=PgdpP,. (A3b)

o(r,v,t) is the density operator for an atom located at r
at time ¢ and having velocity v. P, and P, are the projec-
tors onto the ground and excited states, respectively,

mx = +J
P,="3 | mg ) {Jym,| , (Ada)
mg=—J,
2 IJm Yi.m,| . (A4b)
The atomic density oberator o can be written
0=0gt0,t0o,+0o,, (A4c)

with

o0=P,0P, (a,b=eorg).

Note that o, is an operator and not a ¢ number. The
two operators o, and o, are represented by square ma-
trices. Their diagonal elements give the populations of
the various Zeeman sublevels of g and e, whereas the off-
diagonal elements describe “Zeeman coherences” which
exist between them in e or g. Finally, o, and o, =0,
are represented by rectangular matrices consisting of off-
diagonal elements between one sublevel of e and one sub-
level of g, which are called “optical coherences.”

The polarization P(r,v,?) depends on the off-diagonal
elements of 0. We now briefly explain how it is possible
to derive equations of motion for o. The basic equations
of motion, which generalize the Bloch equations [14], can
be written in operator form

d i
'&;Uabz—_Pa[HA-*_VAL’U]Pb'i"

7 »  (A5)

sp

T ab

4
dt
where H ,=#wyP, is the atomic Hamiltonian and ¥V ;
describes the atom-field interaction. The last term de-
scribes damping due to spontaneous emission. For a

moving atom one should use d/dt=09/9d¢t+v-(3/0r).
The expression of the interaction Hamiltonian ¥ ,; is

V,=—dt-E(r)e "‘”‘—d B*(r)eiet (A6)

Where E(r) is the positive- frequency component of the
laser field. In the case considered here in which two
counterpropagating beams interact with an atomic vapor,
E(r) is given by Eq. (2).
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We introduce dimensionless dlpole operators d% in the
following way. Let

ei_=,q:,$_2—(ex:tie,) , ep=e, (A7)

be & spherical basis of polarizations, corresponding re-

spectively to o4 and 7 polarization. The Wigner-Eckart-

theorem [15] applied to the vectorial operator d* gives

(J.m,le,-d*|Tym, )= D(J m, IJ 1mgq> (A3)
where (J,m,|J 1m,q) is a Clebsch Gordan coefficient
and D is some reduced matrix element which can always
be taken real with an appropriate choice of the relative
phases of e and g. D can be related to the oscillator
strength f,, using the following formula:

2mco°2J+1

2
TH 7JHD : (A9)

foe™

Weset d*=Dd" so that the matrix elements of e, dar
are just Clebsch-Gordan coefficients. We also mtroduce
the polarization vector €, and the mten51ty I f of ‘the for-
ward pump field E;:

E=e VI, (A10a)
and similarly for the backward field:
E,=e, V1, . (A10b)

The (generally complex) polarization vectors are nor-
malized. The Cartesian components of the field can be
expressed as a product of the field amplitude by the
Cartesian components of the polarlzatlon vector '

_ Ef‘=€fx’\/ff , Efyzefyﬁ ,
V/—b s By = Eby\/lb-

The last term of Eq. (A5) describes dampmg due to the
spontaneous. emission. For the excited-state density

({Xlla)
(Allb)

operator o, and for the optical coherences o,, and o,
it keeps the same form as for a two-level atom:

d d

e =—To,, , L ==L 0 » (A12)

where I' is the decay rate of the excited level due to spon-
taneous emission and I',,=I'/2. The feeding of O g
from o, by spontaneous ermssmn can be written as

d
41 o

With those formulas the transfer rate from e to g due
to spontaneous emission is equal to the departure rate
from e. Any atom which leaves the level e returns to lev-
el g. In the rotating frame [&,, =0 explint)], we get
the equation of motion: s

*da'ed+

=T(aee)=I‘ S erdo.e,

sp g=0,%1

(A13)

d ) _

Pl ~To,+ ﬁ[d+~E&g,~a‘egd -B*], (Al4a)

2 g =—(Tyy—i5) f+ 1" Boy—0, 47 B

dt eg —id)o,, [ gg Oee : ]!
(A14b)

d, d | -

?gg: Ea‘gg +Z[d ‘E*ﬁeg—ﬁged+°E] .

p

(Al40)

Very often other relaxation processes (due, for exam-
ple, to spin-exchange collisions or to wall collisions)
should be included to describe the evolution of the
ground state. The typical relaxation time of this process
y 7 !is assumed to be much longer than I'"!. In this pa-
per we consider the low saturation limit (s <<1) and we
call (I")™! the characteristic evolution time of O

~ caused by the interaction with the laser field. The pump-

ing rate I'' is of the order of sT" and is consequently much
smaller than I'. Furthermore we assume I"' to be smaller
than . In these conditions (which can be summarize by
the condition s <<y /T") we use a perturbative method to
third order in field amplitudes to calculate the nonlinear
polarization.

Using the notation o for the density matrix at the or-
der n of the perturbation expansxon, formula (A14b) per-
mits us to express mo'eg versus Yo, and Po,,. When
ku >>T >>y, the main contribution to “’aeg comes from
‘the two spatially independent components of ?o,: the
first one f0g results from optical pumping induced by the
forward beam and the second one 40, from optical
pumping induced by the backward beam. Since these
beams are monochromatic, the optical pumping is veloci-
ty selective [16].

Starting with Og Ogg =Py /(2J,+1) and using Egs.
(Al4a) and (A14b), one finds the density matrix of the
upper level to second order:

1 1 + - ‘
fU'e(Uz‘) 2J 1 1-\2 d 'Engd 'E; (Als)
with 8,=8—kv,. A similar expression is obtained for

50 .(v,) by exchangmg the subscripts f and b (5, bemg
defined as §, =6+ kv,).

The steady-state solution for 7O g is derived from Egs.
(A13), (A14c), and (A15):

fF (U)

fA s T(v)
ZJ +1

2J+12e

TiAe At

d

+ |50 (A16)

rel

with
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D

fr"(v)= .___L. y P NN (A17a)
2 |5+ L
I 4
A =d"exPdT ¢, (A17b)
A =d% P d7 €} (A17¢)

\

The first term of (A16) describes absorption. The second
one corresponds to repopulation of the ground state from
the excited state by spontaneous emission. The third
term describes the relaxation of the ground state. Equa-
tion (A16) is solved by projecting (o, and (A, (a=g,e)
on an irreducible tensorial set basxs [17], the components
of (A, and ;A, being [18]

Paa

ng;’=(—1)’<B,C(.rg,1ie )b es) (A18a)

FAL=B (1,7, )8 e, ) (A18b)

where By (J,,J,) is given by Eq. (16a) and ¢”‘) (€) is equal
to [18]

$ )= 3 (=1 lata_,(1ipp'lkg)  (A19)

p=0,%1 .
with a_, =(—1)e-e,.
One then obtains (for k 2 1)
(k) 1y — k

Yisos, (W)= (2J +1)Bk< T er) (A20)

where y, is the relaxation rate of the multipolar operator
of rank [for an 1sotrop1c relaxation, the rates depend only
of k and B, is given by Eq. (A16b)]. To write Eq. (A20)
we assume that the velocity-changing collisions fully des-
troy the anisotropic observables. If a partial conservation
of the anisotropic observables occurs during the
velocity-changing collisions it is necessary to add a term
proportional to the rate of transfer of this observable be-
tween different velocity groups [19].

The qS”" coefficients can be expressed as a function of
the Cartesmn components of €, [18]. Because the beams

(1) 4(2) (2)

propagate along the z axis only ¢ 12 and ¢y’ are
different from zero:

$=V2Im(ek e, , (A21a)
¢$h=1leg P —leplM )£ (efxefy+€fxefy) (A21b)
W= - : e (A2]0)

From (A20) and (A21), we obtain

1335
r D? 1 =
(1) — 1
fG'gO_YI ;"2 I;‘2 2J8+1B1‘/_2_ ImE;foy s
oty
) -~ (A22a)
- 5
o5 - > 27 l+1 22
Y2 ﬁz 82 I‘Z 4
4
([E,,yl2 |Efx|2:i:21 ReELEp)],  (A22b)
r D* 1 B,
2)— 2t - —7I.. 22
fo'go 72 1-\2 2J +1 ‘\/_éIf (A C)
# |83+ 2

The components ba k) of 50g ‘are given by exchanging the
subscripts f and b everywhere in Egs. (A22).
From the knowledge of {»a and ;0,, one can deduce

the optical coherence o, usmg Eq (A14b) and
P(r,v,?) using Eq. (A2)
B d+-Ef oikz ]
P(r,v,t)=—e ~ioTr| |4 # T
8/"*‘17
at-E ~ikz
+d” | — "] € -

X[rop+,0,] +H.c. (A23)

Finally, the Cartesian component P; is determined from
Egs. (3), (A1), and (A23)

ND2 w
Pu=—73 f (U

Tr(d; d;")
. X[j-'b'x(v)'i‘bgg(v)] Efj . (A24)

To calculate the mean value of d d , it is convenient
to expand these operators on the 1rredu01ble set basis T"

ara; =76[321‘{,2’+VEBOT(°’]—%BZ[T‘22’ +712,1],

(A25a)
~ 1
d, @+=76[BZT%+\/_ZBOT‘°)]+%B2[T§+T2_2] ,
(A25b)
+ B 2
- d;d}=i —TTO+———(T T2, |, (A25¢)
d;dr=d;dhHt, (A25d)
where B, =B, (J,,J,) is given by Eq. (16a). Using
Tr{Ty 0, }=(—1)7 0, (i=fb), (A26)

and Eqgs. (A22) and (A24), one finds the values given by
Egs. (20) and (21) for xw) and X(2k).
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