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We study numerically all-optical slow-light delays in room-temperature single-mode optical fibers induced by
stimulated Brillouin scattering. We consider the propagation of a pulse through a cw-pumped Brillouin fiber
amplifier, where the carrier frequency of the pulse is tuned near the Stokes resonance. Pulse delay and broad-
ening of the Stokes pulse are studied in the small-signal and gain-saturation regimes. Pulse delay is shown to
be limited by saturation of the Brillouin amplifier. In the small-signal regime, both time delay and pulse broad-
ening increase with increasing gain. In the gain-saturation regime, both time delay and broadening decrease
with increasing gain, and the pulse even achieves advancement. Time delay of more than one pulse-width is
observed with modest pulse distortion, and over one pulse-width advancement can be obtained with larger
pulse distortion in the gain-saturation regime. © 2005 Optical Society of America
OCIS codes: 290.5900, 060.2430, 190.5890, 190.5530.
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. INTRODUCTION
here has been a great deal of recent interest in slow

ight, where the group velocity vg of a pulse is much less
han the speed of light in vacuum c. Slow light can be
chieved, for example, using the large normal dispersion
ssociated with a resonance of a material system.1 Early
low-light research usually has used electromagnetically
nduced transparency2–4 or coherent population
scillations,5,6 in which a narrow transparency window is
reated within an absorbing resonance by an intense cou-
ling laser field.
Slow light is also possible using the dispersion associ-

ted with a laser-induced amplifying resonance such as
hat arising from stimulated Raman scattering (SRS)7,8

nd stimulated Brillouin scattering (SBS). Recently Lee
nd Lawandy7 demonstrated pulse delay in a
a�NO3�2-crystal-based Raman amplifier, and more re-
ently Okawachi et al.9 and Song et al.10 independently
emonstrated slow light in an optical fiber SBS amplifier.
ne advantage of using an amplifying resonance due to

timulated scattering is that the resonance can be created
t any wavelength through a simple change of the pump
avelength. The use of a single-mode optical fiber as the
edium for SRS or SBS may offer additional advantages,
0740-3224/05/112378-7/$15.00 © 2
uch as a low pump-power requirement owing to long in-
eraction lengths and small mode areas, compatibility of
he device with existing telecommunication systems, and
oom-temperature operation. Controllable slow light can
e used in such applications as optical buffering, variable
rue time delay, and optical information processing. The
low-light technique based on SBS or SRS in optical fibers
epresents an important step toward implementing slow-
ight techniques for various applications.

In this paper, we analyze both analytically and numeri-
ally the slow-light effect due to SBS in single-mode opti-
al fibers. The analysis shows that a large relative pulse
elay of the Stokes pulse propagating through a SBS fiber
mplifier can be achieved. Our results also show that
ulse advancement (superluminal pulse propagation) can
e achieved in the gain-saturation regime. This analysis
omplements and extends the recent experimental dem-
nstrations of optically controllable pulse delays in optical
ber SBS amplifiers that were operated in the small-
ignal regime.9,10

This paper is organized as follows. Section 2 briefly de-
cribes the numerical model used in this study and ex-
lains the mechanism of slow light by SBS through small-
ignal linear analysis. In Section 3 we present the
005 Optical Society of America
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umerical results, including pulse delay and pulse broad-
ning of Stokes pulses in both small-signal and gain-
aturation regimes. The implications of the results are
iscussed in Section 4, and conclusions are offered in Sec-
ion 5.

. NUMERICAL MODEL
e consider a Brillouin fiber amplifier where the pump-

ng laser beam counterpropagates through the fiber with
espect to the Stokes pulse. The SBS process can be de-
cribed by one-dimensional coupled wave equations in-
olving a backward pump wave (−z direction), a forward
tokes wave (+z direction), and a backward acoustic
ave. Under the slowly varying envelope approximation

SVEA), the three-wave coupled wave equations are writ-
en as11–13

−
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+
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ere Ep , Es, and � are the field amplitudes of the pump
ave, the Stokes wave, and the acoustic wave, respec-

ively; nfg is the group index of the fiber mode; � is the
oss coefficient of the fiber; �B /2� is the bandwidth
FWHM) of the Brillouin resonance, ��= ��p0−�B�−�s0
�0−�s0 is the detuning from the SBS gain line-center
0;�B is the SBS frequency shift; �p0��s0� is the center
ngular frequency of the pump (Stokes) wave; g1
	e
0�B / �4va

2�; g2=�p0	e / �4cnf�0�; �= 1
2c
0nf; 	e is the

lectrostriction coefficient of the fiber; 
0 is the vacuum
ermittivity; va is the speed of the acoustic wave; nf is the
odal index of the fiber mode; and �0 is the material den-

ity. In writing Eqs. (1a)–(1c), we have normalized Ep and
s such that �Ep�2 and �Es�2 are the optical intensity of the
ump and Stokes waves, respectively.
For a sufficiently weak Stokes field, the cw pump is un-

epleted, and Eqs. (1a)–(1c) can be simplified as
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here we have neglected the fiber loss (i.e., �=0). Trans-
orming Eqs. (2a) and (2b) into the frequency domain,
ne obtains
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here Ẽs��̃*� is the Fourier transform of Es��*�. Substitut-
ng �̃* from Eq. (3b) to Eq. (3a) yields

�Ẽs

�z
= i�� − �s0�

nfg

c
Ẽs +

1
2g0Ip

1 − i2��/�B
Ẽs, �4�

here g0=4g1g2 / ���B� is the line-center gain factor, ��
�−�p0+�B, and Ip is the pump intensity.
By comparing Eq. (4) with the general SVEA wave

quation in the frequency domain for a Stokes pulse
ropagating in +z direction, i.e., �Ẽs /�z= i�ks���
ks��s0�	Ẽs, we find the equivalent wave vector for the
tokes wave

ks��� = nf

�

c
− i

1
2g0Ip

1 − i2��/�B



�

c
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rom Eq. (5), it is seen that the effective complex index
or the Stokes wave is given by

ñs = nf − i
c

2�

g0Ip

1 − i2��/�B
. �6�

From Eq. (6), it is seen that the Stokes wave experi-
nces gain and dispersion in the form of a Lorentzian-
haped resonance that is induced by the pump beam via
he SBS process. The gain coefficient gs=−2�� /c�Im�ñs�,
efractive index ns=Re�ñs�, and group index ng=ns
��dns /d�� are given by

gs��� =
g0Ip

1 + 4��2/�B
2 , �7a�

ns��� = nf +
cg0Ip

�

��/�B

1 + 4��2/�B
2 , �7b�

ng��� = nfg +
cg0Ip

�B

1 − 4��2/�B
2

�1 + 4��2/�B
2 �2

, �7c�

espectively. As shown in Fig. 1, large normal dispersion
dns /d��0� is associated with the gain resonance, which
ives rise to an increase in the group index and therefore
decrease in group velocity vg=c /ng. The reduced group

elocity of the Stokes pulse leads to a slow-light time de-
ay in propagating through the fiber compared with the
ase in which the SBS process is absent. If we use the val-
es for the common single-mode fiber SMF-28 at 1550
m, mode area Aeff=50 
m2, �B /2�=40 MHz, and g0=5
10−11 m/W, Eqs. (7a)–(7c) give on-resonance gs
0.1 m−1, and group-index change ng−nfg�1.2�10−3 for
cw pump power of 1 mW. We note that the SBS-induced

roup index change depends on the fiber type and the
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ump power. For the SMF-28e fiber used by Okawachi et
l.,9 the group-index change is about 3.4�10−4 at 1 mW
ump power owing to the wider SBS bandwidth of the
MF-28e fiber ��70 MHz�. For the standard single-mode
ber used by Song et al.,10 the group-index change is es-
imated to be 1.3�10−3 at 1 mW pump power.

Using Eq. (6) and following the approach described by
oyd et al.,14 we obtain the pulse delay �Td of a Stokes
ulse (defined as the difference between the transit times
f the pulse with and without SBS):

�Td 

L

c
�ng − nfg�

=
G

�B

1 − 4��2/�B
2

�1 + 4��2/�B
2 �2

�
G

�B
�1 − 12��2/�B

2 � when 4��2/�B
2 � 1, �8�

here G=g0IpL is the gain parameter whose exponential
ives the small-signal gain, and L is the fiber length. The
aximum delay occurs at the peak of the Brillouin gain

��=0� and is simply given by

�Td = G/�B. �9�

he proportionality of �Td to G shows that the delay is
ontrollable by adjusting G, which is proportional to
ump intensity Ip. Equation (9) gives �Td�0.92 ns/dB
or �B /2�=40 MHz. Okawachi et al.9 measured �Td

0.52 ns/dB for a SMF-28e fiber, and Song et al.10 ob-
ained �Td�1 ns/dB for a standard single-mode fiber.

On-resonance and for a long Gaussian-shaped Stokes
ulse of duration �in (FWHM), the pulse emerging from
he optical fiber is also Gaussian shaped with a longer
ulse length �out (FWHM), where the pulse-broadening
actor B is given by

B 

�out

�in
= �1 +

16 ln 2

�in
2 �B

2 G�1/2

. �10�

sing the relation between pulse broadening and delay,
e find that the relative time delay for a fixed value of B

s given by

ig. 1. Large dispersion of the SBS resonance. (a) Gain (dashe
ndex of the resonance.
�Td

�in
= � B2 − 1

16 ln 2
G�1/2

. �11�

quation (10) shows that the pulse delay is always accom-
anied by pulse broadening. For example, �Td /�in�1.6
hen G=10 and B=2. For a short-duration input pulse,
oth �Td and B deviate from the values predicted by Eqs.
8) and (10), and the output pulse is distorted owing to
igher-order dispersion, as will be shown in the numeri-
al simulations.

. NUMERICAL RESULTS
he small-signal analysis described above provides useful

nsight into the mechanisms of the slow-light effect of
BS in optical fibers. However, it cannot be used in situ-
tions where a pulsed pump beam is used, where the
ump beam is depleted, or for short Stokes pulses. In this
ection, we solve Eqs. (1a)–(1c) numerically using the
ethod of characteristics15 to determine how such effects
odify slow light via SBS. In our numerical simulations,
e assume that the pump is cw and that the Gaussian-

haped Stokes pulse is on the SBS line center ���=0� and
as no frequency chirp, and we use the following param-
ters for a SMF-28 fiber: L=50 m, �=1550 nm, nfg=1.45,
eff=50 
m2, �=0.2 dB/km, �B /2�=40 MHz, and g0=5
10−11 m/W.
We first consider the pulse delay �Td and pulse broad-

ning B as a function of the gain parameter G for differ-
nt input pulse widths. Figure 2 shows the variations in
Td and B as functions of G for a relatively long pulse of
WHM of 120 ns (its FWHM bandwidth of �3.7 MHz is
uch smaller that the SBS gain bandwidth of 40 MHz).
he peak power of the input Stokes pulse is 0.1 
W. The
ain parameter G is limited up to the Brillouin threshold
f �25.12 For G�25, photons spontaneously scattered
rom thermal phonons near the entrance face of the fiber
re amplified by a factor of �exp�25�, resulting in the gen-
ration of a Stokes field at the output that saturates the
ump field in the absence of any input Stokes field.12

herefore the spontaneous Brillouin scattering will limit
he maximum useful gain parameter G to be below the
rillouin threshold of �25. As can be seen in Fig. 2(a),
Td increases linearly with G and agrees well with the
nalytic prediction (dashed curve) by Eq. (9) when G is

e) and refractive index (solid curve) of the resonance. (b) Group
d curv
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mall ��8�. This is expected, since the cw pump is essen-
ially unaffected when the gain is small and thus the
mall-signal analysis is valid. At larger G, gain saturation
pump depletion) causes �Td to deviate from the analytic
esult: �Td increases slowly with G and reaches its maxi-
um before decreasing with G. Simulations with other

eak powers show that gain saturation starts at different
for Stokes pulses of different peak powers, and that a

ower peak power pulse enters the gain-saturation regime
t a higher gain. Gain saturation is thus seen to limit the
aximum time delay that a Stokes pulse can experience

or a given input power.
In the gain-saturation regime, the time delay �Td de-

reases with increasing G and even becomes negative
i.e., the pulse experiences advancement instead of delay).
his behavior of �Td can be explained by gain-saturation-

nduced pulse advancement, because the amplified pulse
s intense enough to deplete the pump, and the leading
dge of the pulse experiences higher amplification than
he trailing edge. The pulse advancement (superluminal
ulse propagation) is a typical feature in a saturated am-
lifier and was first studied by Basov et al.16 and has
ince attracted considerable interest (see Ref. 1 and refer-
nces therein).

The calculated pulse-broadening factor also agrees well
ith the analytic result (dashed curve) given by Eq. (10)
hen G is small, as shown in Fig. 2(b). At larger G, the

ig. 2. (a) Pulse delay versus gain. (b) Pulse broadening factor v
eak powers are 9.98�10−8 W, 1.30�10−2 W and 0.88 W, resp
WHM width of 120 ns. The dashed curves in (a) and (b) are obt

ig. 3. (a) Time delay versus gain. (b) Broadening factor versus
eak powers are 9.98�10−8 W and 9.99�10−2 W, respectively). T
f 20 ns. The dashed curves in (a) and (b) are obtained from Eqs
umerical result deviates from the analytic result be-
ause of gain saturation. In the gain-saturation regime,
he pulse even narrows a little bit because of pulse distor-
ion. Figure 2(c) shows the normalized output pulse
hapes at G=0, 12, and 25, respectively. Evidently, the
utput pulse with a maximum time delay (�43 ns at G
12) has little distortion, whereas the output pulse is ad-
anced by �114 ns in the highly saturated regime �G
25� but is distorted substantially.
For the purpose of comparison, we show in Fig. 3 the

cenario for a relatively short pulse of 20 ns (FWHM) and
f the same peak power of 0.1 
W. Both �Td and B devi-
te substantially from and are smaller than the analytic
esults (shown as dashed curves), even when G is small.
he reason is that the wide spectral content of the short
ulse (in comparison with the SBS gain bandwidth)
akes third-order dispersion important in the pulse

ropagation, which is neglected in obtaining Eqs. (9) and
10). The smallness of the numerically calculated �Td
ompared with the analytic one can also be simply ex-
lained as following: Part of the input spectrum experi-
nces a delay given by Eq. (9), whereas an appreciable
raction of the spectral components experience smaller de-
ays because of frequency detuning, as shown in Eq. (8),
esulting in a pulse delay that is smaller than that is pre-
icted by Eq. (9). Compared with the 120-ns pulse, the
0-ns pulse reaches the saturation regime at a larger G,

ain. (c) Normalized output pulses at G=0, 12, and 25 (the output
y). The input Stokes pulse has a peak power of 0.1 
W and a
from Eqs. (9) and (10), respectively.

(c) Normalized output pulse powers at G=0 and 16 (the output
ut Stokes pulse has a peak power of 0.1 
W and a FWHM width
d (10), respectively.
ersus g
ectivel
ained
gain.
he inp
. (9) an
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nd the maximum time delay is accordingly larger. At the
ame time, however, pulse broadening is significant owing
o the broader bandwidth of the pulse. In Fig. 3(c), we plot
he normalized output Stokes pulses at G=0 and 16, illus-
rating the pulse distortion at a maximum delay of
49 ns at G=16. The relative time delay achieves its
aximum �2.5 at G=16 in this case. The maximum rela-

ive time delay could be larger for lower-power or shorter
tokes pulses, but it is achieved at the cost of large tem-
oral broadening and distortion.
Next, we look at the time delay and pulse broadening

s a function of input peak power for different pulse
idths at a fixed gain. As we see in Fig. 4, the time delay
nd pulse broadening are constant for low peak power
nd are reduced at high peak power because of gain satu-
ation. Longer pulses obtain both larger time delay and
ess pulse broadening, and there is a upper limit for the

aximum time delay, as given by Eq. (9).
We also investigate the time delay and pulse broaden-

ng as a function of the Stokes input pulse width for dif-
erent input peak powers at a fixed gain. As shown in Fig.
, at a fixed gain G=10, higher-power pulses start to de-
lete the pump at shorter pulsewidths and achieve a
maller maximum time delay, while lower peak-power
ulses have the opposite trend and tend to obtain a maxi-
um time delay independent of the input pulse width.
ulse broadening is seen to depend only on the input
ulse width and is negligible for longer pulses.
Further simulations indicate that the maximum time

elay for an input Stokes pulse is determined approxi-
ately by the pulse energy and is independent of the in-

ut pulse width when the input pulse width is much
onger than the lifetime of the acoustic wave (� =1/� is

ig. 4. (a) Pulse delay versus input peak power and (b) pulse-
roadening factor versus input peak power for different input
ulse widths. The gain parameter G is fixed at 10. The FWHM
idth of the input pulse is labeled in (a).
a B
4 ns in this study). Figure 6 shows an example of the
imulations. While the maximum time delay is nearly the
ame for the pulses with the same energy, the pulse delay
hanges with the input pulse width in a different manner
n the gain-saturation regime: For longer (shorter) pulses
he time delay decreases more quickly (slowly) with gain
. This indicates that the gain-saturation-induced ad-
ancements are larger for longer pulses.

Finally, we look at the variation of the relative time de-
ay �Td /�in with the input Stokes pulse width �in at a
xed gain parameter G. For G=10, such a plot can be in-
erred from Fig. 5(a) with the time delay �Td divided by
he corresponding input pulse width �in. Figure 7 shows
Td /�in versus �in for G=10 in the small-signal limit,
hich is the upper bound of the curves for input pulses of
ifferent peak powers. The corresponding pulse-
roadening factor B is also shown in Fig. 7 for better vi-
ualization. Apparently, the use of short Stokes pulses
ends to achieve large relative delays, but at the expense
f large pulse broadening. If we require the pulse-
roadening factor be �2, then the maximum relative de-
ay achievable for G=10 is about 1.4 at an input width of
22 ns and with a peak power �5 
W.

. DISCUSSION
epending on the applications, one may want to delay a
ulse by a certain amount of time �Td or want a specific
elative time delay �Td /�in. For both cases, the analytical

ig. 5. (a) Pulse delay versus input pulse width and (b) pulse-
roadening factor versus input pulse width for different input
eak powers. The gain parameter G is fixed at 10. The peak
ower of the input pulse is labeled in (a).
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nd numerical results presented in the previous sections
an be applied. At a given gain-parameter G, the maxi-
um achievable time delay is that given by the small-

ignal limit value [Eq. (9)], i.e., G /�B. In the small-signal
egime, a long Stokes pulse experiences a larger time de-
ay �Td than a short Stokes pulse does with the same
ain parameter, as shown in Figs. 2(a), 3(a), and 4(a).
ain saturation has been shown to limit the time delay to
elow the small-signal limit and even leads to pulse ad-
ancement. Furthermore, the maximum useful gain pa-
ameter is limited by spontaneous Brillouin scattering to
elow the Brillouin threshold of about 25. As shown in
ig. 7, the use of short pulses can obtain large relative
ulse delays, but with large pulse broadening that may
ender the delay useless. Ultimately, the maximum
chievable relative time delay is given by Eq. (11) for a
esignated pulse-broadening factor B. For G=25 and B
2, we find from Eq. (11) that �Td /�in=2.6.
The limitation on the maximum achievable �Td and

Td /�in can be circumvented, for example, by cascading
ultiple SBS fiber amplifiers separated by attenuators.
he amplified Stokes pulses from the preceding amplifier
re attenuated and delayed in the next amplifier. This
ascading scheme allows one to increase the gain param-
ter G without the problem of gain saturation, as long as
ach SBS amplifier is operated in the small-signal regime.
n this case, the analytic results given by Eqs. (9)–(11) are
till applicable for long Stokes pulses, with G being the
um of the gain parameters of all the cascaded amplifiers.

As has been shown analytically and numerically, the
ime delay of the Stokes pulse is optically controllable by
hanging the pump intensity in the small-signal and

ig. 6. (a) Pulse delay versus gain and (b) pulse-broadening fac-
or versus gain. The input pulse energy is fixed at 1�10−5 nJ.
he FWHM width of the input pulse is labeled in (a).
ain-saturation regimes. In the small-signal regime, the
ime delay �Td increases linearly with gain G, and the
ulses do not interfere with each other if they are well
eparated. In the gain-saturation regime, the time delay
Td decreases with gain G in a linear fashion, and pulse
dvancement can be achieved at cost of appreciable pulse
istortion (a steep leading edge and a long trailing edge).
he tunability of SBS-induced optical delays may find
uch applications as all-optical buffering in fiber-optic
ommunication systems, and optical information process-
ng.

By changing the SBS gain, the delays described in this
aper can be tuned from small fractions of a pulsewidth to
everal pulsewidths. There are potential dynamic net-
ork scenarios for which we might want to use such a

unable all-optical delay element that keeps the data
ulses in the optical domain. Buffering in an optical
witch is one example,17 but buffers of just 1–2 data-bit
engths tend to be of limited value. Three all-optical ap-
lications of small relative delays are (i) accurate syn-
hronization of two different optical-data streams such
hat they can be efficiently switched or bit interleaved18;
ii) data bit equalization of degrading effects using a
apped delay line, for which a series of weighted delays
ould take a corrupted optical pulse and put the optical
nergy back into its appropriate bit time slot19; and (iii)
rue time delay for optical phased-array radar.20,21

Importantly, we must concern ourselves with the “qual-
ty” of the output data pulses, especially if the output of
he delay element will be transmitted over some distance
f dispersive optical fiber. It would be crucial to fully
valuate the time- and frequency-domain characteristics
f the delayed pulses. From the analysis, we know that
he pulses are broadened over time. If their frequency
omponents are also affected by the delay element, then
he pulse will behave differently when it passes through
ber. Chirp, extinction ratio, noise, polarization depen-
ence, and bit error rates of the output optical pulses are
ll important parameters to measure.

. CONCLUSION
n summary, we have studied theoretically the slow-light
ffect via SBS in optical fibers. In the small-signal regime,

ig. 7. Relative time delay and pulse broadening versus input
ulse width at G=10. A maximum relative time delay of about
.4 is obtained using �22 ns pulses if the pulse broadening factor
f �2 is required.
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he time delay increases linearly with gain. In the satu-
ated regime, the time delay decreases with gain and
ulse advancement can be obtained. Accompanying the
ime delay is pulse broadening and distortion, which, to-
ether with the gain saturation and spontaneous Bril-
ouin scattering, limits the achievable maximum (rela-
ive) time delay. The results show a significant
mprovement in terms of relative delay and bandwidth
ver previous demonstrations of slow light in solids.5,6 Ad-
itionally, these Brillouin slow-light results strongly sug-
est that analogous slow-light delays can be achieved us-
ng stimulated Raman scattering in optical fibers at
elecommunication data rates ��10 Gbits/s�.
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