Visionaries

Eye Dominance Detection Instrument (EDDI) Product Requirements Document

Document Number 00001 Revisions Level Date D 12-12-2014

This is a computer-generated document. The electronic master is the official revision. Paper copies are for reference only. Paper copies may be authenticated for specifically stated purposes in the authentication block.

Authentication Block

001

EDDI Design Description Document (for OPT310 Senior Design Class)

<u>Rev</u>	<u>Description</u>	<u>Date</u>	Authorization
А	Initial PRD	10-27-2014	CAM, KML, YQ, ZZ
В	Updated PRD	11-11-2014	CAM, KML, YQ, ZZ
С	Updated PRD	12-03-2014	CAM, KML, YQ, ZZ
D	Updated PRD	12-12-2014	CAM, KML, YQ, ZZ

The EDDI is a senior design project. Its design inputs were derived from our interactions with our clinical and research partners, Scott MacRae and Len Zheleznyak.

Vision:

The product vision as stated in "Eye Dominance Detection Instrument Rev D" is a phablet to quantitatively measure eye dominance in humans in an efficient amount of time.

Environment:

As a clinical device, it needs to operate in the following environment:

Temperature

55-85 °F – operation range

Relative Humidity

Non-condensing – safe operation 10-85% - meets specifications

Phablet used in conjunction with EDDI contains a rechargeable battery.

During normal operation, may come into contact with a patient's face. It must be cleanable/ easily sanitized.

Should be used with instruction from a clinical assistant

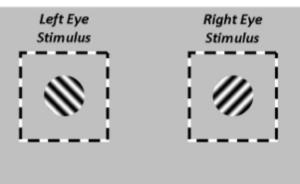
Regulatory Issues:

No current restrictions.

Scope:

We are responsible for:

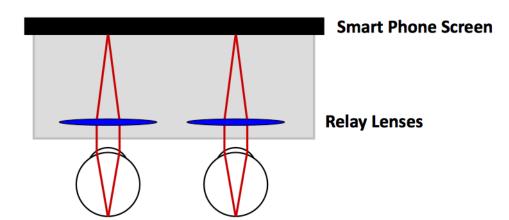
- Condensing the current eye dominance test to a portable device.
- Choosing a phablet
- Designing and constructing the housing
- Selecting and purchasing lenses
- Designing and debugging phablet app
- Research on making device commercially available in both clinical and nonclinical settings.


We are not responsible for:

- Mass producing EDDI
- Functionality with other phablets

Fitness for use:

The phablet will:


- Be capable of quantitatively measuring eye dominance
- Generate two independent patterns of sinusoidal fringes of a frequency of 4 cycles/degree with changeable contrasts; one for each eye
- Display patterns oriented perpendicular to one another
- Require that the image subtends an angle of 1 degree onto retina
- Include a square box around the pattern used to ensure the individual patterns overlap in patient's vision, as seen below:

- Correct gamma curve for a linear increase in gray levels
- Allow patient to convey which pattern orientation is visible in real time
- Generate numerical value representing right eye-left eye contrast ratio based on patient input and contrast values

The housing will:

- Contain two achromatic doublets; one for each eye
- Hold lenses one focal length away from screen to ensure light comes out collimated as shown below:

LENS SPECIFICATIONS

Aperture Diameter	25 mm	
Focal Length	~50 mm	
Thickness	<15 mm	
Number of Elements	2	
Spectrum	Visible (400-700 nm)	
Aberration Correction	Chromatic and Spherical	

It is desirable that:

- Patient can adjust one pattern position on screen
- Housing will allow for lens adjustment based on patient eye-spacing
- Test will take less than one minute
- The phablet can process vocal input from patient
- The housing design is aesthetically fit for a clinical setting
- The system costs less than \$2000
- The system has a cheaper version for more widespread use