Hemodialysis Inline Analysis
A benchtop inline analyzer to measure the concentration of urea in spent dialysate.
Droplet Placement Positioning System for Fluid Deposition
A high-resolution fluid deposition system for use with Waveguide-Enhanced Raman Spectroscopy sensors.
Catheter Detection, Tracking, and Virtual Image Reconstruction
An integrated image processing system to track a surgical catheter in occluded surgical views.
Beard Adaptor for Ventilation Mask
An adaptor device able to attach to a ventilation/anesthesia mask to improve gaseous medication delivery to patients with facial hair.
Action Trackchair Controller
A new wireless controller for the Action Trackchair to allow for use by a caregiver of those unable to control the chair on their own.
Spica Chair
A chair specifically designed to safely and comfortably sit infants and young children that are immobilized by a cast that spans from the mid abdomen to the ankle, all while allowing proper social and cognitive development. The chair incorporates extra space for the casted torso and legs, as well as multiple aspects of adjustability to fit the wide range of children sizes and to fit under tables of varying heights.
Cautery Phantom
The cautery phantom senior design team will engineer and improve a system that will arrest artificial blood flow in response to electrocautery in a tissue phantom manufactured by Simulated Inanimate Models, LLC (SIM). To solve this problem, we have investigated methods of vessel constriction by lining the tissue phantom blood vessel wall with a thermoresponsive material, coagulating the artificial blood by introducing proteins and chemicals into the mixture, and by making the blood vessel with a shape memory polymer.
Dr. Drain – Surgical Drain Securement Device
A surgical drain is placed within an internal wound site to prevent fluid from accumulating in the body throughout the patient’s recovery. A suture is currently used to secure the drain to the patient but has multiple shortcomings including infection risk and failure over time. We have worked alongside Dr. Sara Neimanis to create a new securement device that minimizes infection while durably securing the drain over extended periods of time.
Emergency Vehicle Alert (E.V.A.)
There is a need to ensure that drivers are alerted of approaching emergency vehicles so that they can remove themselves from the path of the emergency vehicle. It is especially a challenge for deaf, hard of hearing, and distracted drivers to identify emergency signals, which puts them at an increased risk for collision. In this project, we developed a device for use in the car that detects emergency vehicles and notifies the driver of their presence. We used a trained convolutional neural network to detect sirens in noisy environments. On our validation set, we achieved a 95% detection accuracy with a 50% criterion. A demonstration of our real-time detector and design schematic are shown below.
Cataract Surgery Device for the Developing World
Cataracts, a hardness and opacifying of the lens, is the leading cause of curable blindness worldwide, with the majority of cases occurring in developing countries where trained ophthalmologists are scarce. Our project is to develop a device to be used for a simplified cataract surgery that will insert a cylindrical intraocular lens into the cataract. By simplifying the procedure, more healthcare providers can be trained to perform the procedure, increasing the accessibility of cataract treatment in developing countries.
Pediatric Food Extraction
The aim of this project was to design a device capable of removing impacted food boluses in pediatric patients both more efficiently and more quickly compared to current industry standards.
Blood Volume Tracker
To create a device that is minimally invasive that will be used to measure a patient’s blood composition (hematocrit and blood plasma) using electrochemical impedance spectroscopy to track changes in blood volume.
TKA Infection Control
After a total knee arthroplasty (TKA) surgery, some patients experience infection at the surgical site. This infection is often associated with the formation of bacterial biofilm, and in order to treat this, the surgeon must remove and replace the implant with the risk of reduced mobility and bone fraction. Our project is to develop a medical device to eradicate the biofilm without the necessity to remove the orthopedic implant.
A Device For Identifying Microplastics
We are designing a device that will provide a cost-effective method for characterizing whether a particle in water is a plastic or nonplastic, as well as categorizing the subtype of plastic. The device will need to be effective on a scale of approximately one to five microns, which is the size of the microplastic particles.
Ultrasound Probe Stabilizer
Undesired motion of the Sonavex, Inc. EchoSure probe is often imparted during the vascular ultrasound imaging process, leading to undesired artifacts within the collected scans that can render the data unusable.We have developed a device to stabilize the ultrasound probe; in doing so, it will be possible to help minimize additional movement and obtain better-quality images of AV fistulas without as many motion disturbances.
Abscess Model for Photodynamic Therapy
Designing an accurate abscess model for photodynamic therapy testing.
Tracheostomy Securement
Our project is to design a device that can quantitatively measure the securement of a tracheostomy, therefore, prevent postoperative complications and provide hospital staff with more information for further research. Because of the COVID-19 situation, we have changed our project from designing an actual prototype to focusing more on theoretical mechanisms so that it will be able to be manufactured in the future.
CamPak
We are tasked by Rochester Rehab to create a device that increases the efficiency of packaging an underwater camera into a foil bag, primarily by reducing friction on the camera. By doing so, more cameras will be packaged per hour and the wage of the workers who are employed in the process will increase.
Bladder Phantom
Our team is working to design and develop a functional bladder phantom that sits in a model of the human torso. This model is to be used in the validation and testing efforts of our customer, Curbell Medical’s, bladder bioimpedance sensor device. The model must be anatomically comparable to that of the average human in terms of both structure and function.
Laryngoscope Solutions
Lip damage can occur during the intubation procedure with a laryngoscope. One way to mitigate this would be to create a training tool that will improve the users’ awareness of the lips during intubation. Therefore, we will design a system to alert the user of impending and imminent upper lip damage that can be used with the Macintosh laryngoscope blade.
BrainFreeze
BrainFreeze is creating a brain temperature probe noninvasive to cerebral parenchymal tissue. The purpose of this probe is to monitor selective hypothermia during stroke intervention procedures in the operating room.