Skip to content

Manufacturing Archive

Posts Loop

L3Harris Space Secondary Mirror Positioning System
L3Harris Technologies is an American defense company that builds a variety of mechanical, optical, and electrical systems. The Rochester division designs and builds systems for space applications. Optical space telescopes are widely used in both Earth and astrophysical observations and play a major role in scientific and national security. For optical telescopes to function properly and take clear images, their optics must be precisely aligned to focus light. However, during the launch of the telescope, the relative positions of these optics can change. The goal of the project is to build a mechanism to finely adjust the position of these optics to enhance resolution and accuracy of the telescope images. This improved image quality has significant implications for both terrestrial and space observations with applications to scientific research and national security.
Drill Powered Carts 1
Our team, along with Drill Powered Carts A have built a fully functioning, energy-efficient, and sustainable vehicle, which will be powered by a single electric power drill. By doing this, each team hopes to not only show people that electric-powered transportation is possible, reliable, and easy but, whose cart is the best. The two teams will face off in an endurance race to see which cart can make the most laps around a race track at the University of Rochester River Campus. This will show which team has the most optimized mechanical design.
360 Optical Mounts
Several optomechanical applications have a need for a 360° kinematic mounting system capable of withstanding thermal loading due to heat generation from electronic devices. It is advantageous for optical systems to have a repeatable and controlled, known distance between devices such as optics, sensors, light sources, mirrors or assorted non-optical sensors. The team was able to design a thermally stable spaceframe solution, capable of reducing movement of any assembled components to minimal displacements on the order of microns.
Temporary Sternal Spacer
Various post-operative complications may lead cardiac surgeons to opt for delayed sternal closure following open heart surgeries. Patients’ sterna are left open and they are cared for in the intensive care unit for 1-7 days. In the ICU, bedridden patients are turned to prevent pressure ulcers and for linen changes. During these turns, the sternal halves rotate and twist, potentially leading to injury or death. Our device stabilizes the sternal halves during transport and turning, greatly increasing patient safety.
PortVision: Minimally Invasive Surgical Port to Reduce Muscle Creep
Our project focuses on solving the need to decrease the amount of muscle obstruction during minimally invasive lumbar surgeries in order to increase the surgeon’s visualization of the surgical field. We developed a medical device that decreases the muscle obstruction by expanding an inflatable at the base of a cylindrical port. The product was tested in a PVA mixture that resembles similar material characteristics as muscle which proved the plausibility and efficacy of the concept.
G.W. Lisk existing nozzle with parameters used to run their simulations.
Natural Gas Mixer Redesign
A renewed focus on environmental concerns means that fuel efficiency and emissions of engines are of significant importance. A current design for a mixing nozzle exists, but the fuel residence could be higher and the pressure drop could be lower. A longer fuel residence time ensures smooth distribution of fuel and a more efficient burn. A lower pressure drop means that less energy is lost by the motion of the fluid through the mixer.
Figure 1: The helmet simulation in LS-DYNA.
NFL Helmet Challenge
Helmets in the NFL are not effective enough to safeguard the health of the players. Players sustain concussions which can not only bench them, but leave life-long brain damage from the accelerations experienced during impact. As part of the project to improve the helmet, simulations were used to test material properties of different components of football helmets, such as hard foams, soft foams, and the shell. Data from the simulations were analyzed with performance metrics provided by the NFL.