OCT Elastography

Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. We developed reverberant shear wave optical coherence elastography' (RSW-OCE), which significantly lowers the requirements on the imaging speed and opens the path to high-resolution and high-sensitivity OCE at relatively low cost. Methods of reverberant shear wave excitation, data acquisition, and tissue stiffness estimation are presented.

 


Journal Articles

  1. Fluid compartments influence elastography of the aging mouse brain
    G. R. Ge, J. P. Rolland, W. Song, M. Nedergaard, and K. J. Parker
    Phys Med Biol, vol 68, no. 9 , pp. 095004-1 -095004-10  (2023). View PDF
  2. The expanding frontier of optical elastography and diagnostic biomechanics
    K. J. Parker, G. R. Ge, J. P. Rolland, and M. Nedergaard
    Proceedings, SPIE BiOS, Optical Elastography and Tissue Biomechanics X, vol. 12381 , pp. 1238103-1 -1238103-4  (2023). View PDF
  3. Theory of sleep-wake cycles affecting brain elastography
    G. R. Ge, W. Song, M. Nedergaard, J. P. Rolland, and K. J. Parker
    Phys Med Biol, vol. 67, no. 22 , pp. 225013-1 -225013-16  (2022). View PDF
  4. Local Burr distribution estimator for speckle statistics
    G. R. Ge, J. P. Rolland, and K. J. Parker
    Biomed Opt Express, vol. 13, no. 4 , pp. 2334 -2345  (2022). View PDF
  5. Speckle statistics of cortical brain tissue in optical coherence tomography
    G. R. Ge, W. Song, M. Nedergaard, J. P. Rolland, and K. J. Parker
    Proceedings, SPIE BiOS, Biomedical Applications of Light Scattering XII, vol. 11974 , pp. 1197403-1 -1197403-6  (2022). View PDF
  6. Assessing corneal cross-linking with reverberant 3D optical coherence elastography
    G. R. Ge, B. Tavakol, D. B. Usher, D. C. Adler, J. P. Rolland, and K. J. Parker
    J Biomed Opt, vol. 27, no. 2 , pp. 026003-1 -026003-8  (2022). View PDF
  7. Speckle statistics of biological tissues in optical coherence tomography
    G. R. Ge, J. P. Rolland, and K. J. Parker
    Biomed Opt Express, vol. 12, no. 7 , pp. 4179 -4191  (2021). View PDF
  8. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers
    F. Zvietcovich, P. Pongchalee, P. Meemon, J. P. Rolland, and K. J. Parker
    Nature Communications, vol. 10, no. 2 , pp. 4895-1 -4895-13  (2019). View PDF
  9. Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography
    F. Zvietcovich, G. R. Ge, H. Mestre, M. Giannetto, M. Nedergaard, J. P. Rolland, and K. J. Parker
    Biomed Opt Express , pp. 3699 -3718  (2019). View PDF
  10. Shear wave propagation in viscoelastic media: validation of an approximate forward model
    F. Zvietcovich, N. Baddour, J. P. Rolland, and K. J. Parker
    Phys Med Biol, vol. 64, no. 2 , pp. 025008-1 -025008-13  (2019). View PDF
  11. Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography
    F. Zvietcovich, J. P. Rolland, E. Grygotis, S. Wayson, M. Helguera, D. Dalecki, and K. J. Parker
    Proceedings, SPIE BiOS Optical Elastography and Tissue Biomechanics V, vol. 10496 , pp. 104960P-1 -104960P-11  (2018). View PDF
  12. An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model
    F. Zvietcovich, J. P. Rolland, and K. J. Parker
    Journal of Innovative Optical Health Sciences, vol. 10, no. 6 , pp. 1742008-1 -1742008-16  (2017). View PDF
  13. Comparative study of shear wave-based elastography technques in optical coherence tomography
    F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker
    SPIE Journal of Biomedical Optics, vol. 22, no. 3 , pp. 035010-1 -035010-17  (2017). View PDF
  14. A comparative study of shear wave speed estimation techniques in optical coherence elastography
    F. Zvietcovich, J. Yao, Y. Chu, P. Meemon, J. P. Rolland, and K. J. Parker
    Proceedings SPIE 9710 Photonics West, Optical Elastography and Tissue Biomechanics III, vol. 9710 , pp. 97100Y-1 - 97100Y-11  (2016). View Online
  15. Experimental classification of surface waves in optical coherence elastography
    F. Zvietcovich, J. Yao, J. P. Rolland, and K. J. Parker
    Proceedings SPIE 9710 Photonics West, Optical Elastography and Tissue Biomechanics III, vol. 9710 , pp. 97100Z-1 - 97100Z-9  (2016). View Online
  16. Crawling wave optical coherence elastography
    P. Meemon, J. Yao, Y. Chu, F. Zvietcovich, K. J. Parker, and J. P. Rolland
    Optics Letters, vol. 41, no. 5 , pp. 847 -850  (2016). View Online